1
|
Zhou Y, Zhao C, Shi Z, Heger Z, Jing H, Shi Z, Dou Y, Wang S, Qiu Z, Li N. A Glucose-Responsive Hydrogel Inhibits Primary and Secondary BRB Injury for Retinal Microenvironment Remodeling in Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402368. [PMID: 39031576 PMCID: PMC11348052 DOI: 10.1002/advs.202402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Indexed: 07/22/2024]
Abstract
Current diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR. For this, a glucose-responsive hydrogel named Cu-PEI/siMyD88@GEMA-Con A (CSGC) is developed that effectively delivers Cu-PEI/siMyD88 nanoparticles (NPs) to the retinal pigment epithelium (RPE). The Cu-PEI NPs act as antioxidant enzymes, scavenging ROS and inhibiting RPE pyroptosis, ultimately blocking primary BRB injury by reducing microglial activation and Th1 differentiation. Simultaneously, MyD88 expression silence in combination with the Cu-PEI NPs decreases IL-18 production, synergistically reduces VEGF levels, and enhances tight junction proteins expression, thus blocking secondary BRB injury. In summary, via remodeling the RME, the CSGC hydrogel has the potential to disrupt the detrimental cycle of cross-interference between primary and secondary BRB injury, providing a promising therapeutic strategy for DR.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Department of PharmacyTianjin Union Medical CenterNankai UniversityTianjin300122P. R. China
| | - Chan Zhao
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCZ‐61300Czech Republic
| | - HuaQing Jing
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zhengming Shi
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zitong Qiu
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
2
|
Sun Y, Li F, Liu Y, Qiao D, Yao X, Liu GS, Li D, Xiao C, Wang T, Chi W. Targeting inflammasomes and pyroptosis in retinal diseases-molecular mechanisms and future perspectives. Prog Retin Eye Res 2024; 101:101263. [PMID: 38657834 DOI: 10.1016/j.preteyeres.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Retinal diseases encompass various conditions associated with sight-threatening immune responses and are leading causes of blindness worldwide. These diseases include age-related macular degeneration, diabetic retinopathy, glaucoma and uveitis. Emerging evidence underscores the vital role of the innate immune response in retinal diseases, beyond the previously emphasized T-cell-driven processes of the adaptive immune system. In particular, pyroptosis, a newly discovered programmed cell death process involving inflammasome formation, has been implicated in the loss of membrane integrity and the release of inflammatory cytokines. Several disease-relevant animal models have provided evidence that the formation of inflammasomes and the induction of pyroptosis in innate immune cells contribute to inflammation in various retinal diseases. In this review article, we summarize current knowledge about the innate immune system and pyroptosis in retinal diseases. We also provide insights into translational targeting approaches, including novel drugs countering pyroptosis, to improve the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Fan Li
- Eye Center, Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Yunfei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dijie Qiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xinyu Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dequan Li
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tao Wang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangming District, Shenzhen, 518132, China; School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao You'anMen Street, Beijing, 100069, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Xi X, Wang M, Chen Q, Ma J, Zhang J, Li Y. DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol Cell Endocrinol 2023; 577:112012. [PMID: 37506869 DOI: 10.1016/j.mce.2023.112012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Pyroptosis of retinal pigment epithelium (RPE) cells is associated with the etiology of diabetic retinopathy (DR). In this study, we investigated the effect of DNMT1 on RPE cell pyroptosis by regulating miR-20a/TXNIP expression through DNA methylation. METHODS High glucose (HG)-induced ARPE-19 cells and mice were injected with streptozotocin (STZ) to generate DR cells and animal models. RT‒qPCR was used to detect the expression of miR-20a, and methylation-specific PCR (MS-PCR) was used to determine