1
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jiang LY, Wang GH, Xu JJ, Li XL, Lin XY, Fang X, Zhang HX, Feng M, Jiang CM. CREB-induced LINC00473 promotes chemoresistance to TMZ in glioblastoma by regulating O6-methylguanine-DNA-methyltransferase expression via CEBPα binding. Neuropharmacology 2024; 243:109790. [PMID: 37981063 DOI: 10.1016/j.neuropharm.2023.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Temozolomide (TMZ) offers substantial therapeutic benefits for glioblastoma (GB), yet its efficacy is hindered the development of chemoresistance. The role of long non-coding RNAs (lncRNAs) in tumorigenesis and chemoresistance has garnered great attention in studies on TMZ resistance. This study aimed to reveal the role of LINC00473 in TMZ chemoresistance and the underlying mechanism in GB. The expression of LINC00473 in TMZ-resistant and TMZ-sensitive GB cells was investigated using qPCR analysis. The role of LINC00473 in regulating TMZ resistance in GB cells was analyzed using the CCK-8 assay, colony formation assay, and flow cytometry. The next steps included assessing if LINC00473 is regulated by CREB and whether LINC00473 promotes chemoresistance through MGMT regulation via CEBPα. Further, chemoresistance delivery between cells via exosomal LINC00473 was validated in vitro and in vivo. Results showed that LINC00473 levels were elevated in TMZ-resistant cells upon CREB activation, and the lncRNA promoted the chemoresistance of GB cells through the upregulation of MGMT expression. Mechanistically, LINC00473 regulated the MGMT expression by binding to CEBPα. The highly-expressed LINC00473 packaged in exosomes transferred chemoresistance to the adjacent TMZ-sensitive GB cells. In conclusion, a novel CREB/LINC00473/CEBPα/MGMT pathway was revealed in the GB TMZ-resistance formation. In addition, an exosome-based mechanism of chemoresistance transmission was revealed, suggesting that LINC00473 could be used as a novel therapeutic target for GB.
Collapse
Affiliation(s)
- Li-Ya Jiang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China; Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Guan-Hao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Jing-Jiao Xu
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Li Li
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Xiao-Yan Lin
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Xiang Fang
- Department of Clinical Laboratory Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Hong-Xu Zhang
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Chun-Ming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
3
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
4
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
LncRNAs as biomarkers for predicting radioresistance and survival in cancer: a meta-analysis. Sci Rep 2022; 12:18494. [PMID: 36323697 PMCID: PMC9630540 DOI: 10.1038/s41598-022-21785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of long noncoding RNAs (lncRNAs) on the radiotherapy response has been gradually revealed. This systematic review and meta-analysis aimed to evaluate the association between the function and underlying mechanism of lncRNAs in regulating the radiosensitivity and radioresistance of different tumors. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were calculated to estimate the effect of lncRNAs on cancer patient prognosis, including overall survival (OS), recurrence-free survival (RFS), disease-free survival (DFS) and progression-free survival (PFS). Collectively, 23 lncRNAs in 11 cancer types were enrolled. Of them, 13 lncRNAs were downregulated and related to radiosensitivity, 11 lncRNAs were upregulated and related to radioresistance, and 3 lncRNAs were upregulated and related to radiosensitivity in cancers. Furthermore, 17 microRNAs and 20 pathways were targeted by different lncRNAs and contributed to the cancer radiotherapy response in this meta-analysis. The individual pooled HRs (95% CIs) of downregulated radiation-resistant and upregulated radiation-resistant lncRNAs for OS were 0.49 (0.40-0.60) and 1.88 (1.26-2.79), respectively. Our results showed that lncRNAs could modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways and serve as potential biomarkers to predict radiotherapy response.
