1
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2024. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Liu J, Liu C, Chen H, Cen H, Yang H, Liu P, Liu F, Ma L, Chen Q, Wang L. Tongguan capsule for treating myocardial ischemia-reperfusion injury: integrating network pharmacology and mechanism study. PHARMACEUTICAL BIOLOGY 2023; 61:437-448. [PMID: 36789620 PMCID: PMC9937005 DOI: 10.1080/13880209.2023.2175877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/11/2022] [Accepted: 01/29/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Although Tongguan capsule (TGC) is used in the treatment of coronary atherosclerotic disease, the exact mechanism remains unclear. OBJECTIVE Network pharmacology and experimental validation were applied to examine the mechanism of TGC for treating myocardial ischemia-reperfusion injury (MIRI). MATERIALS AND METHODS The components and candidate targets were searched based on various databases such as TCMSP, TCMID, BATMAN-TCM. The binding ability was determined by molecular docking. The ischemia-reperfusion (I/R) model was constructed by ligating the left anterior descending (LAD) coronary artery. APOE-/- mice were divided into three groups (n = 6): Sham group, I/R group, and TGC group (1 g/kg/d). To further verification, HCAEC cells were subjected to hypoxia-reoxygenation (H/R) to establish in vitro model. RESULTS The compounds, such as quercetin, luteolin, tanshinone IIA, kaempferol and bifendate, were obtained after screening. The affinity values of the components with GSK-3β, mTOR, Beclin-1, and LC3 were all <-5 kcal/mol. In vivo, TGC improved LVEF and FS, reducing infarct size. In vitro, Hoechst 33258 staining result showed TGC inhibited apoptosis. Compare with the H/R model, TGC treatment increased the levels of GSK-3β, LC3, and Beclin1, while decreasing the expression of mTOR and p62 (p < 0.05). DISCUSSION AND CONCLUSION The findings revealed that TGC exerted a cardioprotective effect by up regulating autophagy-related proteins through the mTOR pathway, which may be a therapeutic option for MIRI. However, there are still some limitations in this research. It is necessary to search more databases to obtain information and further demonstrated through randomized controlled trials for generalization.
Collapse
Affiliation(s)
- Jiantao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hailong Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peijian Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Fang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuling Ma
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Quanfu Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Liu Z, Bian N, Wu S, Fan Y, Li H, Yu J, Guo J, Chen D. A meta-analysis evaluating indirectly GLP-1 receptor agonists and arrhythmias in patients with type 2 diabetes and myocardial infarction. Front Cardiovasc Med 2022; 9:1019120. [PMID: 36277800 PMCID: PMC9581215 DOI: 10.3389/fcvm.2022.1019120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aims At present, the effects of Glucagon-Like Peptide 1 Receptor agonists (GLP-1RAs) on arrhythmia in patients with type 2 diabetes mellitus (T2DM) and myocardial infarction (MI) are still unclear. Hence, this systematic review and meta-analysis aimed to investigate this association. Methods and results PubMed, Embase, Cochrane Library, and Web of Science were searched from inception to 30 April 2022. Randomized controlled trials (RCTs) that compared GLP-1RAs with placebo and met the critical criterion of a proportion of patients with T2DM and MI > 30% were included to verify our purpose indirectly. The outcomes of interest included atrial arrhythmias, ventricular arrhythmias, atrioventricular block (AVB), sinus arrhythmia, and cardiac arrest. Relative risk (RR) and 95% confidence intervals (CI) were pooled using a random-effects model. We included five RCTs with altogether 31,314 patients. In these trials, the highest proportion of patients with T2DM and MI was 82.6%, while the lowest was 30.7%. Compared to placebo, GLP-1RAs were associated with a lower risk of atrial arrhythmias (RR 0.81, 95% CI 0.70-0.95). There was no significant difference in the risk of ventricular arrhythmias (RR 1.26, 95% CI 0.87-1.80), AVB (RR 0.95, 95% CI 0.63-1.42), sinus arrhythmia (RR 0.62, 95% CI 0.26-1.49), and cardiac arrest (RR 0.97, 95% CI 0.52-1.83) between groups. Conclusion GLP-1RAs may be associated with reduced risk for atrial arrhythmias, which seems more significant for patients with T2DM combined with MI. More studies are needed to clarify the definitive anti-arrhythmic role of this drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongdong Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Soltani D, Azizi B, Rahimi R, Talasaz AH, Rezaeizadeh H, Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 2022; 9:990063. [PMID: 36247473 PMCID: PMC9559844 DOI: 10.3389/fcvm.2022.990063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias, characterized