the occurrence of methylation of miR-20a. The expression of pyroptosis-related proteins (caspase-1 and NLRP3) and DNA methyltransferase (DNMT1) was detected by western blotting, and the expression of inflammatory factors (IL-1β and IL-18) was detected by ELISA. Apoptosis was detected by flow cytometry and TUNEL. HE staining was used to observe the pathological changes in retinal tissue in mice. RESULTS In HG-induced DR cell models, the expression of miR-20a was significantly downregulated, while the expression of inflammatory factors (IL-1β, IL-18) and pyroptosis-associated proteins (caspase-1, NLRP3) was significantly upregulated. Transfection of miR-20a mimic can effectively reverse HG-induced pyroptosis and release of inflammatory factors. DNMT1 promotes miR-20a methylation and inhibits the expression of miR-20a. DNMT1-mediated methylation is involved in the pyroptosis process of high glucose-induced RPE cells, and silencing DNMT1 can promote the expression of miR-20a, thereby inhibiting the release of IL-1β and IL-18 and reducing the occurrence of cell pyroptosis. miR-20a targets negative regulation of TXNIP expression, and overexpression of TXNIP can effectively reverse the inhibitory effect of miR-20a on pyroptosis. The methylation inhibitor 5-AZ can inhibit the occurrence of pyroptosis and DR processes, while treatment with a miR-20a inhibitor or OE-TXNIP can reverse the effect of 5-AZ. CONCLUSION DNMT1 promotes DNA methylation, decreases the expression of miR-20a and increases the expression of TXNIP, which ultimately leads to the occurrence of pyroptosis in RPE cells.
Collapse
Affiliation(s)
- Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Min Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jia Ma
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Junyan Zhang
- Department of Clinical Epidemiology and Evidence-based Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
7
|
Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Front Immunol 2023; 14:1151185. [PMID: 37180116 PMCID: PMC10167027 DOI: 10.3389/fimmu.2023.1151185] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In the working-age population worldwide, diabetic retinopathy (DR), a prevalent complication of diabetes, is the main cause of vision impairment. Chronic low-grade inflammation plays an essential role in DR development. Recently, concerning the pathogenesis of DR, the Nod-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome in retinal cells has been determined as a causal factor. In the diabetic eye, the NLRP3 inflammasome is activated by several pathways (such as ROS and ATP). The activation of NPRP3 leads to the secretion of inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), and leads to pyroptosis, a rapid inflammatory form of lytic programmed cell death (PCD). Cells that undergo pyroptosis swell and rapture, releasing more inflammatory factors and accelerating DR progression. This review focuses on the mechanisms that activate NLRP3 inflammasome and pyroptosis leading to DR. The present research highlighted some inhibitors of NLRP3/pyroptosis pathways and novel therapeutic measures concerning DR treatment.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Casciano F, Zauli E, Rimondi E, Mura M, Previati M, Busin M, Zauli G. The role of the mTOR pathway in diabetic retinopathy. Front Med (Lausanne) 2022; 9:973856. [PMID: 36388931 PMCID: PMC9663464 DOI: 10.3389/fmed.2022.973856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 07/30/2023] Open
Abstract
The retina, the part of the eye, translates the light signal into an electric current that can be sent to the brain as visual information. To achieve this, the retina requires fine-tuned vascularization for its energy supply. Diabetic retinopathy (DR) causes alterations in the eye vascularization that reduce the oxygen supply with consequent retinal neurodegeneration. During DR, the mammalian target of rapamycin (mTOR) pathway seems to coordinate retinal neurodegeneration with multiple anabolic and catabolic processes, such as autophagy, oxidative stress, cell death, and the release of pro-inflammatory cytokines, which are closely related to chronic hyperglycemia. This review outlines the normal anatomy of the retina and how hyperglycemia can be involved in the neurodegeneration underlying this disease through over activation or inhibition of the mTOR pathway.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Marco Mura