Collapse
|
6
|
Bai L, Dong K, Tong D, Shi X, Wei S, Cai Y. lncRNA HIT000218960 enhances resistance to 5‑fluorouracil by promoting HMGA2 and activating the AKT/mTOR/P70S6K pathway in gastric cancer cells. Exp Ther Med 2022; 24:527. [PMID: 35837027 DOI: 10.3892/etm.2022.11454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/28/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Li Bai
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Kunbo Dong
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Deyong Tong
- Department of Oncology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Xiuna Shi
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Sirong Wei
- Department of Intervention, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| | - Yongguo Cai
- Department of Gastroenterology, The 970th Hospital of The PLA Joint Logistics Support Force, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
7
|
Kim SS, Kycia I, Karski M, Ma RK, Bordt EA, Kwan J, Karki A, Winter E, Aktas RG, Wu Y, Emili A, Bauer DE, Sethupathy P, Vakili K. DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. PLoS One 2022; 17:e0263829. [PMID: 35167623 PMCID: PMC8846505 DOI: 10.1371/journal.pone.0263829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a primary liver cancer that most commonly arises in adolescents and young adults in a background of normal liver tissue and has a poor prognosis due to lack of effective chemotherapeutic agents. The DNAJB1-PRKACA gene fusion (DP) has been reported in the majority of FLC tumors; however, its oncogenic mechanisms remain unclear. Given the paucity of cellular models, in particular FLC tumor cell lines, we hypothesized that engineering the DP fusion gene in HEK293T cells would provide insight into the cellular effects of the fusion gene. We used CRISPR/Cas9 to engineer HEK293T clones expressing DP fusion gene (HEK-DP) and performed transcriptomic, proteomic, and mitochondrial studies to characterize this cellular model. Proteomic analysis of DP interacting partners identified mitochondrial proteins as well as proteins in other subcellular compartments. HEK-DP cells demonstrated significantly elevated mitochondrial fission, which suggests a role for DP in altering mitochondrial dynamics. Transcriptomic analysis of HEK-DP cells revealed a significant increase in LINC00473 expression, similar to what has been observed in primary FLC samples. LINC00473 overexpression was reversible with siRNA targeting of PRKACA as well as pharmacologic targeting of PKA and Hsp40 in HEK-DP cells. Therefore, our model suggests that LINC00473 is a candidate marker for DP activity.
Collapse
Affiliation(s)
- Stephanie S. Kim
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Ina Kycia
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Michael Karski
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Rosanna K. Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Julian Kwan
- Department of Biochemistry, Center for Networks Systems Biology, Boston University School of Medicine, Boston, MA, United States of America
| | - Anju Karki
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Elle Winter
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Ranan G. Aktas
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - Andrew Emili
- Department of Biochemistry, Center for Networks Systems Biology, Boston University School of Medicine, Boston, MA, United States of America
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Li J, Kong M, Wang D, Yang Z, Hao X. Prediction of lncRNA-Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network. Front Genet 2022; 12:808962. [PMID: 35058974 PMCID: PMC8763691 DOI: 10.3389/fgene.2021.808962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulated evidence of biological clinical trials has shown that long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of various complex human diseases. Research works on lncRNA–disease relations will benefit to further understand the pathogenesis of human complex diseases at the molecular level, but only a small proportion of lncRNA–disease associations has been confirmed. Considering the high cost of biological experiments, exploring potential lncRNA–disease associations with computational approaches has become very urgent. In this study, a model based on closest node weight graph of the spatial neighborhood (CNWGSN) and edge attention graph convolutional network (EAGCN), LDA-EAGCN, was developed to uncover potential lncRNA–disease associations by integrating disease semantic similarity, lncRNA functional similarity, and known lncRNA–disease associations. Inspired by the great success of the EAGCN method on the chemical molecule property recognition problem, the prediction of lncRNA–disease associations could be regarded as a component recognition problem of lncRNA–disease characteristic graphs. The CNWGSN features of lncRNA–disease associations combined with known lncRNA–disease