by an irregular heartbeat, are associated with high mortality and morbidity. Because of the narrow therapeutic window of antiarrhythmic drugs (AADs), the management of arrhythmia is still challenging. Therefore, searching for new safe, and effective therapeutic options is unavoidable. In this study, the antiarrhythmic effects of medicinal plants and their active constituents were systematically reviewed to introduce some possible candidates for mechanism-based targeting of cardiac arrhythmias. PubMed, Embase, and Cochrane library were searched from inception to June 2021 to find the plant extracts, phytochemicals, and multi-component herbal preparations with antiarrhythmic activities. From 7337 identified results, 57 original studies consisting of 49 preclinical and eight clinical studies were finally included. Three plant extracts, eight multi-component herbal preparations, and 26 phytochemicals were found to have antiarrhythmic effects mostly mediated by affecting K+ channels, followed by modulating Ca2+ channels, upstream target pathways, Nav channels, gap junction channels, and autonomic receptors. The most investigated medicinal plants were Rhodiola crenulata and Vitis vinifera. Resveratrol, Oxymatrine, and Curcumin were the most studied phytochemicals found to have multiple mechanisms of antiarrhythmic action. This review emphasized the importance of research on the cardioprotective effect of medicinal plants and their bioactive compounds to guide the future development of new AADs. The most prevalent limitation of the studies was their unqualified methodology. Thus, future well-designed experimental and clinical studies are necessary to provide more reliable evidence.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Roja Rahimi,
| | - Azita H. Talasaz
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Ali Vasheghani-Farahani,
| |
Collapse
|
5
|
Tan Y, Bie YL, Chen L, Zhao YH, Song L, Miao LN, Yu YQ, Chai H, Ma XJ, Shi DZ. Lingbao Huxin Pill Alleviates Apoptosis and Inflammation at Infarct Border Zone through SIRT1-Mediated FOXO1 and NF- κ B Pathways in Rat Model of Acute Myocardial Infarction. Chin J Integr Med 2022; 28:330-338. [PMID: 34826042 DOI: 10.1007/s11655-021-2881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate whether Lingbao Huxin Pill (LBHX) protects against acute myocardial infarction (AMI) at the infarct border zone (IBZ) of myocardial tissue by regulating apoptosis and inflammation through the sirtuin 1 (SIRT1)-mediated forkhead box protein O1 (FOXO1) and nuclear factor-κ B (NF-κ B) signaling pathways. METHODS Six-week-old Wistar rats with normal diet were randomized into the sham, the model, Betaloc (0.9 mg/kg daily), LBHX-L (0.45 mg/kg daily), LBHX-M (0.9 mg/kg daily), LBHX-H (1.8 mg/kg daily), and LBHX+EX527 (0.9 mg/kg daily) groups according to the method of random number table, 13 in each group. In this study, left anterior descending coronary artery (LADCA) ligation was performed to induce an AMI model in rats. The myocardial infarction area was examined using a 2,3,5-triphenyltetrazolium chloride solution staining assay. A TdT-mediated dUTP nick-end labeling (TUNEL) assay was conducted to assess cardiomyocyte apoptosis in the IBZ. The histopathology of myocardial tissue at the IBZ was assessed with Heidenhain, Masson and hematoxylineosin (HE) staining assays. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1 β, and intercellular adhesion molecule-1 were measured using enzyme-linked immunosorbent assays (ELISAs). The mRNA expressions of SIRT1 and FOXO1 were detected by real-time qPCR (RT-qPCR). The protein expressions of SIRT1, FOXO1, SOD2, BAX and NF- κ B p65 were detected by Western blot analysis. RESULTS The ligation of the LADCA successfully induced an AMI model. The LBHX pretreatment reduced the infarct size in the AMI rats (P<0.01). The TUNEL assay revealed that LBHX inhibited cardiomyocyte apoptosis at the IBZ. Further, the histological examination showed that the LBHX pretreatment decreased the ischemic area of myocardial tissue (P<0.05), myocardial interstitial collagen deposition (P<0.05) and inflammation at the IBZ. The ELISA results indicated that LBHX decreased the serum levels of inflammatory cytokines in the AMI rats (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that the LBHX pretreatment upregulated the protein levels of SIRT1, FOXO1 and SOD2 (P<0.05) and downregulated NF- κ B p65 and BAX expressions (P<0.05). The RT-qPCR results showed that LBHX increased the SIRT1 mRNA and FOXO1 mRNA levels (P<0.05). These protective effects, including inhibiting apoptosis and alleviating inflammation in the IBZ, were partially abolished by EX527, an inhibitor of SIRT1. CONCLUSION LBHX could protect against AMI by suppressing apoptosis and inflammation in AMI rats and the SIRT1-mediated FOXO1 and NF- κ B signaling pathways were involved in the cardioprotection effect of LBHX.
