1
|
Nauffal V, Klarqvist MDR, Hill MC, Pace DF, Di Achille P, Choi SH, Rämö JT, Pirruccello JP, Singh P, Kany S, Hou C, Ng K, Philippakis AA, Batra P, Lubitz SA, Ellinor PT. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 2024; 30:1749-1760. [PMID: 38806679 DOI: 10.1038/s41591-024-03010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77-6.19; P = 1.78 × 10-4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Danielle F Pace
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel T Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Pulkit Singh
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Lubitz
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
He K, Xie MY, Gao XJ, Wang H, Li JD. The Correlation of Centromere Protein Q with Diagnosis and Prognosis in Hepatocellular Carcinoma. Pharmgenomics Pers Med 2024; 17:271-288. [PMID: 38827182 PMCID: PMC11141762 DOI: 10.2147/pgpm.s456965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the major types of liver cancer. Previous studies have shown that the centromere protein family is associated with malignant biological behaviors such as HCC proliferation. As a member of the centromere protein family, centromere protein Q (CENPQ) is closely associated with immunotherapy and immune cell infiltration in various tumors. However, the role and mechanism of CENPQ in HCC remain unclear. Methods Multiple public databases and RT-qPCR were used to study the expression of CENPQ in HCC. Based on TCGA data, the correlation between CENPQ and clinicopathological characteristics and prognosis of HCC patients was analyzed, and its diagnostic value was evaluated. The potential biological functions of CENPQ in HCC were explored by functional enrichment analysis of differentially expressed genes. The distribution of tumor-infiltrating immune cell types was assessed using single-sample GSEA, and immune checkpoint gene expression was analyzed using Spearman correlation. Subsequently, loss-of-function experiments were performed to determine the function of CENPQ on the cell cycle and proliferation of HCC cells in vitro. Results CENPQ was found highly expressed in HCC and correlated with weight, BMI, age, AFP, T stage, pathologic stage, histologic grade, and prothrombin time (all p < 0.05). ROC and Kaplan-Meier analyses indicated that CENPQ may be potentially used as a diagnostic marker for HCC (AUC = 0.881), and its upregulation is associated with decreased OS (p = 0.002), DSS (p < 0.001), and PFI (p = 0.002). Functional enrichment analysis revealed an association of CENPQ with biological processes such as immune cell infiltration, cell cycle, and hippo-merlin signaling deregulation in HCC. Furthermore, knockdown of CENPQ manifested in HCC cells with G0/1 phase cycle arrest and decreased proliferative capacity. Conclusion CENPQ expression was higher in HCC tissues than in normal liver tissues. It was significantly associated with poor prognosis, immune cell infiltration, cell cycle, and proliferation. Therefore, CENPQ may become a promising prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng-yi Xie
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xiao-jin Gao
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Hao Wang
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jing-dong Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Xie W, Zhang L, Shen J, Lai F, Han W, Liu X. Knockdown of CENPM activates cGAS-STING pathway to inhibit ovarian cancer by promoting pyroptosis. BMC Cancer 2024; 24:551. [PMID: 38693472 PMCID: PMC11064423 DOI: 10.1186/s12885-024-12296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
OBJECTIVE We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.
