1
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
2
|
Xian S, Yang Y, Nan N, Fu X, Shi J, Wu Q, Zhou S. Inhibition of mitochondrial ROS-mediated necroptosis by Dendrobium nobile Lindl. alkaloids in carbon tetrachloride induced acute liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118253. [PMID: 38679400 DOI: 10.1016/j.jep.2024.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 μL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.
Collapse
Affiliation(s)
- Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Nan Nan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Dong S, Ge J, Meng Q, Yuan T, Wang Y, Li Y, Lu Q, Song W, Li Z, Sun S. Crebanine mitigates glucocorticoid-induced osteonecrosis of the femoral head by restoring bone remodelling homeostasis via attenuating oxidative stress. J Cell Mol Med 2024; 28:e70044. [PMID: 39205463 PMCID: PMC11358393 DOI: 10.1111/jcmm.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The onset of osteonecrosis of the femoral head (ONFH) is intimately associated with the extensive administration of glucocorticoids (GCs). Long-term stimulation of GCs can induce oxidative stress in both osteoclasts (OCs) and osteoblasts (OBs), resulting in the disturbance of bone remodelling. An alkaloid named crebanine (CN) demonstrates pharmacological properties including anti-inflammation and reactive oxygen species (ROS) modulation. Our objective is to assess the therapeutic potential of CN in treating ONFH and elucidate the associated underlying mechanisms. The network pharmacology analysis uncovered that CN played a role in regulating ROS metabolism. In vitro, CN demonstrated its ability to reduce the dexamethasone (DEX)-stimulated generation of OCs and suppress their resorptive function by downregulating the level of osteoclast marker genes. Concurrently, CN also mitigated DEX-induced damage to OBs, facilitating the restoration of osteoblast marker gene expression, cellular differentiation and function. These effects were achieved by CN augmenting the antioxidant system to reduce intracellular ROS levels. Furthermore, in vitro results were corroborated by micro-CT and histological data, which also showed that CN attenuated MPS-induced ONFH in mice. This study highlights the therapeutic potential of CN in counteracting GCs-induced ONFH.
Collapse
Affiliation(s)
- Shankun Dong
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Jianxun Ge
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Qi Meng
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Yi Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Qizhen Lu
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Wenao Song
- Department of Clinical LaboratoryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
4
|
Yu Y, Fan Y, Mei W, Xu X, Chen Y, Zhao Y, Ruan B, Shen Z, Lu Y, Zheng S, Jie W. Dendrobium nobile active ingredient Dendrobin A against hepatocellular carcinoma via inhibiting nuclear factor kappa-B signaling. Biomed Pharmacother 2024; 177:117013. [PMID: 38901205 DOI: 10.1016/j.biopha.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Dendrobin A, a typical active ingredient of the traditional Chinese medicine Dendrobium nobile, has potential clinical application in cancer treatment; however, its effect and mechanism in anti-hepatocellular carcinoma (HCC) remain unsolved. METHOD The effects of Dendrobin A on the viability, migration, invasion, cycle, apoptosis, and epithelial-mesenchymal transition of HepG2 and SK-HEP-1 cells were verified by in vitro experiments. mRNA sequencing was performed to screen the differentially expressed genes (DEGs) of HCC cells before and after Dendrobin A treatment, following GO enrichment and KEGG signaling pathway analyses. Mechanistically, molecular docking was used to evaluate the binding of Dendrobin A with proteins p65 and p50, before further verifying the activation of nuclear factor kappa-B (NF-κB) signaling. Finally, the antiproliferative effect of Dendrobin A on HCC cells was explored through animal experiments. RESULTS Dendrobin A arrested cell cycle, induced apoptosis, and inhibited proliferation, migration, invasion, and blocked epithelial-mesenchymal transition in HepG2 and SK-HEP-1 cells. mRNA sequencing identified 830 DEGs, involving various biological processes. KEGG analysis highlighted NF-κB signaling. Molecular docking revealed strong binding of Dendrobin A with p65 and p50 proteins, and western blotting confirmed reduced levels of p-p65 and p-p50 in HCC cells post Dendrobin A treatment. NF-κB agonist PMA reversed Dendrobin A-inhibited cell proliferation migration and invasion. In vivo experiments showed that Dendrobin A inhibited HCC cell growth. CONCLUSION Our findings suggest that Dendrobin A exhibits anti-HCC properties by inhibiting the activation of the NF-κB pathway. These results provide a scientific basis for utilizing Dendrobium nobile in anti-HCC therapies.
