1
|
Yao K, Fan H, Yang T, Yang C, Wang G, Li X, Ji XY, Wang Q, Lv S, Guo S. Identification of MYC and STAT3 for early diagnosis based on the long noncoding RNA-mRNA network and bioinformatics in colorectal cancer. Front Immunol 2025; 15:1497919. [PMID: 39830506 PMCID: PMC11739134 DOI: 10.3389/fimmu.2024.1497919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Background Colorectal cancer (CRC) ranks among the top three cancers globally in both incidence and mortality, posing a significant public health challenge. Most CRC cases are diagnosed at intermediate to advanced stages, and reliable biomarkers for early detection are lacking. Long non-coding RNAs (lncRNAs) have been implicated in various cancers, including CRC, playing key roles in tumor development, progression, and prognosis. Methods A comprehensive search of the PubMed database was conducted to identify relevant studies on the early diagnosis of CRC. Bioinformatics analysis was performed to explore lncRNA-mRNA networks, leading to the identification of five potential blood biomarkers. Expression analysis was carried out using the GEPIA and GEO online databases, focusing on MYC and STAT3. Differential expression between normal and CRC tissues was assessed, followed by Receiver Operating Characteristic (ROC) analysis to evaluate the diagnostic potential of these markers. Quantitative Real-Time PCR (qRT-PCR) was performed to validate MYC and STAT3 expression levels, and findings were further confirmed using the Human Protein Atlas (HPA) database. Results Database analysis revealed significant differential expression of MYC and STAT3 between normal and CRC tissues. ROC analysis demonstrated the diagnostic potential of these markers. qRT-PCR validation confirmed the differential expression patterns observed in the databases. Validation through the HPA database further supported these findings, confirming the potential of MYC and STAT3 as diagnostic biomarkers for CRC. Conclusion Our results suggest that MYC and STAT3 are promising diagnostic biomarkers for CRC, offering new insights into its pathophysiology and potential for targeted therapies.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Tiancheng Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Can Yang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Guibin Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, Henan, China
| | - Shaojiang Lv
- Department of General Surgery, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Shihao Guo
- Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Abd El Fattah YK, Abulsoud AI, AbdelHamid SG, AbdelHalim S, Hamdy NM. CCDC144NL-AS1/hsa-miR-143-3p/HMGA2 interaction: In-silico and clinically implicated in CRC progression, correlated to tumor stage and size in case-controlled study; step toward ncRNA precision. Int J Biol Macromol 2023; 253:126739. [PMID: 37690651 DOI: 10.1016/j.ijbiomac.2023.126739] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Unravel the regulatory mechanism of lncRNA CCDC144NL-AS1 in CRC hsa-miR-143-3p, downstream protein HMGA2 interaction arm, association with clinicopathological characteristics. Using peripheral blood as liquid biopsy from 60 CRC patients and 30 controls. The expression levels of CCDC144NL-AS1 and hsa-miR-143-3p detected by qRT-PCR. CCDC144NL-AS1 expression was significantly upregulated in CRC patients' sera, associated with worse CRC clinicopathological features regarding the depth of tumor invasion and highly significant difference between tumor stages 3 and 4 and tumor stages 2 and 4. While, hsa-miR-143-3p expression was downregulated in CRC patients by 4.5-fold change when compared to the control subjects (p < 0.0001) and HMGA2 increased in CRC patients than controls 19.59 ng/μL and 5.377 ng/μL, respectively (p < 0.0001) with significant difference between tumor stages 3 and 4 as well as tumor stages 2 and 4. CRC patients with large tumor size showed upregulation in CCDC144NL-AS1 expression and HMGA2 levels compared to those with small tumor size (p-value = 0.0365 and 0.013, respectively). CCDC144NL-AS1 and HMGA2 were positively correlated, whereas lncRNA CCDC144NL-AS1 and hsa-miR-143-3p were negatively correlated. Conclusion: As an interaction arm CCDC144NL-AS1/hsa-miR-143-3p/HMGA2 were correlated to CRC stages 2-4. Therefore, this interaction arm expression clinically and in silico approved, would direct treatment precision in the near future.
Collapse
Affiliation(s)
- Yasmine K Abd El Fattah
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, 11785, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, 11785, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's Branch), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Sherihan G AbdelHamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Sherif AbdelHalim
- Department of General surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Liao C, Zheng Z, Liu J, Li J, Li R, Hu S. A novel long noncoding RNA AC125257.1 facilitates colorectal cancer progression by targeting miR-133a-3p/CASC5 axis. Open Med (Wars) 2023; 18:20230631. [PMID: 37009050 PMCID: PMC10052384 DOI: 10.1515/med-2023-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 03/29/2023] Open
Abstract
Abstract
Colorectal cancer (CRC) is a common malignant gastrointestinal tumor. Long noncoding RNAs (lncRNAs) are revealed to be critically involved in CRC progression, providing new direction for exploring the pathogenesis of CRC. This study aimed to explore the biological functions and regulatory mechanisms of lncRNA AC125257.1 in CRC. Western blotting and reverse-transcription quantitative polymerase chain reaction were used for the measurement of gene expression. Cell counting kit-8 assay and flow cytometry analysis were used to explore the effects of AC125257.1 on CRC cell viability and apoptosis. RNA pull-down and immunoprecipitation assays were performed for validating the binding between AC125257.1 and its potential downstream microRNA. Results showed that lncRNA AC125257.1 expression was upregulated in CRC cells and tumor tissues. AC125257.1 enhanced cell viability and suppressed apoptosis of CRC cells. Moreover, the knockdown of AC125257.1 suppressed CRC progression in vitro and inhibited tumor growth in vivo. miR-133a-3p was revealed to bind with AC125257.1 in CRC cells. CASC5 was proved to be targeted by miR-133a-3p. Moreover, rescue assays indicated that the knockdown of AC125257.1 suppressed the pathogenic overexpression of CASC5. To conclude, AC125257.1 aggravates CRC development via miR-873-5p/CASC5 axis. Our findings might suggest a novel perspective that AC125257.1 may become the target for CRC treatment.