Collapse
Affiliation(s)
- Wei Xie
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Junjing Shen
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Fengdi Lai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China
| | - Wenling Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
4
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
5
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
6
|
He K, Xie M, Hong W, Li Y, Yin Y, Gao X, He Y, Chen Y, You C, Li J. CENPL accelerates cell proliferation, cell cycle, apoptosis, and glycolysis via the MEK1/2-ERK1/2 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2024; 166:106481. [PMID: 37914022 DOI: 10.1016/j.biocel.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Centromere protein L (CENPL) is involved in the mitotic process of eukaryotic cells and the development of various types of cancer. However, its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to investigate the expression and clinical significance of CENPL in HCC, and explore its involvement in regulating HCC cell proliferation, apoptosis, cell cycle, and glycolysis both in vivo and in vitro. CENPL expression was analyzed in HCC and normal liver tissues using The Cancer Genome Atlas, Gene Expression Omnibus mining, real-time quantitative polymerase chain reaction, and immunohistochemistry. Functional assays were used to assess the role of CENPL in HCC cell proliferation, apoptosis, cell cycle, and glycolysis. The potential pathways underlying the regulatory effects of CENPL, as well as the expression of mitogen-activated protein kinase (MAPK) signaling pathway-related molecules and markers of proliferation and glycolysis were investigated. CENPL was significantly upregulated in HCC tissue and associated with multiple clinicopathological features and poor patient prognosis. Univariate and multivariate analyses demonstrated that CENPL may serve as an independent prognostic factor for HCC. Upregulation of CENPL in HCC regulated tumor proliferation and glycolytic processes. Mechanistic studies revealed that differentially expressed genes between the CENPL-overexpressing and control groups were mainly concentrated in the MAPK signaling pathway. Pathway inhibition analysis indicated that CENPL activated the MEK1/2-ERK1/2 signaling pathway to promote proliferation and glycolysis in HCC cells. This study elucidated the role of CENPL in regulating cell proliferation, apoptosis, cell cycle, and glycolysis in HCC. CENPL may represent a therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Mengyi Xie
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yonghe Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yaolin Yin
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaojin Gao
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yi He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yu Chen
- Department of Radiology, The People's Hospital of Yuqing County, Zunyi 564499, Guizhou, China
| | - Chuan You
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| | - Jingdong Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| |
Collapse
|
7
|
Comprehensive pan-cancer analysis identifies centromere associated protein E as a novel prognostic and immunological biomarker in human tumors. Biochim Biophys Acta Gen Subj 2023; 1867:130346. [PMID: 36931353 DOI: 10.1016/j.bbagen.2023.130346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Centromere-associated protein E (CENP-E), a core component of the kinetochore, mediates chromosome congression and spindle microtubule capture during mitosis. Partial experimental evidence has illustrated the carcinogenic effects of CENPE in tumors, but the corresponding pan-cancer analysis of CENPE still lacking. Based on public databases, including the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA), we take an array of bioinformatics methods to investigate the potential oncogenic roles of CENPE. Then, we validated CENPE, cell cycle-related proteins, and immune checkpoint molecule findings expression in clinical colon cancer samples by western blot. Our results showed that CENPE was up-regulated in almost all tumors, and the expression level of CENPE was associated with worse overall survival (OS) and disease-specific survival (DSS) in patients. The strong relationship between CENPE with gene mutation and MMR has also been validated. Moreover, CENPE gene expression was positively correlated with immune checkpoint molecular, and reversely correlated with infiltration levels of most immune cells. In the human colon cancer tissues, the expression of CENPE, cell cycle-related proteins, and immune checkpoint molecules were significantly higher than in the adjacent normal tissues. Our results indicated that CENPE can function as an oncogene in various cancers, and may be regarded as a promising prognostic and diagnostic biomarker in cancer treatment.
Collapse
|
8
|
Yang WX, Gao HW, Cui JB, Zhang AA, Wang FF, Xie JQ, Lu MH, You CG. Development and validation of a coagulation-related genes prognostic model for hepatocellular carcinoma. BMC Bioinformatics 2023; 24:89. [PMID: 36894886 PMCID: PMC9996845 DOI: 10.1186/s12859-023-05220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, which seriously threatens people's physical and mental health. Coagulation is closely related to the occurrence and development of HCC. Whether coagulation-related genes (CRGs) can be used as prognostic markers for HCC remains to be investigated. METHODS Firstly, we identified differentially expressed coagulation-related genes of HCC and control samples in the datasets GSE54236, GSE102079, TCGA-LIHC, and Genecards database. Then, univariate Cox regression analysis, LASSO regression analysis, and multivariate Cox regression analysis were used to determine the key CRGs and establish the coagulation-related risk score (CRRS) prognostic model in the TCGA-LIHC dataset. The predictive capability of the CRRS model was evaluated by Kaplan-Meier survival analysis and ROC analysis. External validation was performed in the ICGC-LIRI-JP dataset. Besides, combining risk score and age, gender, grade, and stage, a nomogram was constructed to quantify the survival probability. We further analyzed the correlation between risk score and functional enrichment, pathway, and tumor immune microenvironment. RESULTS We identified 5 key CRGs (FLVCR1, CENPE, LCAT, CYP2C9, and NQO1) and constructed the CRRS prognostic model. The overall survival (OS) of the high-risk group was shorter than that of the low-risk group. The AUC values for 1 -, 3 -, and 5-year OS in the TCGA dataset were 0.769, 0.691, and 0.674, respectively. The Cox analysis showed that CRRS was an independent prognostic factor for HCC. A nomogram established with risk score, age, gender, grade, and stage, has a better prognostic value for HCC patients. In the high-risk group, CD4+T cells memory resting, NK cells activated, and B cells naive were significantly lower. The expression levels of immune checkpoint genes in the high-risk group were generally higher than that in the low-risk group. CONCLUSIONS The CRRS model has reliable predictive value for the prognosis of HCC patients.