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Zou J, Tan W, Liu K, Chen B, Duan T, Xu H. Wnt inhibitory factor 1 ameliorated diabetic retinopathy through the AMPK/mTOR pathway-mediated mitochondrial function. FASEB J 2022; 36:e22531. [PMID: 36063130 DOI: 10.1096/fj.202200366rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and will lead to visual impairment. We aim to explore the effects and mechanisms of wnt inhibitory factor 1 (WIF1) in the progression of DR. To establish DR in vitro and in vivo, human retinal pigment epithelium (RPE) cell line ARPE-19 was treated with high-glucose (HG) and diabetic mice models were induced by streptozotocin (STZ), respectively. Different dose of recombinant WIF1 protein was used to treat DR. qRT-PCR and western blotting results demonstrated that WIF1 was downregulated, while VEGFA was upregulated in HG-induced ARPE-19 cells. WIF1 overexpression promoted cell migration. The ARPE-19 cells culture medium treated with WIF1 inhibited retinal endothelial cell tube formation and downregulated VEGFA expression. Moreover, WIF1 decreased the levels of ROS and MDA, while increasing the activity of SOD and GPX. WIF1 increased the ΔΨm in the mitochondria and downregulated the expression of mitochondrial autophagy-related proteins including Parkin, Pink1, LC3-II/LC3-I ratio, cleaved caspase 3, and cyt-c, which ameliorated mitochondrial dysfunction. The in vivo studies further demonstrated the consistent effects of WIF1 in STZ-induced mice. Taken together, WIF1 ameliorated mitochondrial dysfunction in DR by downregulating the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jing Zou
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Kangcheng Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Bolin Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - TianQi Duan
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Central South University, Changsha, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
10
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Zhou J, Chen F, Yan A, Xia X. Explore the molecular mechanism of angle-closure glaucoma in elderly patients induced telomere shortening of retinal ganglion cells through oxidative stress. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1024-1035. [PMID: 35802889 DOI: 10.1080/15257770.2022.2094947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Senile glaucoma is a common ophthalmological disease in the elderly. It is a disease of visual papillary perfusion caused by elevated intraocular pressure, complicated by visual dysfunction. Glaucoma can cause serious damage to the normal vision of the elderly. Therefore, exploring the related molecular mechanisms of glaucoma is of great significance to the diagnosis and treatment of glaucoma. This is an exploratory study. Establish a mouse model and conduct experimental groupings. After one week of adaptive feeding, the mice were intraperitoneally injected with an anesthetic mixture: ketamine + xylazine. Then the mice were sacrificed by neck dissection, and the eyeball tissues were immediately dissected. HE staining was used to analyze the histopathological characteristics of the retina of each group of mice. MitoSOX fluorescent probe was used to analyze the content of ROS in retinal tissue. The ELISA analysis was used to detect the activation of β-galactosidase for the aging characteristics of retinal ganglion cells in retinal tissues. Immunohistochemistry experiments were used to analyze the expression of telomerase TERT in retinal tissues. Western blot analysis was used to determine the expression of proteins POT1, TERF1, TERF2, and TINF2 in retinal tissues. The HE staining experiment showed that the damage of retinal tissue decreased from group Glaucoma to group Old, group Old to group Young. The experimental results of MitoSOX fluorescent probe show that ROS content is positively correlated with the degree of tissue damage. ELISA analysis results showed that the expression trend of β-galactosidase was the same as the ROS content. The protein expression levels related to telomere protection (TRET, POT1, TREF1, TREF2 and TINF2) all increased from group Glaucoma to group Old, group Old to group Young. The increase in ROS content, the decrease in telomere protection-related protein expression (telomere shortening) induced by ROS, and the increase of the expression of β-galactosidase, are all potential molecular mechanisms for the occurrence of angle-closure glaucoma in elderly patients.