Collapse
Affiliation(s)
- Chuanwen Liao
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, 330006, China
| | - Zihan Zheng
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, 330006, China
| | - Junye Liu
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, 330006, China
| | - Jian Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, 330006, China
| | - Rui Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, 330006, China
| | - Shuqin Hu
- Department of Organ Procurement Organization, Jiangxi Provincial People’s Hospital (The First Affiliated Hospital of Nanchang Medical College), No. 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Circ_0006667 contributes to high glucose-induced retinal pigment epithelial cell dysfunction by mediating miR-7-5p/TGFA axis in diabetic retinopathy. Int Ophthalmol 2023:10.1007/s10792-023-02636-y. [PMID: 36715959 DOI: 10.1007/s10792-023-02636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common complication of diabetes mellitus and it can lead to visual impairment and blindness. The loss of retinal pigment epithelial (RPE) cells is associated with the etiology of DR. Moreover, dysregulated circular RNAs (circRNAs) are implicated in DR progression. Therefore, this project aims to explore the role and potential mechanism of circ_0006667 in DR. METHODS RPE cells (ARPE-19) were stimulated with high glucose (33 mM; HG group) for 24 h to establish the DR cell model. Circ_0006667, microRNA-7-5p (miR-7-5p), and transforming growth factor alpha (TGFA) expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell viability, proliferation, and apoptosis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry. CyclinD1, Cleaved-caspase-3, and TGFA protein levels were detected using western blot. Using Circinteractome and starBase analysis, the binding miR-7-5p and circ_0006667 or TGFA was predicted, and then validated using dual-luciferase reporter and RNA Immunoprecipitation (RIP). RESULTS Circ_0006667 expression was up-regulated in DR patients and HG-induced ARPE-19 cells. HG stimulation suppressed ARPE-19 cell proliferation and promoted cell apoptosis and inflammation, which were alleviated via circ_0006667 silence. Circ_0006667 acted as a molecular sponge for miR-7-5p, and circ_0006667 absence-mediated protective effects in HG-induced ARPE-19 cells were largely overturned by the interference of miR-7-5p. miR-7-5p directly targeted TGFA, and miR-7-5p overexpression protected ARPE-19 cells from HG-induced dysfunction largely by down-regulating TGFA. Circ_0006667 can up-regulate the expression of TGFA by sponging miR-7-5p in ARPE-19 cells. CONCLUSION Circ_0006667 silencing protected ARPE-19 cells from HG-induced dysfunction by mediating miR-7-5p/TGFA axis.
Collapse
|
6
|
Shan B, Qu S, Lv S, Fan D, Wang S. YY1-induced long non-coding RNA small nucleolar RNA host gene 8 promotes the tumorigenesis of melanoma via the microRNA-656-3p/SERPINE1 mRNA binding protein 1 axis. Bioengineered 2022; 13:4832-4843. [PMID: 35156513 PMCID: PMC8973976 DOI: 10.1080/21655979.2022.2034586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long non-coding (lnc) RNA serves a vital role in the cellular processes of carcinoma. This study aimed to explore the accurate mechanism underlying lncRNA small nucleolar RNA host gene 8 (SNHG8) in melanoma. In this study, lncRNA SNHG8 expression were upregulated in melanoma tissues and cells, and lncRNA SNHG8 knockdown reduced melanoma cell viability, migration and invasion. Moreover, lncRNA SNHG8 expression could be induced by transcription factor YY1. In addition, we found that miR-656 could directly bind to lncRNA SNHG8 and SERPINE1 mRNA binding protein 1 (SERBP1). Rescue assays indicated that miR-656 overexpression inhibited the aforementioned cellular activities in melanoma cells, which were reversed by SERBP1 overexpression. In conclusion, this work elucidated that YY1-induced upregulation of lncRNA SNHG8 boosted the development of melanoma via the miR-656-3p/SERBP1 axis, providing a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Baihui Shan
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Shengming Qu
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Dandan Fan
- Department of Dermatology, Jilin Province People’s Hospital, China
| | - Shu Wang
- Department of Radio Therapy, The Second Hospital of Jilin University, China
| |
Collapse
|
7
|
Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 2022; 22:71. [PMID: 35144601 PMCID: PMC8832734 DOI: 10.1186/s12935-022-02501-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality and a major health challenge worldwide. Despite advances in therapeutic and diagnostic methods, there is still a poor prognosis in CRC patients. Tumor recurrence and metastasis are the main causes of high mortality rate in these patients, which are due to late diagnosis in advanced tumor stages. Epithelial-mesenchymal transition (EMT) is known to be the most important cause of CRC metastasis, during which tumor cells obtain metastasis ability by losing epithelial features and gaining mesenchymal features. Long non-coding RNAs (lncRNAs) are pivotal regulators of EMT process. Regarding the higher stability of lncRNAs compared with coding RNAs in body fluids, they can be used as non-invasive diagnostic markers for EMT process. In the present review, we summarized all of the lncRNAs involved in regulation of EMT process during CRC progression and metastasis. It was observed that lncRNAs mainly induced the EMT process in CRC cells by regulation of EMT-related transcription factors, Poly comb repressive complex (PRC), and also signaling pathways such as WNT, NOTCH, MAPK, and Hippo.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Luo Z, Hao S, Yuan J, Zhu K, Liu S, Zhang J, Yao L. Long non-coding RNA LINC00958 promotes colorectal cancer progression by enhancing the expression of LEM domain containing 1 via microRNA miR-3064-5p. Bioengineered 2021; 12:8100-8115. [PMID: 34672237 PMCID: PMC8806780 DOI: 10.1080/21655979.2021.1985259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a common cause of cancer-related death worldwide. Thus, there is an urgent need to determine the mechanism of progression of colorectal cancer. In this study, we investigated the function and mechanism of long non-coding RNA LINC00958, providing a new biomarker for colorectal cancer. The expression of LINC00958, miR-3064-5p, and LEM domain containing 1 (LEMD1) in colorectal cancer tissues and cell lines was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between LINC00958, miR-3064-5p, and LEMD1 was assessed using the luciferase assay. The viability, proliferation, migration, invasion, and apoptosis of colorectal cancer cells with silenced LINC00958, miR-3064-5p, and LEMD1 were investigated using the cell counting kit-8 (CCK-8), 5′-Bromo-2′-deoxyuridine (BrdU), flow cytometry, wound healing, and transwell assays. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein levels were measured by western blotting. LINC00958 and LEMD1 were found to have increased, while the expression of miR-3064-5p was decreased in colorectal cancer tissues and cell lines. Silencing of LINC00958 hampered cell viability, proliferation, migration, and invasion, while enhancing the apoptosis in colorectal cancer cells. Notably, LINC00958 inhibited miR-3064-5p and promoted LEMD1; the miR-3064-5p inhibitor abrogated the effect of LINC00958 silencing in colorectal cancer cells. Additionally, LEMD1 knockdown inhibited the activation of PI3K/AKT signaling. Our analyses have shown that LINC00958 could facilitate the progression of colorectal cancer by sponging miR-3064-5p and releasing LEMD1, leading to the activation of the PI3K/AKT pathway. Thus, LINC00958 may be considered as an effective biomarker for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shunxin Hao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jian Yuan