associations were introduced to train EAGCN, and correlation scores of input data were predicted with EAGCN for judging whether the input lncRNAs would be associated with the input diseases. LDA-EAGCN achieved a reliable AUC value of 0.9853 in the ten-fold cross-over experiments, which was the highest among five state-of-the-art models. Furthermore, case studies of renal cancer, laryngeal carcinoma, and liver cancer were implemented, and most of the top-ranking lncRNA–disease associations have been proven by recently published experimental literature works. It can be seen that LDA-EAGCN is an effective model for predicting potential lncRNA–disease associations. Its source code and experimental data are available at https://github.com/HGDKMF/LDA-EAGCN.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China.,Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin, China
| | - Mengfan Kong
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Duanyang Wang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Zhenwu Yang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Xiaoke Hao
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| |
Collapse
|
9
|
Rong D, Wu F, Lu C, Sun G, Shi X, Chen X, Dai Y, Zhong W, Hao X, Zhou J, Xia Y, Tang W, Wang X. m6A modification of circHPS5 and hepatocellular carcinoma progression through HMGA2 expression. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:637-648. [PMID: 34703649 PMCID: PMC8517093 DOI: 10.1016/j.omtn.2021.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
N6-methyladenosine (m6A) is capable of mediating circRNA generation in carcinoma biology. Nevertheless, the posttranscriptional systems of m6A and circRNA in hepatocellular carcinoma (HCC) development are still unclear. The present study identified a circRNA with m6A modification, circHPS5, which was increased in neoplasm HCC tissues and indicated poor patient survival. Silencing of circHPS5 inhibited epithelial-mesenchymal transition (EMT) and cancer stem-like cell (CSC) phenotypes. Notably, METTL3 could direct the formation of circHPS5, and specific m6A controlled the accumulation of circHPS5. YTHDC1 facilitated the cytoplasmic output of circHPS5 under m6A modification. In addition, we demonstrated that circHPS5 can act as a miR-370 sponge to regulate the expression of HMGA2 and further accelerate HCC cell tumorigenesis. Accordingly, the m6A modification of circHPS5 was found to modulate cytoplasmic output and increase HMGA2 expression to facilitate HCC development. The new regulatory model of “circHPS5-HMGA2” provides a new perspective for circHPS5 as an important prognostic marker and therapeutic target in HCC and provides mechanistic insight for exploring the carcinogenic mechanism of circHPS5 in HCC.
Collapse
Affiliation(s)
- Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoyuan Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.,School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yongjiu Dai
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Weizhe Zhong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Xiaopei Hao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Jinren Zhou
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Yongxiang Xia
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Yao B, Ye L, Chen J, Zhuo S, Lin H. LINC00473 protects against cerebral ischemia reperfusion injury via sponging miR-15b-5p and miR-15a-5p to regulate SRPK1 expression. Brain Inj 2021; 35:1462-1471. [PMID: 34752173 DOI: 10.1080/02699052.2021.1972156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cerebral ischemia is associated with a high burden of neurological disability. Recently, emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) are crucial regulators in cerebral ischemia reperfusion (I/R) injury. Herein, we investigated the function and potential mechanism of long intergenic non-protein coding RNA 473 (LINC00473) in cerebral I/R injury. METHODS We established oxygen glucose deprivation/reperfusion (OGD/R) model in Neuro-2a (N2a) cells to mimic the cerebral I/R injury in vitro. RT-qPCR and Western blot assays were conducted to detect target gene expression. Functional assays measured the effects of LINC00473 on cell viability, apoptosis and reactive oxygen species (ROS) production. A series of mechanism assays were carried out to detect the potential mechanism of LINC00473 in cerebral I/R injury. RESULTS LINC00473 was significantly down-regulated in OGD/R-induced injury model. LINC00473 overexpression reversed the reduced cell viability as well as the enhanced apoptosis and ROS level induced by OGD/R. Moreover, LINC00473 functioned as a competing endogenous RNA (ceRNA) to sponge miR-15b-5p and miR-15a-5p and thereby regulated SRSF protein kinase 1 (SRPK1) expression. CONCLUSIONS Our findings confirmed the protective role of LINC00473 in cerebral I/R injury, which might provide a novel target for treating ischemic brain injury.