Collapse
Affiliation(s)
- Yaping Yu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yonghao Fan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Wenli Mei
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571199, PR China
| | - Xiaoqing Xu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yan Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yangyang Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Banzhan Ruan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Zhihua Shen
- Department of Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yanda Lu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Wei Jie
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| |
Collapse
|
5
|
Algefare AI, Alfwuaires M, Famurewa AC, Elsawy H, Sedky A. Geraniol prevents CCl 4-induced hepatotoxicity via suppression of hepatic oxidative stress, pro-inflammation and apoptosis in rats. Toxicol Rep 2024; 12:128-134. [PMID: 38304701 PMCID: PMC10831491 DOI: 10.1016/j.toxrep.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Carbon tetrachloride (CCl4) is a classic chemical hepatotoxicant that triggers liver damage through hepatic exacerbation of oxidative stress. Geraniol (GRL) is a natural bioactive acyclic monoterpene with several pharmacological effects. We thus explored whether GRL could prevent CCl4-triggered hepatic toxicity. Rats were divided and administered GRL (100 mg/kg) and/or CCl4 (1 ml/kg of 1:1 v/v CCl4: olive oil) in Control group, GRL group, CCl4 group, GRL + CCl4 groups 2 times per week for 4 consecutive weeks. CCl4 caused significantly (p < 0.05) elevated serum activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TB), whereas the albumin (ALB) and total protein (TP) levels were significantly (p < 0.05) reduced relative to the control group. The liver activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) decreased significantly (p < 0.05), while malondialdehyde (MDA) level evidently elevated in comparison to the control group. The CCl4 exposure caused significant increases in proinflammatory interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), apoptotic caspase-3 and caspase-9 levels, whereas the anti-inflammatory interleukin-4 (IL-4) and interleukin-10 (IL-10) were reduced in consistent with histopathological changes compared to the control. On the contrary, the GRL administration prevented the hepatic toxicity and lesions through restoration of liver status markers, antioxidant enzyme activities, MDA, cytokines and apoptosis in comparison to the CCl4 group. Altogether, the findings reveal that GRL could abrogate CCl4-provoked hepatic toxicity via inhibition of hepatic oxidative stress, inflammation and apoptosis in rats.
Collapse
Affiliation(s)
- Abdulmohsen I. Algefare
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, India
| | - Hany Elsawy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Wang Y, Fu X, Zeng L, Hu Y, Gao R, Xian S, Liao S, Huang J, Yang Y, Liu J, Jin H, Klaunig J, Lu Y, Zhou S. Activation of Nrf2/HO-1 signaling pathway exacerbates cholestatic liver injury. Commun Biol 2024; 7:621. [PMID: 38783088 PMCID: PMC11116386 DOI: 10.1038/s42003-024-06243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rongyang Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Songjie Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonggang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jilong Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - James Klaunig
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
7
|
Xu Y, Wang M, Luo Y, Liu H, Ling H, He Y, Lu Y. PPARα is one of the key targets for dendrobine to improve hepatic steatosis in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117684. [PMID: 38171466 DOI: 10.1016/j.jep.2023.117684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl. (DNL) is a traditional Chinese ethnobotanical herb. Dendrobine (DNE) has been designated as a quality indicator for DNL in the Chinese Pharmacopoeia. DNE exhibits various pharmacological activities, including the reduction of blood lipids, regulation of blood sugar levels, as well as anti-inflammatory and antioxidant properties. AIM OF THE STUDY The objective of this study is to explore the impact of DNE on lipid degeneration in nonalcoholic fatty liver disease (NAFLD) liver cells and elucidate its specific mechanism. The findings aim to offer theoretical support for the development of drugs related to DNL. MATERIALS AND METHODS We utilized male C57BL/6J mice, aged 6 weeks old, to establish a NAFLD model. This model allowed us to assess the impact of DNE on liver pathology and lipid levels in NAFLD mice. We investigated the mechanism of DNE's regulation of lipid metabolism through RNA-seq analysis. Furthermore, a NAFLD model was established using HepG2 cells to further evaluate the impact of DNE on the pathological changes of NAFLD liver cells. The potential mechanism of DNE's improvement was rapidly elucidated using HT-qPCR technology. These results were subsequently validated using mouse liver samples. Following the in vitro activation or inhibition of PPARα function, we observed changes in DNE's ability to ameliorate pathological changes in NAFLD hepatocytes. This mechanism was further verified through RT-qPCR and Western blot analysis. RESULTS DNE demonstrated a capacity to enhance serum TC, TG, and liver TG levels in mice, concurrently mitigating liver lipid degeneration. RNA-seq analysis unveiled that DNE primarily modulates the expression of genes related to metabolic pathways in mouse liver. Utilizing HT-qPCR technology, it was observed that DNE markedly regulates the expression of genes associated with the PPAR signaling pathway in liver cells. Consistency was observed in the in vivo data, where DNE significantly up-regulated the expression of PPARα mRNA and its protein level in mouse liver. Additionally, the expression of fatty acid metabolism-related genes (ACOX1, CPT2, HMGCS2, LPL), regulated by PPARα, was significantly elevated following DNE treatment. In vitro experiments further demonstrated that DNE notably ameliorated lipid deposition, peroxidation, and inflammation levels in NAFLD hepatocytes, particularly when administered in conjunction with fenofibrate. Notably, the PPARα inhibitor GW6471 attenuated these effects of DNE. CONCLUSIONS In summary, DNE exerts its influence on the expression of genes associated with downstream fat metabolism by regulating PPARα. This regulatory mechanism enhances liver lipid metabolism, mitigates lipid degeneration in hepatocytes, and ultimately ameliorates the pathological changes in NAFLD hepatocytes.