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuo Liu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lei Yao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Sastre-Garau X, Diop M, Martin F, Dolivet G, Marchal F, Charra-Brunaud C, Peiffert D, Leufflen L, Dembélé B, Demange J, Tosti P, Thomas J, Leroux A, Merlin JL, Diop-Ndiaye H, Costa JM, Salleron J, Harlé A. A NGS-based Blood Test For the Diagnosis of Invasive HPV-associated Carcinomas with Extensive Viral Genomic Characterization. Clin Cancer Res 2021; 27:5307-5316. [PMID: 34108183 PMCID: PMC9401522 DOI: 10.1158/1078-0432.ccr-21-0293] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Use of circulating tumor DNA (ctDNA) for diagnosis is limited regarding the low number of target molecules in early-stage tumors. Human papillomavirus (HPV)-associated carcinomas represent a privileged model using circulating viral DNA (ctHPV DNA) as a tumor marker. However, the plurality of HPV genotypes represents a challenge. The next-generation sequencing (NGS)-based CaptHPV approach is able to characterize any HPV DNA sequence. To assess the ability of this method to establish the diagnosis of HPV-associated cancer via a blood sample, we analyzed ctHPV DNA in HPV-positive or HPV-negative carcinomas. EXPERIMENTAL DESIGN Patients (135) from France and Senegal with carcinoma developed in the uterine cervix (74), oropharynx (25), oral cavity (19), anus (12), and vulva (5) were prospectively registered. Matched tumor tissue and blood samples (10 mL) were taken before treatment and independently analyzed using the CaptHPV method. RESULTS HPV prevalence in tumors was 60.0% (81/135; 15 different genotypes). Viral analysis of plasmas compared with tumors was available for 134 patients. In the group of 80 patients with HPV-positive tumors, 77 were also positive in plasma (sensitivity 95.0%); in the group of 54 patients with HPV-negative tumors, one was positive in plasma (specificity 98.1%). In most cases, the complete HPV pattern observed in tumors could be established from the analysis of ctHPV DNA. CONCLUSIONS In patients with carcinoma associated with any HPV genotype, a complete viral genome characterization can be obtained via the analysis of a standard blood sample. This should favor the development of noninvasive diagnostic tests providing the identification of personalized tumor markers. See related commentary by Rostami et al., p. 5158.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.,Service de Pathologie, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Mamadou Diop
- Institut du Cancer Joliot Curie, CHU Aristide Le Dantec, Dakar, Sénégal
| | | | - Gilles Dolivet
- CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de Chirurgie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Frédéric Marchal
- CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de Chirurgie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Claire Charra-Brunaud
- Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Didier Peiffert
- CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Léa Leufflen
- Département de Chirurgie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Birama Dembélé
- Institut du Cancer Joliot Curie, CHU Aristide Le Dantec, Dakar, Sénégal
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Priscillia Tosti
- Unité de Recherche Clinique, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Jacques Thomas
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Agnès Leroux
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Jean-Louis Merlin
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.,CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | - Julia Salleron
- Unité de Biostatistiques, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Alexandre Harlé
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-Lès-Nancy, France.,CNRS CRAN UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Corresponding Author: Alexandre Harlé, Service de Biopathologie, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France. Phone: 3 83–65 6–119; E-mail:
| |
Collapse
|
11
|
Knockdown of lncRNA PVT1 inhibits the proliferation and accelerates the apoptosis of colorectal cancer cells via the miR‑761/MAPK1 axis. Mol Med Rep 2021; 24:794. [PMID: 34515320 DOI: 10.3892/mmr.2021.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/03/2021] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is associated with high morbidity rates. Long non‑coding RNAs (lncRNAs) participate in the development of CRC. However, the potential roles of lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC remain unknown. Therefore, the aim of the present study was to investigate the potential roles of PVT1 in CRC. Reverse transcription‑quantitative PCR and western blot analyses were conducted to determine the mRNA and protein expression levels. The cellular behaviors were detected using 5‑Ethynyl‑2'‑deoxyuridine, Cell Counting Kit‑8 and flow cytometry assays. The interaction between PVT1 and microRNA (miR)‑761 or MAPK1 was confirmed using a dual‑luciferase reporter assay. Moreover, the Pearson's method was applied for correlation analysis. The results demonstrated that the expression levels of PVT1 and MAPK1 were upregulated, while miR‑761 was downregulated in CRC tissues. The expression of PVT1 was positively correlated with MAPK1 and negatively correlated with miR‑761. In addition, PVT1 sponged miR‑761 to upregulate MAPK1 expression. It was found that the knockdown of PVT1 expression inhibited the proliferation and promoted the apoptosis of CRC cells, which was more potent in cells transfected with miR‑761. The regulatory role of small interfering RNA‑PVT1 on the expression of apoptosis‑related genes was reduced by MAPK1. Collectively, the present results suggested that knockdown of PVT1 may inhibit the progression of CRC by regulating the miR‑761/MAPK1 axis, which may provide a promising biomarker for the treatment of CRC.