Collapse
Affiliation(s)
- Boxin Yao
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lichao Ye
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jixing Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shitu Zhuo
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huasong Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
11
|
LncRNA LINC00473 is involved in the progression of invasive pituitary adenoma by upregulating KMT5A via ceRNA-mediated miR-502-3p evasion. Cell Death Dis 2021; 12:580. [PMID: 34091587 PMCID: PMC8179925 DOI: 10.1038/s41419-021-03861-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) and their crosstalks with other RNAs have been revealed to be closely related to tumorigenesis and development, but their role in invasive pituitary adenoma (IPA) remains largely unclear. In our study, LINC00473 was identified as the most upregulated lncRNA in IPA by whole transcriptome RNA sequencing (RNA-Seq). Further, its related signaling pathway LINC00473/miR-502-3p/KMT5A was obtained by constructing a competing endogenous RNA (ceRNA) regulatory network. Their expression in IPA and non-invasive pituitary adenoma (NIPA) tissues was verified by qRT-PCR. Then the effects and mechanisms of LINC00473 and its ceRNA network on the proliferation of pituitary adenoma (PA) cells were confirmed by gene overexpression or silencing techniques combined with CCK-8 assay, EdU staining, flow cytometry assay, and double luciferase reporter gene assay in PA cell lines AtT-20 and GT1-1 in vitro and in a xenograft model in vivo. LINC00473 is overexpressed in IPA and can promote PA cells proliferation. Mechanistically, overexpression of LINC00473 restricts miR-502-3p through the ceRNA mechanism, upregulates KMT5A expression, and promotes the expression of cyclin D1 and CDK2, which is conducive to the cell cycle process, thereby promoting the proliferation of PA cells, involving IPA progression.
Collapse
|
12
|
Tao H, Li J, Liu J, Yuan T, Zhang E, Liang H, Huang Z. Construction of a ceRNA Network and a Prognostic lncRNA Signature associated with Vascular Invasion in Hepatocellular Carcinoma based on Weighted Gene Co-Expression Network Analysis. J Cancer 2021; 12:3754-3768. [PMID: 34093785 PMCID: PMC8176257 DOI: 10.7150/jca.57260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Understanding risk factors for vascular invasion (VI) is crucial for assessing the risk of recurrence and overall prognosis of hepatocellular carcinoma (HCC). This study aimed to construct a prognostic long non-coding RNA (lncRNA) signature and a ceRNA Network associated with vascular invasion in HCC. Methods: Differentially expressed genes (DEGs) of HCC patients associated with VI were identified by analyzing data from TCGA. Weighted gene co-expression network analysis (WGCNA) was used to identify associations between gene expression modules and clinical features. A VI-related prognostic lncRNA signature was then established using univariate, LASSO and multivariate Cox proportional hazards regression analyses. Based on the hub modules identified by the WGCNA, we constructed a VI-related lncRNA-miRNA-mRNA ceRNA network and screened hub lncRNAs for further research. Finally, we conducted in vitro and in vivo experiments to determine the biological roles of the identified hub gene BBOX1-AS1. Results: The key module related to VI and OS was identified using WGCNA, after which a prognostic model consisting of eight lncRNAs was established, and verified using time-dependent receiver operating characteristic (ROC) curve analysis. BBOX1-AS1 was confirmed to be highly expressed in HCC tissues, and its expression was significantly correlated with a poor prognosis. Silencing BBOX1-AS1 in vitro significantly suppressed the proliferation, migration and invasion of HCC cells. In vivo experiments demonstrated that knocking down of BBOX1-AS1 could result in significant decrease of tumor volume and tumor weight. Conclusions: The VI-related lncRNA signature established in this study can be used to predict the clinical outcomes of HCC patients. In addition, we constructed a VI-related lncRNA-miRNA-mRNA ceRNA network and demonstrated that BBOX1-AS1 might be a novel biomarker associated with VI in HCC.