Collapse
Affiliation(s)
- Jinzi Zhou
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, P.R. China
| | - Fenghua Chen
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, P.R. China
| | - Aimin Yan
- Department of Ophthalmology, The First People's Hospital of Guiyang, Guiyang, P.R. China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital Central South University, Changsha, P.R. China
| |
Collapse
|
12
|
Gao S, Zhang Y, Zhang M. Targeting Novel Regulated Cell Death: Pyroptosis, Necroptosis, and Ferroptosis in Diabetic Retinopathy. Front Cell Dev Biol 2022; 10:932886. [PMID: 35813208 PMCID: PMC9260392 DOI: 10.3389/fcell.2022.932886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the primary causes of visual impairment in the working-age population. Retinal cell death is recognized as a prominent feature in the pathological changes of DR. Several types of cell death occurrence have been confirmed in DR, which might be the underlying mechanisms of retinal cell loss. Regulated cell death (RCD) originates from too intense or prolonged perturbations of the intracellular or extracellular microenvironment for adaptative responses to cope with stress and restore cellular homeostasis. Pyroptosis, necroptosis, and ferroptosis represent the novel discovered RCD forms, which contribute to retinal cell death in the pathogenesis of DR. This evidence provides new therapeutic targets for DR. In this review, we summarize the mechanisms of three types of RCD and analyse recent advances on the association between novel RCD and DR, aiming to provide new insights into the underlying pathogenic mechanisms and propose a potential new strategy for DR therapy.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
13
|
Gu C, Zhang H, Li Q, Zhao S, Gao Y. MiR-192 attenuates high glucose-induced pyroptosis in retinal pigment epithelial cells via inflammasome modulation. Bioengineered 2022; 13:10362-10372. [PMID: 35441575 PMCID: PMC9161832 DOI: 10.1080/21655979.2022.2044734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic retinopathy is one of the most characteristic complications of diabetes mellitus, and pyroptosis plays acrucial role in the onset and development of diabetic retinopathy. Although microRNA-192 (miR-192) has been demonstrated to be involved in diabetic retinopathy progression, to the best of our knowledge, its potential and mechanism in cell pyroptosis in diabetic retinopathy have not been studied. The present study demonstrated that high glucose (HG) contributes to the pyroptosis of retinal pigment epithelial (RPE) cells in a dose-dependent manner. The results revealed that miR-192 was weakly expressed in HG-induced RPE cells. Furthermore, overexpression of miR-192 abrogated the role of HG in RPE cell pyroptosis. Based on the bioinformatics analysis, a dual-luciferase reporter assay, and an RNA pull-down assay, FTO α-ketoglutarate-dependent dioxygenase (FTO) was demonstrated to be a direct target of miR-192. Additionally, upregulation of FTO abolished the effects of miR-192 on RPE cells treated with HG. Nucleotide-binding domain leucine-rich repeat family protein 3 (NLRP3) inflammasome activation is vital for cell pyroptosis, and FTO functions as a pivotal modulator in the N6-methyladenosine modifications of various genes. Mechanistically, FTO enhanced NLRP3 expression by facilitating demethylation of NLRP3. In conclusion, the present results demonstrate that miR-192 represses RPE cell pyroptosis triggered by HG via regulation of the FTO/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Cao Gu
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongjun Zhang
- Department of Ophthalmology, Minhang Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qing Li
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shaofei Zhao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Gao
- Department of Ophthalmology, Changhai Hospital, First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
14
|
Zhao M, Li S, Matsubara JA. Targeting Pyroptotic Cell Death Pathways in Retinal Disease. Front Med (Lausanne) 2022; 8:802063. [PMID: 35047535 PMCID: PMC8763245 DOI: 10.3389/fmed.2021.802063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a gasdermin-mediated, pro-inflammatory form of cell death distinct from apoptosis. In recent years, increasing attention has shifted toward pyroptosis as more studies demonstrate its involvement in diverse inflammatory disease states, including retinal diseases. This review discusses how currently known pyroptotic cell death pathways have been implicated in models of age-related macular degeneration, diabetic retinopathy, and glaucoma. We also identify potential future therapeutic strategies for these retinopathies that target drivers of pyroptotic cell death. Presently, the drivers of pyroptosis that have been studied the most in retinal cells are the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, caspase-1, and gasdermin D (GSDMD). Targeting these proteins may help us develop new drug therapies, or supplement existing therapies, in the treatment of retinal diseases. As novel mechanisms of pyroptosis come to light, including those involving other inflammatory caspases and members of the gasdermin protein family, more targets for pyroptosis-mediated therapies in retinal disease can be explored.