Collapse
|
12
|
Zhang C, E J, Yu E. LncRNA CASC21 induces HGH1 to mediate colorectal cancer cell proliferation, migration, EMT and stemness. RNA Biol 2021; 18:369-381. [PMID: 34375566 DOI: 10.1080/15476286.2021.1950464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) have been increasingly reported to serve vital parts in malignancies including CRC. Although cancer susceptibility 21 (CASC21) has been uncovered to play a part in CRC, its mechanism still needs further explanation. Thus, our study aimed to further explore the influence and mechanism of CASC21 in CRC progression. Quantitative real-time RT-PCR and western blot were performed to detect gene expression; a series of functional assays were performed to investigate the effect of CASC21 on CRC cells; in vivo tumour growth was evaluated via the nude mice xenograft model. The results revealed that CASC21 facilitated CRC cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness. In addition, CASC21 was co-expressed with and bound to transcription factor POU5F1B (POU class 5 homeobox 1B). CASC21 recruited POU5F1B to HGH1 promoter to activate the transcription of HGH1 homolog. Also, CASC21 served as a competitive endogenous RNA (ceRNA) to up-regulate HGH1 via endogenously sponging miR-485-5p. Moreover, HGH1 overexpression counteracted the suppression of CASC21 deficiency on CRC tumour growth. In summary, our study indicated that CASC21 enhanced the expression of HGH1 to promote the malignancy of CRC by recruiting POU5F1B and sponging miR-485-5p, suggesting a key role of CASC21 in CRC progression.
Collapse
Affiliation(s)
- Chenxin Zhang
- Department of General Surgery, The 983th Hospital of Joint Logistic Support Force of PLA, Tianjin, China.,Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jifu E
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Wang Y, Yang H, Zhang G, Luo C, Zhang S, Luo R, Deng B. hsa-miR-7-5p suppresses proliferation, migration and promotes apoptosis in hepatocellular carcinoma cell lines by inhibiting SPC24 expression. Biochem Biophys Res Commun 2021; 561:80-87. [PMID: 34020142 DOI: 10.1016/j.bbrc.2021.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) participate in hepatocellular carcinoma (HCC) progression. Nevertheless, the mechanism of miR-7-5p in HCC cells has not been researched. In the research, the underlying biological function of miR-7-5p and SPC24 in HCC was explored. qRT-PCR was performed to measure the miR-7-5p and SPC24 level in HCC tissues and cells. The effect of miR-7-5p on HCC progression was detected by performing CCK-8, BrdU, and transwell assay. The relationship between miR-7-5p and SPC24 was determined using luciferase and RNA pull-down assays. Our findings showed that miR-7-5p was downregulated in HCC whereas SPC24 was upregulated in HCC. It was also showed that miR-7-5p upregulation restricted malignant behaviors of HCC cells, but this inhibitory effect of miR-7-5p could be relieved by its target gene SPC24. In conclusion, this research suggested that by inhibiting SPC24, miR-7-5p could act as a tumor inhibitory factor in HCC.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncology, The First People's Hospital of Lanzhou New Area, Lanzhou, 730000, Gansu, China
| | - Hanteng Yang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Gengyuan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Changjiang Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shuze Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ruiying Luo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Benyuan Deng
- Department of General Surgery, West China Health Care Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines 2021; 9:325. [PMID: 33806891 PMCID: PMC8004586 DOI: 10.3390/biomedicines9030325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.