Collapse
Affiliation(s)
- Haisu Tao
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
13
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of METTL3 as an Adverse Prognostic Biomarker in Hepatocellular Carcinoma. Dig Dis Sci 2021; 66:1110-1126. [PMID: 32333311 DOI: 10.1007/s10620-020-06260-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION N6-methyladenosine (m6A), the most prominent mRNA modification, plays a critical role in many physiological and pathological processes. However, the roles of m6A RNA modification in hepatocellular carcinoma (HCC) remain largely unknown. MATERIALS AND METHODS We investigated the mRNA expression and clinical significance of m6A-related genes using data from The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma cohort. Mutation, copy number variation (CNV), methylation, differential expression, and gene ontology analyses, gene set enrichment analysis and the construction of a competing endogenous RNA (ceRNA) regulatory network were performed to investigate the underlying mechanisms of the aberrant expression of m6A-related genes. RESULTS m6A-related genes were frequently dysregulated in cancers but with a cancer-specific pattern. METTL3, YTHDF2, and ZC3H13 were found to be independent prognostic factors of overall survival (OS); however, only METTL3 was found to be an independent prognostic factor of recurrence-free survival (RFS). Joint effects analysis showed the predictive capacity of combining METTL3, YTHDF2, and ZC3H13 for HCC OS. Then the potential mechanisms of METTL3 were further explored due to its prognostic role in both OS and RFS. CNV and DNA methylation, but not somatic mutations, might contribute to the abnormal upregulation of METTL3 in HCC. Significantly altered genes, microRNAs, and lncRNAs were identified, and a ceRNA regulatory network was constructed to explain the upregulation of METTL3 in HCC. CONCLUSIONS Our study identified several m6A-related genes, especially METTL3, that could be potential prognostic biomarkers in HCC.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China. .,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.
| | - Hua-Dong Zeng
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Cai-Yun Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Ji-Wei Xu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| |
Collapse
|
15
|
Xu SH, Bo YH, Ma HC, Zhang HN, Shao MJ. lncRNA LINC00473 promotes proliferation, migration, invasion and inhibition of apoptosis of non-small cell lung cancer cells by acting as a sponge of miR-497-5p. Oncol Lett 2021; 21:429. [PMID: 33868467 PMCID: PMC8045175 DOI: 10.3892/ol.2021.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated death worldwide and exhibits a poor prognosis. The present study aimed to determine the effect of long non-coding (lnc)RNA-LINC00473 on the development of non-small cell lung cancer (NSCLC) cells by regulating the expression of microRNA (miR)-497-5p. Reverse transcription-quantitative PCR was conducted to detect the level of LINC00473 and miR-497-5p. An MTT assay, flow cytometry and Transwell tests were performed to evaluate the proliferation, apoptosis, migration and invasion of NSCLC cells. Western blotting was performed to detect the expression of apoptosis- and migration-related proteins. RNA immunoprecipitation and a luciferase reporter assay were performed to verify the regulatory relationship between lncRNA-LINC00473 and miR-497-5p. LINC00473 expression was upregulated in lung cancer tissues and NSCLC cells (A549 and H1299) when compared with adjacent tissues or human bronchial epithelial cell lines and the 5-year survival rate was lower in patients with high LINC00473 expression compared with in patients with low LINC00473 expression. A negative correlation between LINC00473 and miR-497-5p was observed in lung cancer tissues. Proliferation, migration and invasion as well as the related protein levels were increased in A549 and H1299 transfected with pcDNA3.1-LINC00473, while the opposite results were obtained in A549 and H1299 transfected with small interfering (si)-LINC00473. Notably, it was demonstrated that LINC00473 could bind directly with miR-497-5p and inhibit its expression. miR-497-5p inhibitors reversed the effect of si-LINC00473. Furthermore, the present study demonstrated that LINC00473 promoted the malignant behaviour of NSCLC cells via regulating the ERK/p38 and MAPK signalling pathways and the expression of miR-497-5p.