Collapse
Affiliation(s)
- Yanzhe Xu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Yi Luo
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China
| | - Hao Liu
- The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, 563009, China
| | - Hua Ling
- School of Pharmacy, Georgia Campus-Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwanee, GA, 30024, USA
| | - Yuqi He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China.
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China; Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, 6 West Xue-Fu Road, Zunyi, 563009, China.
| |
Collapse
|
8
|
Li L, Liu Z, Hu H, Cai R, Bi J, Wang Q, Zhou X, Luo H, Zhang C, Wan R. Dendrobium Nobile Alcohol Extract Extends the Lifespan of Caenorhabditis elegans via hsf-1 and daf-16. Molecules 2024; 29:908. [PMID: 38398658 PMCID: PMC10891841 DOI: 10.3390/molecules29040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Dendrobium nobile is a traditional Chinese herb with anti-inflammatory, antioxidant, and neuroprotective properties. However, its antiaging effects are unclear. Herein, we studied the aging-related functions and the mechanism of action of the alcohol extract of Dendrobium nobile (DnAE) in the model organism Caenorhabditis elegans. The results indicated that 1 mg/mL DnAE slowed lipofuscin accumulation, decreased the levels of reactive oxygen species, elevated superoxide dismutase activity, enhanced oxidative and heat stress resistance, extended the lifespan of nematodes, protected their dopamine neurons from 6-hydroxydopamine-induced neurodegeneration, and reduced Aβ-induced neurotoxicity. DnAE upregulated the mRNA expression of the transcription factors DAF-16 and HSF-1, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2. However, it had no effect on the lifespan of DAF-16 mutants. Thus, DnAE can significantly extend lifespan, enhance heat stress tolerance, and delay age-related diseases through a DAF-16-dependent pathway.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhen Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Huiling Hu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Renming Cai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingdou Bi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Dazhou Vocational College of Chinese Medicine, Dazhou 635000, China
| | - Xiaogang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Huairong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Wang K, Teng W, Wu N, Gu S, Zhou T, Zhang Y. Preparation and evaluation of Angelica sinensis polysaccharide-modified chitosan sponge for acute liver injury protection. Int J Biol Macromol 2023; 253:127126. [PMID: 37778573 DOI: 10.1016/j.ijbiomac.2023.127126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
In this study, a porous sponge material was formed by physically mixing chitosan (CS) and Angelica sinensis polysaccharide (ASP). After removing the water by freeze-drying, the CS/ASP sponge was obtained. The prepared sponges exhibited excellent swelling properties, thermal stability and biocompatibility as well as improvements over the insufficient mechanical properties of pure chitosan sponges. Notably, the ASP released from the CS/ASP sponge could be effectively absorbed by the liver, which endowed the CS/ASP sponge with effective liver-protective effects against CCl4-induced acute liver injury; these protective effects surpassed those of both blank CS and CS/Dextran sponges. The underlying protective mechanism may involve the activation of the Nrf2-mediated antioxidant signaling pathway and the inhibition of hepatocyte apoptosis. Understanding CS/ASP sponges may provide new insights and inspire new methods for the clinical application of ASP. At the same time, we hope to suggest future directions for the development of polysaccharide preparations.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wangtianzi Teng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Nire Wu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - SaiSai Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Tao Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
10
|