Collapse
Affiliation(s)
- Petra Korać
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| |
Collapse
|
15
|
Gajda E, Grzanka M, Godlewska M, Gawel D. The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance. Pharmaceuticals (Basel) 2021; 14:149. [PMID: 33673265 PMCID: PMC7918072 DOI: 10.3390/ph14020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Damian Gawel
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
16
|
Chen GQ, Liao ZM, Liu J, Li F, Huang D, Zhou YD. LncRNA FTX Promotes Colorectal Cancer Cells Migration and Invasion by miRNA-590-5p/RBPJ Axis. Biochem Genet 2021; 59:560-573. [PMID: 33389283 DOI: 10.1007/s10528-020-10017-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most lethal human cancers all over the world. Moreover, it ranks fourth for cancer-related deaths among males. Although many efforts have been made to cure CRC, the effect remains limited. It has been reported that lncRNA five prime to Xist (FTX) was upregulated in CRC. However, the mechanism by which lncRNA FTX regulates the progression of CRC remains largely unknown. In this study, qRT-PCR was performed to detect the expression of FTX, miR-590-5p and Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) in CRC tissues or cells. Protein expression in cells was measured by western blot. MTT assay was used to test the cell viability. Moreover, transwell was performed to examine the cell migration and invasion. Luciferase report assay was performed to verify the relation between miR-590-5p and FTX or RBPJ. It was found that FTX was upregulated in CRC tissues and cells. Knockdown of FTX or overexpression of miR-590-5p can inhibit the proliferation, migration, and invasion of CRC cells. Besides, silencing of FTX could inhibit the expression of migration and invasion-related proteins in CRC cells. Meanwhile, miR-590-5p was the target of FTX, and RBPJ was the direct target of miR-590-5p. Inhibition of miR-590-5p could reverse the inhibitory effect of FTX on the progression of CRC. These findings suggested that knockdown of FTX could inhibit the tumorigenesis of CRC in vitro, which may serve as a potential novel strategy for treatment of CRC.
Collapse
Affiliation(s)
- Guo-Qun Chen
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Zhi-Ming Liao
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Jiao Liu
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Da Huang
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China
| | - Ya-Dong Zhou
- Department of Pathology, The Fourth Hospital of Changsha, No. 70, Lushan South Road, Yuelu District, Changsha, 410006, China.
| |
Collapse
|
17
|
Zhang X, Ma L, Zhai L, Chen D, Li Y, Shang Z, Zhang Z, Gao Y, Yang W, Li Y, Pan Y. Construction and validation of a three-microRNA signature as prognostic biomarker in patients with hepatocellular carcinoma. Int J Med Sci 2021; 18:984-999. [PMID: 33456356 PMCID: PMC7807177 DOI: 10.7150/ijms.49126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC), a common type of primary liver cancer, is one of the most aggressive malignant tumors worldwide. Although overall survival (OS) rates for HCC has significantly improved in recent years, however, the exact predictive value of microRNA (miRNA) for the prognosis of HCC has not yet been recognized. Here, we aimed to identify potential prognostic miRNAs involved in HCC by bioinformatics analysis and validated expression levels through quantitative polymerase chain reaction (qPCR) and GEO database. The RNA expression profiles and corresponding clinical information of HCC were available from The Cancer Genome Atlas (TCGA) datasets. Differentially expression and standardization analysis of miRNAs, Kaplan-Meier curve and time dependent ROC curve were performed by using R tools. Differentially expressed miRNAs (DEmiRNAs) and clinical parameters involved in the OS of HCC were confirmed by Cox regression models. And functional enrichment analysis was used to establish functions of the targeted genes of DEmiRNAs. A total of 300 DEmiRNAs were significantly related with HCC, of which 40 were down-regulated and 260 were up-regulated. A total of 344 patients with DEmiRNAs, status, overall survival (OS) time were randomized into training group (172) and test group (172). Multivariate Cox regression analyses revealed that 3 miRNA (hsa-miR-139-3p, hsa-miR-760, hsa-miR-7-5p) had independent prognostic significance for the OS of HCC in both training and test group. Moreover, according to Kaplan Meier analysis, the OS of HCC patients with high-risk score was shorter in validation and entire series. The time dependent ROC curve demonstrated high accuracy of the signature for OS. Besides, target genes of three miRNAs were analyzed by functional enrichment analysis and 20 genes associated with OS were verified by using Kaplan-Meier method. Compared with normal and benign group, the relative expression level of hsa-miR-139-3p was significantly decreased, while hsa-miR-7-5p and hsa-miR-760 were distinctly increased in the plasma of HCC patients. The same results were observed in the independent cohort. Collectively, our research suggested that three-miRNA signature could serve as an independent prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Li Ma
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Li Zhai
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Dong Chen
- Department of Ultrasound, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yong Li
- Department of Abdominal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Zhongjun Shang
- Department of Hospital Affairs, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Zongmei Zhang
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yanzhang Gao
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wei Yang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yixun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Experimental Diagnosis, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
| | - Yuqing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Experimental Diagnosis, Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, P.R. China
| |
Collapse
|
18
|
Peng J, Liu F, Zheng H, Wu Q, Liu S. IncRNA ZFAS1 contributes to the radioresistance of nasopharyngeal carcinoma cells by sponging hsa-miR-7-5p to upregulate ENO2. Cell Cycle 2020; 20:126-141. [PMID: 33342344 DOI: 10.1080/15384101.2020.1864128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Previous research revealed that lncRNA ZFAS1 could promote nasopharyngeal carcinoma (NPC) by inhibiting its downstream target axis. However, the association between ZFAS1 and radioresistant NPC cells is unclear. This study aimed to explore the roles of ZFAS1 in the radioresistance of NPC. Bioinformatics analysis was conducted to identify the significant factors (ENO2 and miR-7-5p) that contributed to the radioresistance of NPC cells. After performing qRT-PCR analysis, we found that the expression of ZFAS1 and ENO2 was upregulated in NPC cells but that the miR-7-5p expression was downregulated in the same samples. Apart from that, we noticed that ZFAS1 inhibition enhanced the sensitivity of NPC cells to radiation therapy by repressing cell proliferation and promoting cell apoptosis. Subsequently, we found that ZFAS1 could sponge miR-7-5p to upregulate ENO2, which was the target of miR-7-5p. Experimental results also indicated that the suppression of miR-7-5p inhibited the sensitivity of NPC cells to radiation therapy, thereby suppressing ENO2 expression. Overall, our findings suggested that ZFAS1 contributed to the radioresistance of NPC cells by regulating the miR-7-5p/ENO2 axis and that ZFAS1 might be a potential therapeutic target for addressing the radioresistance of NPC cells.