Collapse
Affiliation(s)
- Wan-Xia Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Wei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jia-Bo Cui
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - An-An Zhang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Fang-Fang Wang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jian-Qin Xie
- Anesthesiology Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Ming-Hua Lu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
9
|
Liu WC, Chiu HW, Chou CL, Chiu YJ, Lee YH. Lactoferrin attenuated urban particulate matter-induced nephrotoxicity by regulating the CSF2/CENPE axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120871. [PMID: 36528199 DOI: 10.1016/j.envpol.2022.120871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Several epidemiological studies regarding the adverse effect of air pollution have notably accelerated in recent years. Urban particulate matter (PM) gains access to the respiratory system and translocates into the circulation to affect several tissues, such as the liver and kidneys. Lactoferrin is a substance belonging to the non-heme iron-binding glycoprotein which is present in breast milk and other exocrine fluids. Lactoferrin is protective against many pathophysiological conditions. In the present study, we explored the potential influence of lactoferrin on PM-induced nephrotoxicity. We found that lactoferrin rescued PM-induced cell death but did not affect apoptosis in human kidney cells. Lactoferrin decreased necroptosis and fibrosis but increased autophagy in human kidney cells. Furthermore, the gene expression profiles of PM and lactoferrin were analyzed by RNA sequencing. The transcriptional profiles were uploaded and analyzed by ingenuity pathway analysis software and gene set enrichment analysis. The results showed that the crucial role of the CSF2/CENPE pathway was involved in human kidney cells treated with PM and lactoferrin. In a mouse model, lactoferrin ameliorates PM-induced nephrotoxicity by regulating necroptosis, fibrosis, autophagy and the CSF2/CENPE axis. In summary, these findings showed that lactoferrin could be a novel therapeutic or preventive agent for renal disorders caused by airborne PM pollution.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lin Chou
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
He K, Xie M, Li J, He Y, Yin Y. CENPO is Associated with Immune Cell Infiltration and is a Potential Diagnostic and Prognostic Marker for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:7493-7510. [PMID: 36187159 PMCID: PMC9521242 DOI: 10.2147/ijgm.s382234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 12/08/2022] Open
Abstract
Purpose To examine the expression, clinical significance, and potential regulatory mechanism of centromere protein O (CENPO) in hepatocellular carcinoma (HCC). Methods CENPO expression in pan-cancer was studied using the TCGA-GTEx database, in HCC and normal liver tissues using the GEO and TCGA databases, and in clinical HCC samples by RT-qPCR. The diagnostic value of CENPO was assessed using receiver operating characteristic curves. Univariate and multivariate regression analyses of factors associated with HCC prognosis were performed. CENPO function and its mechanism in HCC were explored using GO, KEGG, and GSEA analyses of differentially expressed genes (DEGs). Association of CENPO expression with immune cell infiltration and immune checkpoint-associated molecules was conducted using TCGA data and the TIMER2.0 database. Relationships between CENPO expression and DNA methylation were analyzed using the UALCAN and cBioPortal databases. CENPO expression in HCC cell lines was detected using RT-qPCR. Results CENPO is upregulated in most