Collapse
Affiliation(s)
- Shao-Hua Xu
- Department of Respiration, The Second Hospital of Shandong University, Jinan, Shandong, 250000, P.R. China
| | - Yu-Hong Bo
- Department of Respiration, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Han-Chen Ma
- Department of Respiration, The Second Hospital of Shandong University, Jinan, Shandong, 250000, P.R. China
| | - Hua-Nan Zhang
- Department of Respiration, The Second Hospital of Shandong University, Jinan, Shandong, 250000, P.R. China
| | - Ming-Ju Shao
- Department of Emergency Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
16
|
Liang C, Niu J, Wang X, Zhang ZS, Yang RH, Yao X, Liu FY, Li WQ, Pei SH, Sun H, Wang CJ, Fang D, Xie SQ. P300-dependent acetylation of histone H3 is required for epidermal growth factor receptor-mediated high-mobility group protein A2 transcription in hepatocellular carcinoma. Cancer Sci 2020; 112:679-690. [PMID: 33164305 PMCID: PMC7894021 DOI: 10.1111/cas.14729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022] Open
Abstract
High‐mobility group protein A2 (HMGA2) is highly expressed in hepatocellular carcinoma (HCC) cells and contributes to tumor metastasis and poor patient survival. However, the molecular mechanism through which HMGA2 is transcriptionally regulated in HCC cells remains largely unclear. Here, we showed that the expression HMGA2 was upregulated in HCC, and that elevated HMGA2 could promote tumor metastasis. Incubation of HCC cells with epidermal growth factor (EGF) could promote the expression of HMGA2 mRNA and protein. Mechanistic studies suggested that EGF can phosphorylate p300 at Ser1834 residue through the PI3K/Akt signaling pathway in HCC cells. Knockdown of p300 can reverse EGF‐induced HMGA2 expression and histone H3‐K9 acetylation, whereas a phosphorylation‐mimic p300 S1834D mutant can stimulate HMGA2 expression as well as H3‐K9 acetylation in HCC cells. Furthermore, we identified that p300‐mediated H3‐K9 acetylation participates in EGF‐induced HMGA2 expression in HCC. In addition, the levels of H3‐K9 acetylation positively correlated with the expression levels of HMGA2 in a chemically induced HCC model in rats and human HCC specimens.
Collapse
Affiliation(s)
- Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Jie Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Zhan-Sheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Ruo-Han Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Fan-Ye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Wen-Qi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Shu-Hua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Chao-Jie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Song-Qiang Xie
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China.,Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Ou D, Ding W, Tong C, Yi W. Knockdown of Long Non-coding RNA LINC00473 Protects CHON-001 Cells against Interleukin-1β-Induced Cell Injury. Biol Pharm Bull 2020; 44:232-237. [PMID: 33268698 DOI: 10.1248/bpb.b20-00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease with high prevalence. However, effective treatment options for OA are still lacking. It was previously reported that LINC00473 was upregulated in patients with OA and upregulated LINC00473 might be associated with the progression of OA; however, the role of LINC00473 in OA remains to be investigated. CHON-001 human chondrocyte cells stimulated with 10 ng/mL interleukin (IL)-1β were utilized to mimic OA in vitro. Protein expression, cell apoptosis and cell proliferation of CHON-001 cells were investigated by Western blot, Annexin V and propidium iodide (PI) double staining, cell counting-8 kit assay and immunofluorescence staining respectively. The result indicated IL-1β triggered viability decrease and apoptosis in CHON-001 cells, which was alleviated by LINC00473 knockdown. Meanwhile, IL-1β-induced upregulation of cleaved caspase 3 and Bax were ameliorated by LINC00473 knockdown. Likewise, IL-1β-induced downregulation of X-linked inhibitor of apoptosis protein was alleviated by LINC00473 knockdown. In addition, LINC00473 knockdown protected CHON-001 cells against IL-1β by inhibiting the methylation of LIM mineralization protein (LMP)-1 gene. Moreover, c-Jun N-terminal kinase (JNK)/nuclear factor-kappaB (NF-κB) signaling pathway was proved to be involved in the cell protective effect of LINC00473 knockdown in IL-1β treated CHON-001 cells. Taken together, LINC00473 knockdown defended CHON-001 cells from IL-1β induced cell injury via inhibition of the methylation of LMP-1. Thus, LINC00473 might possibly act as a novel therapeutic target for OA.