Collapse
Affiliation(s)
- Jiaojiao Peng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University , Sichuan, China
| | - Feng Liu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University , Sichuan, China
| | - Hong Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University , Sichuan, China
| | - Qi Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University , Sichuan, China
| | - Shixi Liu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University , Sichuan, China
| |
Collapse
|
19
|
Hu J, Li T, Wang S, Zhang H. Supervariants identification for breast cancer. Genet Epidemiol 2020; 44:934-947. [PMID: 32808324 PMCID: PMC7924970 DOI: 10.1002/gepi.22350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023]
Abstract
In genome-wide association studies, signals associated with rare variants and interactions between genes are hard to detect even when the sample size is in tens of thousands. To overcome these problems, we examine the concept of supervariant. Like the classic concept of the gene, a supervariant is a combination of alleles in multiple loci, but the contributing loci can be anywhere in the genome. We hypothesize that supervariants are easy to detect and the aggregated signals are more stable in their associations with the disease than that from a single nucleoid polymorphism. Using the UK Biobank databases, we develop a ranking and aggregation method for identifying supervariants. Specifically, we examine 9,377 breast cancer cases with 46,861 controls matched by sex and age. In our simulations, the use of supervariants outperforms single-nucleotide polymorphism-based association method in detecting rare variants and signals with interactive structure. In real data analysis, we identify supervariants on Chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 16, and 22 which cover previously reported loci that have associations with breast or other cancers, and several novel loci on Chromosomes 2, 5, 9, and 12. These findings demonstrate the validity of supervariants and its potential of discovering replicable and novel results for complex disease.
Collapse
Affiliation(s)
- Jianchang Hu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ting Li
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Shiying Wang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| |
Collapse
|
20
|
Target Enrichment Enables the Discovery of lncRNAs with Somatic Mutations or Altered Expression in Paraffin-Embedded Colorectal Cancer Samples. Cancers (Basel) 2020; 12:cancers12102844. [PMID: 33019720 PMCID: PMC7650602 DOI: 10.3390/cancers12102844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Alterations in long noncoding RNAs and their mutations have been increasingly recognized in tumorogenesis and cancer progression awakening especial interest as potential novel cancer biomarkers and therapeutic targets. The use of adjuvant chemotherapy in stage II colorectal cancer patients is challenging, and new biomarkers are required to identify patients with high probability of relapse. We focused on translational potential of non-coding RNAs in colorectal cancer. In this study, we aim to validate a new tool which couples target enrichment and RNAseq for transcriptomics studies of lncRNAs in formalin-fixed paraffin embedded (FFPE) tissue samples. Our results show that this new approach efficiently detects lncRNAs and differences in their expression between healthy and tumor FFPE tissues, as well as somatic mutations in expressed lncRNAs, identifying novel lncRNAs as potential candidates for colorectal cancer. This new approach could represent a promising avenue that would reduce costs and enable more efficient translational research. Abstract Long non-coding RNAs (lncRNAs) play important roles in cancer and are potential new biomarkers or targets for therapy. However, given the low and tissue-specific expression of lncRNAs, linking these molecules to particular cancer types and processes through transcriptional profiling is challenging. Formalin-fixed, paraffin-embedded (FFPE) tissues are abundant resources for research but are prone to nucleic acid degradation, thereby complicating the study of lncRNAs. Here, we designed and validated a probe-based enrichment strategy to efficiently profile lncRNA expression in FFPE samples, and we applied it for the detection of lncRNAs associated with colorectal cancer (CRC). Our approach efficiently enriched targeted lncRNAs from FFPE samples, while preserving their relative abundance, and enabled the detection of tumor-specific mutations. We identified 379 lncRNAs differentially expressed between CRC tumors and matched healthy tissues and found tumor-specific lncRNA variants. Our results show that numerous lncRNAs are differentially expressed and/or accumulate variants in CRC tumors, thereby suggesting a role in CRC progression. More generally, our approach unlocks the study of lncRNAs in FFPE samples, thus enabling the retrospective use of abundant, well documented material available in hospital biobanks.
Collapse
|
21
|
Downregulation of LINC00958 inhibits proliferation, invasion and migration, and promotes apoptosis of colorectal cancer cells by targeting miR‑3619‑5p. Oncol Rep 2020; 44:1574-1582. [PMID: 32945474 PMCID: PMC7448424 DOI: 10.3892/or.2020.7707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aberrant expression of long non-coding RNAs (lncRNAs), including LINC00958, has been demonstrated in several types cancers. The present study aimed to investigate the role of LINC00958 in colorectal cancer (CRC) and identify the possible underlying mechanisms. The expression of LINC00958 and microRNA (miR)-3619-5p was detected in several human CRC cell lines using reverse transcription-quantitative PCR. Then, short hairpin RNA (shRNA)-LINC00958 was transfected into the cells. The results revealed that the expression of LINC00958 was notably upregulated, whereas miR-3619-5p was downregulated in CRC cells. Transfection with shRNA-LINC00958 inhibited the proliferation, invasion and migration of CRC cells. Moreover, the rate of apoptosis was enhanced, accompanied by a decrease in the expression of Bcl-2 and an increase in the expression of Bax and caspase-3. A luciferase reporter assay was conducted to verify the target binding site between LINC00958 and miR-3619-5p. The luciferase reporter assay confirmed that miR-3619-5p could be directly targeted by LINC00958. Furthermore, the miR-3619-5p inhibitor reversed the effects of LINC00958 silencing on proliferation, invasion, migration and apoptosis. Taken together, the findings suggest that the downregulation of LINC00958 suppresses the proliferation, invasion and migration, and promotes the apoptosis of CRC cells by targeting miR-3619-5p in vitro, which provides a theoretical basis and therapeutic strategy for the treatment of CRC.