Zhao Y, Ji X, Liu X, Qin L, Tan D, Wu D, Bai C, Yang J, Xie J, He Y. Age-dependent dendrobine biosynthesis in Dendrobium nobile: insights into endophytic fungal interactions. Front Microbiol 2023; 14:1294402. [PMID: 38149273 PMCID: PMC10749937 DOI: 10.3389/fmicb.2023.1294402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Dendrobium nobile (D. nobile), a valued Chinese herb known for its diverse pharmacological effects, owes much of its potency to the bioactive compound dendrobine. However, dendrobine content varies significantly with plant age, and the mechanisms governing this variation remain unclear. This study delves into the potential role of endophytic fungi in shaping host-microbe interactions and influencing plant metabolism. Methods Using RNA-seq, we examined the transcriptomes of 1-year-old, 2-year-old, and 3-year-old D. nobile samples and through a comprehensive analysis of endophytic fungal communities and host gene expression in D. nobile stems of varying ages, we aim to identify associations between specific fungal taxa and host genes. Results The results revealing 192 differentially expressed host genes. These genes exhibited a gradual decrease in expression levels as the plants aged, mirroring dendrobine content changes. They were enriched in 32 biological pathways, including phagosome, fatty acid degradation, alpha-linolenic acid metabolism, and plant hormone signal transduction. Furthermore, a significant shift in the composition of the fungal community within D. nobile stems was observed along the age gradient. Olipidium, Hannaella, and Plectospherella dominated in 1-year-old plants, while Strelitziana and Trichomerium prevailed in 2-year-old plants. Conversely, 3-year-old plants exhibited additional enrichment of endophytic fungi, including the genus Rhizopus. Two gene expression modules (mediumpurple3 and darkorange) correlated significantly with dominant endophytic fungi abundance and dendrobine accumulation. Key genes involved in dendrobine synthesis were found associated with plant hormone synthesis. Discussion This study suggests that the interplay between different endophytic fungi and the hormone signaling system in D. nobile likely regulates dendrobine biosynthesis, with specific endophytes potentially triggering hormone signaling cascades that ultimately influence dendrobine synthesis.
Collapse
Affiliation(s)
- Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaolong Ji
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Xiaoqi Liu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Chaojun Bai
- Guangxi Shenli Pharmaceutical Co., Ltd., Yulin, China
| | - Jiyong Yang
- Chishui Xintian Chinese Medicine Industry Development Co., Ltd., Zunyi, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium nobile, Engineering Research Center of Pharmaceutical Orchid Plant Breeding, High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Li X, Kuang Q, Peng M, Yang K, Luo P. Basement Membrane-Associated lncRNA Risk Model Predicts Prognosis and Guides Clinical Treatment in Clear Cell Renal Cell Carcinoma. Biomedicines 2023; 11:2635. [PMID: 37893009 PMCID: PMC10604562 DOI: 10.3390/biomedicines11102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The basement membrane (BM) affects the invasion and growth of malignant tumors. The role and mechanism of BM-associated lncRNAs in clear cell renal cell carcinoma (ccRCC) are unknown. In this study, we identified biomarkers of ccRCC and developed a risk model to assess patient prognosis. We downloaded transcripts and clinical data from the Cancer Genome Atlas (TCGA). Differential analysis, co-expression analysis, Cox regression analysis, and lasso regression were used to identify BM-associated prognostic lncRNAs and create a risk prediction model. We evaluated and validated the accuracy of the model using multiple methods and constructed a nomogram to predict the prognosis of ccRCC. GO, KEGG, and immunity analyses were used to explore differences in biological function. We constructed a risk model containing six BM-associated lncRNAs (LINC02154, IGFL2-AS1, NFE4, AC112715.1, AC092535.5, and AC105105.3). The risk model has higher diagnostic efficiency compared to clinical characteristics and can be used to forecast patient prognoses. We used renal cancer cells and tissue microarrays to verify the expression of lncRNAs in the risk model. We found that knocking down LINC02154 and AC112715.1 could inhibit the invasion ability of renal cancer cells. The risk model based on BM-associated lncRNAs can well predict ccRCC and guide clinical treatment.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, China; (X.L.); (Q.K.)
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, China; (X.L.); (Q.K.)