cancers, including HCC and cell lines, and is a potential biomarker for HCC diagnosis (AUC = 0.936, 95% CI: 0.911–0.960). Higher CENPO expression was associated with poorer outcomes in patients with HCC (OS, p = 0.004; DSS, p = 0.002; PFI, p < 0.001), and CENPO was an independent predictor of factors influencing overall survival in HCC. DEGs between samples with high and low CENPO levels were enriched in various biological processes, including activation of the G2M checkpoint and other signaling pathways, while CENPO expression correlated with HCC immune cell infiltration and immune checkpoint-associated molecules, as well as CENPO promoter methylation (p < 0.001). Conclusion In HCC and cell lines, CENPO is overexpressed, a potential diagnostic marker and an indicator of poor prognosis. CENPO may regulate HCC development by influencing nuclear division and tumor immune infiltration and is regulated by methylation, making it a potential target for HCC immunotherapy.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Mengyi Xie
- Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, Nanchong, People’s Republic of China
- Correspondence: Jingdong Li, Institute of Hepato-Biliary-Pancreatic-Intestinal disease, North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, 637000, People’s Republic of China, Tel +86 18215521587, Fax +86 817-2222856, Email
| | - Yi He
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Yaolin Yin
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| |
Collapse
|
11
|
Su H, Fan Y, Wang Z, Jiang L. A comprehensive investigation on pan-cancer impacts of constitutive centromere associated network gene family by integrating multi-omics data: A CONSORT-compliant article. Medicine (Baltimore) 2022; 101:e28821. [PMID: 35363173 PMCID: PMC9282137 DOI: 10.1097/md.0000000000028821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The constitutive centromere associated network (CCAN) complex played a critical role in connecting the centromere with the mitotic spindle during mitosis and meiosis. Many studies have indicated that CCAN is related to the tumorigenesis and cancer development. Nonetheless, the overview of CCAN gene family in pan-cancer remain incompletely understood. METHODS We performed a comprehensive investigation on pan-cancer impacts of CCAN by integrating multi-omics data. We comprehensively investigated the expression profile, kyoto encyclopedia of genes and genomes (kegg) pathway, mutation, copy number variation, tumor microenvironment, immune cells infiltration, and drug sensitivity of CCAN in pan-cancer. MRNA expression profiles were collected from the cancer genome atlas, oncomine and ccle, the differential expression and various relevance analysis were performed with R or Perl. RESULTS The results showed that the expression of CCAN was different in 33 tumors. Intriguingly, the poor survival in adrenocortical carcinoma, cholangiocarcinoma, kidney chromophobe, mesothelioma, kidney renal clear cell carcinoma, brain lower grade glioma, pheochromocytoma and paraganglioma, prostate adenocarcinoma, thyroid carcinoma, uveal melanoma was most likely related to the kegg single transduction pathway including one carbon pool by folate, proteasome, arachidonic acid metabolism and so on. CENPC, ITGB3BP, APITD1, CENPU, and CENPW were more involved in tumor microenvironment, which more likely related to NK cells resting, T cells follicular helper, T cells CD8, neutrophils, macrophages M0, T cells CD4 memory activated. The relationship of CCAN expression with drug sensitivity showed that chelerythrine, nelarabine, and hydroxyurea maybe be potential drugs. CONCLUSIONS This multidimensional study provides a valuable resource to assist mechanism research and clinical utility about CCAN.