Collapse
|
22
|
Gao Y, Liu J, Huan J, Che F. Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell Int 2020; 20:334. [PMID: 32714093 PMCID: PMC7376840 DOI: 10.1186/s12935-020-01421-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background One of the main reasons for the failure of prostate cancer (PCa) treatment is the generation of chemoresistance. Circular RNA hsa_circ_0000735 (hsa_circ_0000735) is connected with the progression of cancer. Nevertheless, the role and regulatory mechanism of hsa_circ_0000735 in the resistance of PCa to docetaxel (DTX) are unclear. Methods Expression levels of hsa_circ_0000735 and miR-7-5p (miR-7) in tissue samples and cells were examined via quantitative real-time polymerase chain reaction (qRT-PCR). The DTX sensitivity, viability, colony formation, cell cycle progression, and apoptosis of DTX-resistant PCa cells were determined via Cell Counting Kit-8 (CCK-8), cell colony formation, or flow cytometry assays. The levels of multidrug resistance protein 1 (MDR1) protein, cyclinD1, and B cell lymphoma 2 (bcl-2) were detected by western blotting. The interaction between hsa_circ_0000735 and miR-7 was verified via dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The role of hsa_circ_0000735 in vivo was validated through tumor formation experiments. Results Hsa_circ_0000735 was upregulated and miR-7 was downregulated in DTX-resistant PCa tissues and cells. High hsa_circ_0000735 expression had a shorter overall survival. Both hsa_circ_0000735 knockdown and miR-7 mimic boosted DTX sensitivity, constrained viability, colony formation, cell cycle progression, and fostered apoptosis of DTX-resistant PCa cells. Also, hsa_circ_0000735 silencing elevated DTX sensitivity and repressed tumor growth in PCa in vivo. Mechanistically, hsa_circ_0000735 served as a sponge for miR-7. MiR-7 inhibition overturned hsa_circ_0000735 silencing-mediated impacts on DTX sensitivity and the malignant behaviors of DTX-resistant PCa cells. Conclusion Hsa_circ_0000735 downregulation boosted PCa sensitivity to DTX and reduced tumor growth via sponging miR-7, providing a promising prognostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Yisheng Gao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Urology, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Jie Liu
- Department of Urology, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Jing Huan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Acupuncture and Moxibustion, Linyi People's Hospital, Linyi, 276003 Shandong China
| | - Fengyuan Che
- Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong China.,Department of Neurology, Linyi People's Hospital, No. 27, East Section of Jiefang Road, Lanshan District, Linyi, 276003 Shandong China
| |
Collapse
|
23
|
Gong T, Li Y, Feng L, Fang M, Dai G, Huang X, Yang Y, Liu S. CASC21, a FOXP1 induced long non-coding RNA, promotes colorectal cancer growth by regulating CDK6. Aging (Albany NY) 2020; 12:12086-12106. [PMID: 32584787 PMCID: PMC7343488 DOI: 10.18632/aging.103376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Emerging studies indicate that long non-coding RNAs (lncRNAs) play crucial roles in colorectal cancer (CRC). Here, we reported lncRNA CASC21, which is induced by FOXP1, functions as an oncogene in CRC. We systematically elucidated its clinical significance and possible molecular mechanism in CRC. LncRNA expression in CRC was analyzed by RNA-sequencing data in TCGA. The expression level of CASC21 in tissues was determined by qRT-PCR. The functions of CASC21 was investigated by in vitro and in vivo assays (CCK8 assay, colony formation assay, EdU assay, xenograft model, flow cytometry assay, immunohistochemistry (IHC) and Western blot). Chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP) and luciferase reporter assays were utilized to demonstrate the potential mechanisms of CASC21. CASC21 is overexpressed in CRC and high CASC21 expression is associated with poor survival. Functional experiments revealed that CASC21 promotes CRC cell growth. Mechanistically, we found that CASC21 expressed predominantly in the cytoplasm. CASC21 could interact with miR-539-5p and regulate its target CDK6. Together, our study elucidated that CASC21 acted as an oncogene in CRC, which might serve as a novel target for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao Gong
- Oncology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Yu Li
- Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Liang Feng
- Oncology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210000, Jiangsu, China
| | - MingZhi Fang
- Oncology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Guoliang Dai
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Xin Huang
- Oncology, Nanjing Hospital of Chinese Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Ye Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Shenlin Liu
- Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu, China
| |
Collapse
|
24
|
Lai M, Liu G, Li R, Bai H, Zhao J, Xiao P, Mei J. Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway in human colon cancer. J Cell Mol Med 2020; 24:5021-5027. [PMID: 32243061 PMCID: PMC7205783 DOI: 10.1111/jcmm.15122] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to research the biological functions of circRNA (hsa_circ_0079662) and its underlying mechanism in colorectal cancer. Drug-resistant cell lines (HT29-LOHP, HCT116-LOHP, HCT8-LOHP) were separately dealt with oxaliplatin concentration gradient (0.1-10 μmol/L). Real-time PCR, Western blotting, dual-luciferase assay, miRNA pull-down assay, coimmunoprecipitation and ELASA were performed to explore the mechanism of chemotherapy drug oxaliplatin resistance in CRC. The results showed that the expression of hsa_circ_0079662 was increased in drug-resistant cell lines by RT-PCR. The expression of HOXA9, TRIP6, Vcam-1, VEGFC, MMP3, MMP9 and MMP14 was higher by Western blotting. Interaction between HOXA9 and TRIP6 in CO-IP detection. Additionally, the cytokines TNF-α, IL-1 and IL-6 were also found. In conclusion, hsa_circ_0079662, as a ceRNA binding with hsa-mir-324-5p, can regulate target gene HOXA9 and induced the mechanism of chemotherapy drug oxaliplatin resistance in CRC through the TNF-α pathway in human colon cancer.