Collapse
Affiliation(s)
- Mary Zhao
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Zhang Y, Jiao Y, Li X, Gao S, Zhou N, Duan J, Zhang M. Pyroptosis: A New Insight Into Eye Disease Therapy. Front Pharmacol 2021; 12:797110. [PMID: 34925047 PMCID: PMC8678479 DOI: 10.3389/fphar.2021.797110] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Pyroptosis is a lytic form of programmed cell death mediated by gasdermins (GSDMs) with pore-forming activity in response to certain exogenous and endogenous stimuli. The inflammasomes are intracellular multiprotein complexes consisting of pattern recognition receptors, an adaptor protein ASC (apoptosis speck-like protein), and caspase-1 and cause autocatalytic activation of caspase-1, which cleaves gasdermin D (GSDMD), inducing pyroptosis accompanied by cytokine release. In recent years, the pathogenic roles of inflammasomes and pyroptosis in multiple eye diseases, including keratitis, dry eyes, cataracts, glaucoma, uveitis, age-related macular degeneration, and diabetic retinopathy, have been continuously confirmed. Inhibiting inflammasome activation and abnormal pyroptosis in eyes generally attenuates inflammation and benefits prognosis. Therefore, insight into the pathogenesis underlying pyroptosis and inflammasome development in various types of eye diseases may provide new therapeutic strategies for ocular disorders. Inhibitors of pyroptosis, such as NLRP3, caspase-1, and GSDMD inhibitors, have been proven to be effective in many eye diseases. The purpose of this article is to illuminate the mechanism underlying inflammasome activation and pyroptosis and emphasize its crucial role in various ocular disorders. In addition, we review the application of pyroptosis modulators in eye diseases.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Jiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jianan Duan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Alfonsetti M, Castelli V, d’Angelo M, Benedetti E, Allegretti M, Barboni B, Cimini A. Looking for In Vitro Models for Retinal Diseases. Int J Mol Sci 2021; 22:10334. [PMID: 34638674 PMCID: PMC8508697 DOI: 10.3390/ijms221910334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Retina is a layered structure of the eye, composed of different cellular components working together to produce a complex visual output. Because of its important role in visual function, retinal pathologies commonly represent the main causes of visual injury and blindness in the industrialized world. It is important to develop in vitro models of retinal diseases to use them in first screenings before translating in in vivo experiments and clinics. For this reason, it is important to develop bidimensional (2D) models that are more suitable for drug screening and toxicological studies and tridimensional (3D) models, which can replicate physiological conditions, for investigating pathological mechanisms leading to visual loss. This review provides an overview of the most common retinal diseases, relating to in vivo models, with a specific focus on alternative 2D and 3D in vitro models that can replicate the different cellular and matrix components of retinal layers, as well as injury insults that induce retinal disease and loss of the visual function.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
| | | | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (V.C.); (M.d.); (E.B.)