Collapse
Affiliation(s)
- Huimei Su
- Medical College, Guangxi University, Nanning, Guangxi, P.R. China
| | - Yuchun Fan
- Medical College, Guangxi University, Nanning, Guangxi, P.R. China
| | - Zhuan Wang
- Medical College, Guangxi University, Nanning, Guangxi, P.R. China
| | - Lihe Jiang
- Medical College, Guangxi University, Nanning, Guangxi, P.R. China
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, P.R. China
- Key Laboratory of Translational Cancer Research, Putian University, Putian, Fujian, P.R. China
| |
Collapse
|
12
|
Targets and Potential Mechanism of Scutellaria baicalensis in Treatment of Primary Hepatocellular Carcinoma Based on Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2022; 2022:8762717. [PMID: 35190740 PMCID: PMC8858046 DOI: 10.1155/2022/8762717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 12/08/2022]
Abstract
Objective To analyze the target and potential mechanism of Scutellaria baicalensis (SB) in the treatment of HCC based on bioinformatics, so as to provide suggestions for the diagnosis, treatment, and drug development of hepatocellular carcinoma (HCC). Methods The regulated gene targets of SB were screened by gene expression pattern clustering and differential analysis of gene expression data of HepG2 cells treated with SB at 0 h, 1 h, 3 h, 6 h, 12 h, and 24 h. The module genes related to HCC were identified by the weighted gene coexpression network analysis (WGCNA). KEGG and GO enrichment were used to analyze the molecular function and structure of the module, and GSEA was used to evaluate the different functional pathways between normal people and patients with HCC. Then, the module gene was used for univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to build a prognostic model. The protein-protein interaction network (PPI) was used to analyze the core genes regulated by SB (CGRSB) of the module, and the survival curve revealed the CGRSB impact on patient survival. The CIBERSORT algorithm combined with correlation analysis to explore the relationship between CGRSB and immune infiltration. Finally, the single-cell sequencing technique was used to analyze the distribution of CGRSB at the cellular level. Results SB could regulate 903 genes, of which 234 were related to the occurrence of HCC. The prognosis model constructed by these genes has a good effect in evaluating the survival of patients. KEGG and GO enrichment analysis showed that the regulation of SB on HCC mainly focused on some cell proliferation, apoptosis, and immune-related functions. GSEA enrichment analysis showed that these functions are related to the occurrence of HCC. A total of 24 CGRSB were obtained after screening, of which 13 were significantly related to survival, and most of them were unfavorable factors for patient survival. The correlation analysis of gene expression showed that most of CGRSB was significantly correlated with T cells, macrophages, and other functions. The results of single-cell analysis showed that the distribution of CGRSB in macrophages was the most. Conclusion SB has high credibility in the treatment of HCC, such as CDK2, AURKB, RRM2, CENPE, ESR1, and PRIM2. These targets can be used as potential biomarkers for clinical diagnosis. The research also shows that the p53 signal pathway, MAPK signal pathway, apoptosis pathway, T cell receptor pathway, and macrophage-mediated tumor immunity play the most important role in the mechanism of SB in treating HCC.
Collapse
|
13
|
High mRNA Expression of CENPL and Its Significance in Prognosis of Hepatocellular Carcinoma Patients. DISEASE MARKERS 2021; 2021:9971799. [PMID: 34457090 PMCID: PMC8387183 DOI: 10.1155/2021/9971799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022]
Abstract
Centromere proteins (CENPs) are the main constituent proteins of kinetochore, which are essential for cell division. In recent years, several studies have revealed that several CENPs were aberrantly expressed in hepatocellular carcinoma (HCC). However, numerous centromere proteins have not been studied in HCC. In this study, we used databases of Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), the Kaplan-Meier Plotter, cBioPortal, the Human Protein Atlas (HPA), and TIMER (Tumor Immune Estimation Resource) and immunohistochemical staining of clinical specimens to investigate the expression of 15 major centromere proteins in HCC to evaluate their potential prognostic value. We found that the mRNA levels of 4 out of 15 centromere proteins (CENPL, CENPQ, CENPR, and CENPU) were significantly higher in HCC than in normal tissues, and their mRNA levels were associated with the tumor stages (p values < 0.01). Patients with higher mRNA levels of CENPL had poorer overall survival, progression-free survival, relapse-free survival, and disease-specific survival (p values < 0.05). Furthermore, the higher levels of CENPL mRNA were associated with worse overall survival in males without hepatitis virus infection (p values < 0.05). The protein expression level of CENPL in human HCC tissue was higher than that in normal liver tissue. In addition, the expression of CENPL was positively correlated with the levels of the tumor-infiltrating lymphocytes. The results suggest that the high mRNA expression of CENPL may be a potential predictor of prognosis in HCC patients.
Collapse
|