Collapse
Affiliation(s)
- Mingfen Lai
- Department of OncologyThe Second Clinical Medical School of Southern Medical UniversityGuangzhouChina
| | - Guiju Liu
- Department of OncologyZhengzhou People's Hospital Affiliated to Southern Medical UniversityZhengzhouChina
| | - Ruijun Li
- Department of OncologyZhengzhou People's Hospital Affiliated to Southern Medical UniversityZhengzhouChina
| | - Hua Bai
- Department of OncologyZhengzhou People's Hospital Affiliated to Southern Medical UniversityZhengzhouChina
| | - Jizhi Zhao
- Department of OncologyZhengzhou People's Hospital Affiliated to Southern Medical UniversityZhengzhouChina
| | - Peng Xiao
- Department of OncologyZhengzhou People's Hospital Affiliated to Southern Medical UniversityZhengzhouChina
| | - Jiazhuan Mei
- Department of OncologyZhengzhou People's Hospital Affiliated to Southern Medical UniversityZhengzhouChina
| |
Collapse
|
25
|
Feng S, Liu N, Chen X, Liu Y, An J. Long non-coding RNA NEAT1/miR-338-3p axis impedes the progression of acute myeloid leukemia via regulating CREBRF. Cancer Cell Int 2020; 20:112. [PMID: 32280304 PMCID: PMC7137299 DOI: 10.1186/s12935-020-01182-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous hematological disease. Our purpose of the research was to investigate the regulatory influence of long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1)/microRNA-338-3p (miR-338-3p)/CREB3 regulatory factor (CREBRF) in AML progression. Methods The associated RNA and protein levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Cell growth was assessed through colony formation assay and 3-(4,5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Flow cytometry was exploited to determine the apoptosis rate. Cell migration and invasion were detected by transwell assay. The combination of miR-338-3p and NEAT1 or CREBRF was analyzed via the dual-luciferase reporter assay. Results NEAT1 and CREBRF were down-regulated in AML tissues and cells. NEAT1 up-regulation suppressed cell growth, migration and invasion but enhanced apoptosis of AML cells. Inhibition of CREBRF reverted the NEAT1-induced effects on AML cells. Moreover, NEAT1 directly targeted miR-338-3p and miR-338-3p targeted CREBRF. NEAT1/miR-338-3p could affect cellular behaviors of AML cells via the modulation of CREBRF. Conclusion NEAT1/miR-338-3p axis repressed the AML progression through regulating CREBRF, which might afford a favorable perspective for the AML treatment molecularly.
Collapse
Affiliation(s)
- Song Feng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Na Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Xiaoguang Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 Henan China
| | - Jindou An
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 Henan China
| |
Collapse
|
26
|
Gu Y, Lin X, Kapoor A, Chow MJ, Jiang Y, Zhao K, Tang D. The Oncogenic Potential of the Centromeric Border Protein FAM84B of the 8q24.21 Gene Desert. Genes (Basel) 2020; 11:genes11030312. [PMID: 32183428 PMCID: PMC7140883 DOI: 10.3390/genes11030312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
FAM84B is a risk gene in breast and prostate cancers. Its upregulation is associated with poor prognosis of prostate cancer, breast cancer, and esophageal squamous cell carcinoma. FAM84B facilitates cancer cell proliferation and invasion in vitro, and xenograft growth in vivo. The FAM84B and Myc genes border a 1.2 Mb gene desert at 8q24.21. Co-amplification of both occurs in 20 cancer types. Mice deficient of a 430 Kb fragment within the 1.2 Mb gene desert have downregulated FAM84B and Myc expressions concurrent with reduced breast cancer growth. Intriguingly, Myc works in partnership with other oncogenes, including Ras. FAM84B shares similarities with the H-Ras-like suppressor (HRASLS) family over their typical LRAT (lecithin:retinal acyltransferase) domain. This domain contains a catalytic triad, H23, H35, and C113, which constitutes the phospholipase A1/2 and O-acyltransferase activities of HRASLS1-5. These enzymatic activities underlie their suppression of Ras. FAM84B conserves H23 and H35 but not C113 with both histidine residues residing within a highly conserved motif that FAM84B shares with HRASLS1-5. Deletion of this motif abolishes FAM84B oncogenic activities. These properties suggest a collaboration of FAM84B with Myc, consistent with the role of the gene desert in strengthening Myc functions. Here, we will discuss recent research on FAM84B-derived oncogenic potential.
Collapse
Affiliation(s)
- Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yanzhi Jiang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Kuncheng Zhao
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (Y.G.); (X.L.); (M.J.C.); (Y.J.); (K.Z.)
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada;
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +(905)-522-1155 (ext. 35168)
| |
Collapse
|