Collapse
Affiliation(s)
- Dijun Ou
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital
| | - Wenbin Ding
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital
| | - Changjun Tong
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital
| |
Collapse
|
18
|
Li L, Zhang X, Liu N, Chen X, Peng C. LINC00473: A novel oncogenic long noncoding RNA in human cancers. J Cell Physiol 2020; 236:4174-4183. [PMID: 33222224 DOI: 10.1002/jcp.30176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been found to play essential roles in the occurrence and development of multiple human cancers. Accumulating evidence has shown that LINC00473, an oncogenic lncRNA, is upregulated in various human malignancies and related to poor clinical outcomes. Besides, LINC00473 overexpression can promote cell proliferation, migration, and invasion through multiple potential mechanisms, indicating that it may serve as a novel prognostic biomarker and therapeutic target for human cancers. Here, we reviewed the biological functions, molecular mechanisms, and clinical implications of LINC00473 in human cancers.
Collapse
Affiliation(s)
- Lingfeng Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer ImmunoTherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Huang L, Jiang X, Li Z, Li J, Lin X, Hu Z, Cui Y. Linc00473 potentiates cholangiocarcinoma progression by modulation of DDX5 expression via miR-506 regulation. Cancer Cell Int 2020; 20:324. [PMID: 32694946 PMCID: PMC7368746 DOI: 10.1186/s12935-020-01415-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a mortal cancer with high mortality, whereas the function and mechanism of occurrence and progression of CCA are still mysterious. Long non-coding RNAs (lncRNAs) could function as important regulators in carcinogenesis and cancer progression. Growing evidences have indicated that the novel lncRNA linc00473 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in CCA remain unknown. Methods The linc00473 expression in CCA tissues and cell lines was analyzed using qRT-PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of linc00473 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, qRT-PCR arrays, RNA immunoprecipitation (RIP) and rescue experiments. Results Linc00473 was highly expressed in CCA tissues and cell lines. Linc00473 knockdown inhibited CCA growth and metastasis. Furthermore, linc00473 acted as miR-506 sponge and regulated its target gene DDX5 expression. Rescue assays verified that linc00473 modulated the tumorigenesis of CCA by regulating miR-506. Conclusions The data indicated that linc00473 played an oncogenic role in CCA growth and metastasis, and could serve as a novel molecular target for treating CCA.
Collapse
Affiliation(s)
- Lining Huang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Zhenglong Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Xuan Lin
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin, 150086 People's Republic of China
| |
Collapse
|
20
|
Comprehensive analysis of competitive endogenous RNAs network reveals potential prognostic lncRNAs in gastric cancer. Heliyon 2020; 6:e03978. [PMID: 32455175 PMCID: PMC7235626 DOI: 10.1016/j.heliyon.2020.e03978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of a range of human diseases, including various cancers, with multiple previous studies having explored lncRNA dysregulation in the context of gastric cancer (GC). The present study sought to expand upon these previous results by downloading lncRNA, mRNA, and microRNA (miRNA) expression profiles derived from 180 GC tissues and 24 normal control tissues within the Cancer Genome Atlas (TCGA) database. These datasets were then interrogated to identify GC-related differentially expressed (DE) RNAs (|fold change| ≥ 2, FDR< 0.01), leading to the identification of 1946 DE lncRNAs, 123 DE miRNAs, and 3159 DE mRNAs. These results were then used to generate a putative GC-related competitive endogenous RNA (ceRNA) network composed of 131 lncRNAs, 9 miRNAs, and 78 mRNAs. Subsequent survival analyses based upon this network revealed 17 of these lncRNAs to be significantly associated with GC patient survival (P < 0.05). Further multivariable Cox regression and lasso analyses allowed for the construction of an 8-lncRNA risk score that was able to effectively predict GC patient survival with good discriminative ability. The Kaplan-Meier Plotter database further confirmed that network hub genes that were related to these 8 lncRNAs were associated with GC patient prognosis (P < 0.05). As the ceRNA network in the present study was constructed with a focus on both disease stage and differential gene expression, it represents a key resource that will offer valuable insights into the mechanistic roles of ceRNA pathways in GC development and progression.
Collapse
|