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
17
|
Li W, Xiao H. Dihydromyricetin Alleviates High Glucose-Induced Oxidative Stress and Apoptosis in Human Retinal Pigment Epithelial Cells by Downregulating miR-34a Expression. Diabetes Metab Syndr Obes 2021; 14:387-397. [PMID: 33536772 PMCID: PMC7850407 DOI: 10.2147/dmso.s290633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes mellitus, which leads to neuronal and vascular dysfunction in the retina with a final outcome of complete loss of vision. The aim of the present study was to investigate the effects of dihydromyricetin (DHM), a natural flavanol compound, on diabetic retinopathy (DR) and identify its potential mechanisms. METHODS Retinal pigment epithelial cell line (ARPE-19) treated with high glucose (HG) was used to simulate the DR model in vitro. After treatment with different concentrations of DHM, the cell viability, production of reactive oxygen species (ROS) and the levels of oxidative stress-related markers in the in vitro model were detected using corresponding kits. Cell apoptosis was determined using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining, and the expression of apoptotic proteins was examined using Western blot analysis. Subsequently, microRNA (miR)-34a expression was measured by reverse transcription-quantitative PCR (RT-qPCR). The levels of oxidative stress and apoptosis were evaluated after miR-34a overexpression. RESULTS Results indicated that DHM dose-dependently elevated the decreased cell viability induced by HG. Moreover, the content of ROS was significantly reduced in HG-stimulated ARPE-19 cells, accompanied by enhanced activities of superoxide dismutase (SOD) and catalase (CAT) antioxidases, as well as concentration of glutathione (GSH). Furthermore, remarkably decreased apoptosis of ARPE-19 cells induced by HG was observed following DHM intervention. Importantly, HG stimulation notably upregulated miR-34a expression, which was reversed by DHM treatment. Importantly, the inhibitory effects of DHM on HG-induced oxidative stress and apoptosis of ARPE-19 cells were restored following miR-34a overexpression. CONCLUSION Taken together, this work demonstrated that DHM exerts protective effects on HG-induced oxidative stress and apoptotic damage in ARPE-19 cells via inhibition of miR-34a expression, providing a promising therapeutic agent for the treatment of DR.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Ophthalmology, NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, People’s Republic of China
| | - Hongxia Xiao
- Department of Ophthalmology, Jingmen No. 2 People’s Hospital, Jingmen448000, People’s Republic of China
- Correspondence: Hongxia Xiao Jingmen No. 2 People’s Hospital, 39 Xiangshan Avenue, Jingmen, Hubei448000, People’s Republic of China Email
| |
Collapse
|
18
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
19
|
Zhao Y, Zheng R, Chen J, Ning D. CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC). Cancer Cell Int 2020; 20:289. [PMID: 32655321 PMCID: PMC7339514 DOI: 10.1186/s12935-020-01390-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023] Open
Abstract
Background Cisplatin (DDP) is the first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC), and long-term DDP stimulation increased resistance of NSCLC cells to this drug by enriching cancer stem cells (CSCs), which contributed to recurrence and worse prognosis of NSCLC, but the molecular mechanisms are still not fully delineated. Methods Real-Time qPCR and Western Blot analysis were conducted to examine gene expressions at mRNA and protein levels, respectively. Dual-luciferase reporter gene system was used to validate the targeting sites among circRNA CDR1as, miR-641 and HOXA9 mRNA. Cell growth was evaluated by CCK-8 assay, trypan blue staining assay and colony formation assay. The Annexin V-FITC/PI double staining method was employed to measure cell apoptosis ratio. Spheroid formation and flow cytometer assay was used to evaluate cell stemness. Xenograft mice models were established to measure tumorgenicity in vivo, and Ki67 expressions in mice tumor tissues were examined by immunohistochemistry (IHC). Results Here we identified a novel circRNA CDR1as/miR-641/Homeobox protein Hox-A9 (HOXA9) pathway regulated stemness and DDP chemoresistance in NSCLC. Mechanistically, circRNA CDR1as and HOXA9 were high-expressed, while miR-641 was low-expressed in DDP-resistant NSCLC cells, instead of their corresponding parental DDP-sensitive NSCLC cells. Additionally, we validated that circRNA CDR1as positively regulated HOXA9 in NSCLC cells by serving as an RNA sponge for miR-641, and knock-down of circRNA CDR1as increased the sensitivity of DDP-resistant NSCLC cells, which were reversed by downregulating miR-641 and upregulating HOXA9. Consistently, overexpression of circRNA CDR1as increased drug resistance of DDP-sensitive NSCLC cells by regulating miR-641/HOXA9 axis. In addition, the expression levels of stemness signatures (SOX2, OCT4 and Nanog) were higher in DDP-resistant NSCLC cells, which also tended to form spheres and enrich CD44+CD166+ population compared to their parental DDP-sensitive NSCLC cells, suggesting that CSCs were enriched in DDP-resistant NSCLC cells. Notably, knock-down of circRNA CDR1as inhibited stemness of DDP-resistant NSCLC cells by inhibiting HOXA9 through upregulating miR-641. Conclusions Taken together, this study identified that circRNA CDR1as regulated stemness and DDP chemoresistance in NSCLC cells by targeting miR-641/HOXA9 axis.