Collapse
Affiliation(s)
- Yu Tan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu-Long Bie
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan Hospital), Beijing, 100191, China
| | - Yi-Han Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lei Song
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li-Na Miao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Qiao Yu
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hua Chai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Juan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Da-Zhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
6
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Liang Y, Liang B, Chen W, Wu XR, Liu-Huo WS, Zhao LZ. Potential Mechanism of Dingji Fumai Decoction Against Atrial Fibrillation Based on Network Pharmacology, Molecular Docking, and Experimental Verification Integration Strategy. Front Cardiovasc Med 2021; 8:712398. [PMID: 34859062 PMCID: PMC8631917 DOI: 10.3389/fcvm.2021.712398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Dingji Fumai Decoction (DFD), a traditional herbal mixture, has been widely used to treat arrhythmia in clinical practice in China. However, the exploration of the active components and underlying mechanism of DFD in treating atrial fibrillation (AF) is still scarce. Methods: Compounds of DFD were collected from TCMSP, ETCM, and literature. The targets of active compounds were explored using SwissTargetPrediction. Meanwhile, targets of AF were collected from DrugBank, TTD, MalaCards, TCMSP, DisGeNET, and OMIM. Then, the H-C-T-D and PPI networks were constructed using STRING and analyzed using CytoNCA. Meanwhile, VarElect was utilized to detect the correlation between targets and diseases. Next, Metascape was employed for systematic analysis of the mechanism of potential targets and protein complexes in treating AF. AutoDock Vina, Pymol, and Discovery Studio were applied for molecular docking. Finally, the main findings were validated through molecular biology experiments. Results: A total of 168 active compounds and 1,093 targets of DFD were collected, and there were 89 shared targets between DFD and AF. H-C-T-D network showed the relationships among DFD, active compounds, targets, and AF. Three functional protein complexes of DFD were extracted from the PPI network. Further systematic analysis revealed that the regulation of cardiac oxidative stress, cardiac inflammation, and cardiac ion channels were the potential mechanism of DFD in treating AF. Addtionally, molecular docking verified the interactions between active compounds and targets. Finally, we found that DFD significantly increased the level of SIRT1 and reduced the levels of ACE, VCAM-1, and IL-6. Conclusions: DFD could be utilized in treating AF through a complicated mechanism, including interactions between related active compounds and targets, promoting the explanation and understanding of the molecular biological mechanism of DFD in the treatment of AF.
Collapse
Affiliation(s)
- Yi Liang
- Southwest Medical University, Luzhou, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Chen
- Southwest Medical University, Luzhou, China
| | - Xin-Rui Wu
- Southwest Medical University, Luzhou, China
| | - Wu-Sha Liu-Huo
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li-Zhi Zhao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Advances of Traditional Chinese Medicine Regulating Connexin43 in the Prevention and Treatment of Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8583285. [PMID: 34819986 PMCID: PMC8608513 DOI: 10.1155/2021/8583285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022]
Abstract
Gap junctions are the main form of interaction between cardiomyocytes, through which the electrochemical activities between cardiomyocytes can be synchronized to maintain the normal function of the heart. Connexins are the basis of gap junctions. Changes in the expression, structural changes (e.g., phosphorylation and dephosphorylation), and distribution of connexins can affect the normal electrophysiological activities of the heart. Myocardial infarction (MI) and concurrent arrhythmia, shock, or heart failure can endanger life. The structural and functional damage of connexin (Cx) 43 in cardiomyocytes is a central part of the pathological progression of MI and is one of the main pathological mechanisms of arrhythmia after MI. Therefore, increasing Cx43 expression has become one of the main measures to prevent MI. Also, intervention in Cx43 expression can improve the structural and electrical remodeling of the myocardium to improve MI prognosis. Here, research progress of Cx43 in MI and its prevention and treatment using Traditional Chinese Medicine formulations is reviewed.
Collapse
|
9
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Xu GR, Zhang C, Yang HX, Sun JH, Zhang Y, Yao TT, Li Y, Ruan L, An R, Li AY. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2020; 126:110071. [DOI: 10.1016/j.biopha.2020.110071] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
|