Collapse
Affiliation(s)
- Yongsheng Zhao
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Maoyuan South Road, No. 1, Nanchong, 637000 Sichuan China
| | - Renyan Zheng
- Department of Anorectal Medicine, Affiliated Hospital of North Sichuan Medical College, Maoyuan South Road, No. 1, Nanchong, 637000 Sichuan China
| | - Jian Chen
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Maoyuan South Road, No. 1, Nanchong, 637000 Sichuan China
| | - Dong Ning
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Maoyuan South Road, No. 1, Nanchong, 637000 Sichuan China
| |
Collapse
|
20
|
The Effect of Lycium barbarum Polysaccharides on Pyroptosis-Associated Amyloid β 1-40 Oligomers-Induced Adult Retinal Pigment Epithelium 19 Cell Damage. Int J Mol Sci 2020; 21:ijms21134658. [PMID: 32629957 PMCID: PMC7369740 DOI: 10.3390/ijms21134658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a sight-threatening disease with limited treatment options. We investigated whether amyloid β1-40 (Aβ1-40) could cause pyroptosis and evaluated the effects of Lycium barbarum polysaccharides (LBP) on Aβ1-40 oligomers-induced retinal pigment epithelium 19 (ARPE-19) damage, which is an in vitro AMD model. Aβ1-40 oligomers verified by Western blot were added to ARPE-19 cells with or without 24 h LBP treatment. Aβ1-40 oligomers significantly decreased ARPE-19 cell viability with obvious morphological changes under light microscopy. SEM revealed swollen cells with a bubbling appearance and ruptured cell membrane, which are morphological characteristics of pyroptosis. ELISA results showed increased expression of IL-1β and IL-18, which are the final products of pyroptosis. LBP administration for 24 h had no toxic effects on ARPE-19 cells and improved cell viability and morphology while disrupting Aβ1-40 oligomerization in a dose-dependent manner. Furthermore, Aβ1-40 oligomers up-regulated the cellular immunoreactivity of pyroptosis markers including NOD-like receptors protein 3 (NLRP3), caspase-1, and membrane N-terminal cleavage product of GSDMD (GSDMD-N), which could be reversed by LBP treatment. Taken together, this study showed that LBP effectively protects the Aβ1-40 oligomers-induced pyroptotic ARPE-19 cell damages by its anti-Aβ1-40 oligomerization properties and its anti-pyroptotic effects.
Collapse
|
21
|
Di Florio DN, Sin J, Coronado MJ, Atwal PS, Fairweather D. Sex differences in inflammation, redox biology, mitochondria and autoimmunity. Redox Biol 2020; 31:101482. [PMID: 32197947 PMCID: PMC7212489 DOI: 10.1016/j.redox.2020.101482] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are characterized by circulating antibodies and immune complexes directed against self-tissues that result in both systemic and organ-specific inflammation and pathology. Most autoimmune diseases occur more often in women than men. One exception is myocarditis, which is an inflammation of the myocardium that is typically caused by viral infections. Sex differences in the immune response and the role of the sex hormones estrogen and testosterone are well established based on animal models of autoimmune viral myocarditis as well as in mitochondrial function leading to reactive oxygen species production. RNA viruses like coxsackievirus B3, the primary cause of myocarditis in the US, activate the inflammasome through mitochondrial antiviral signaling protein located on the mitochondrial outer membrane. Toll-like receptor 4 and the inflammasome are the primary signaling pathways that increase inflammation during myocarditis, which is increased by testosterone. This review describes what is known about sex differences in inflammation, redox biology and mitochondrial function in the male-dominant autoimmune disease myocarditis and highlights gaps in the literature and future directions.
Collapse
Affiliation(s)
- Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA.
| | - Jon Sin
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, CA, USA.
| | | | | | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA; Department of Immunology, Mayo Clinic, Jacksonville, FL, USA; Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|