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan 430060, China; (X.L.); (Q.K.)
| |
Collapse
|
12
|
Fan C, Sun X, Wang X, Yu H. Therapeutic potential of the chemical composition of Dendrobium nobile Lindl. Front Pharmacol 2023; 14:1163830. [PMID: 37497110 PMCID: PMC10366689 DOI: 10.3389/fphar.2023.1163830] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Dendrobium nobile Lindl. belongs to the genus Dendrobium of the orchid family and is a valuable herbal medicinal material. The information in this paper has been collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, SciFinder, China National Knowledge Infrastructure, published books, Ph.D., and M.S. dissertations systematically in recent 20 years. "Dendrobium nobile Lindl.," "chemical composition," "pharmacological activities," and "diseases" were used as search terms to screen the literature. The collected chemical compositions are classified and summarized according to their different chemical structures, and the clinical disease treatment effects of Dendrobium nobile Lindl. are classified and summarized based on their pharmacological activities and different experimental disease models. Recent studies have revealed that Dendrobium nobile Lindl. contains chemical components such as alkaloids, bibenzyls, sesquiterpenes, phenanthrenes, and polysaccharides, and that its pharmacological activities are closely related to the chemical components, with pharmacological activities such as anti-tumor, anti-aging, immune enhancement, hypoglycemic, and anti-cataract. Currently, researchers are conducting extensive and detailed studies on Dendrobium nobile Lindl. and research experiments on its chemical constituents in the treatment of various clinical diseases. Therefore, the purpose of this paper is to review the chemical composition of Dendrobium nobile Lindl. and its experimental studies in the treatment of diseases and to provide a scientific reference for the future application of Dendrobium nobile Lindl. in the treatment of diseases.
Collapse
Affiliation(s)
- Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Sun
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Wang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Paliwal VM, Kundu S, Kulhari U, Jala A, Ishteyaque S, Borkar RM, Mugale MN, Murty US, Sahu BD. Alternanthera brasiliana L. extract alleviates carbon tetrachloride-induced liver injury and fibrotic changes in mice: Role of matrix metalloproteinases and TGF-β/Smad axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115992. [PMID: 36509261 DOI: 10.1016/j.jep.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alternanthera brasiliana L. is a flowering plant belonging to the family Amaranthaceae and is popularly known as "penicillin". It is used in folk medicine to treat infections, coughs, wound healing, and inflammatory diseases. AIM OF THE STUDY We investigated the effect of Alternanthera brasiliana L. leaves hydroalcoholic extract (AB) against oxidative stress, inflammation, and fibrotic changes in an experimental model of carbon tetrachloride (CCl4)-induced liver injury and fibrosis in mice. MATERIALS AND METHODS Thirty-six male Balb/C mice were randomized into five groups: normal control, AB control, CCl4 control, CCl4 + AB-200 mg/kg, and CCl4 + AB-400 mg/kg. In mice, liver injury was induced by intraperitoneal injection of CCl4 (20% in corn oil, 5 ml/kg body weight) thrice a week for six consecutive weeks. AB extract at two doses (200 mg/kg and 400 mg/kg body weight) was administered orally for six consecutive weeks. Liver injury-related serum markers (ALT, AST, ALP), antioxidants (GSH, GST, SOD, and vitamin C), pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-18, ultrasonographic and histological alterations, proteins of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinase-1 (TIMP-1), nuclear factor-κB (p65) (NF-κB), nod-like receptor protein 3 (NLRP3), and TGF-β/Smad signaling were accessed. LC-Q-TOF-MS/MS analysis of AB was performed. RESULTS AB treatment significantly decreased the CCl4-induced rise in serum ALT, AST, and ALP activities and improved the histological alterations. Compared with the CCl4-treated group, treatment with AB significantly restored the hepatic antioxidants and reduced the pro-inflammatory cytokines in the liver. The antioxidant activity of AB may be attributed to its terpenoid constituents, which was confirmed by LC-Q-TOF-MS/MS analysis. The CCl4-induced rise in expression of MMP-2 and MMP-9 and decrease in TIMP-1 were markedly restored in the AB-treated groups. Further findings revealed a significant reduction in the protein levels of phospho-NF-κB (p65), NLRP3, TGF-β, pSmad2/3, collagen I, and α-smooth muscle actin (α-SMA) in the AB treatment groups. CONCLUSIONS The hepatoprotective effect of AB may be attributed to the high content of terpenoid compounds and alleviates liver injury and associated fibrotic changes through modulating MMPs, NF-κB (p65), and the TGF-β/Smad axis.
Collapse
Affiliation(s)
- Vinay M Paliwal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Sharmeen Ishteyaque
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow, 226 031, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India.
| |
Collapse
|
14
|
Fu X, Chen S, Xian S, Wu Q, Shi J, Zhou S. Dendrobium and its active ingredients: Emerging role in liver protection. Biomed Pharmacother 2023; 157:114043. [PMID: 36462312 DOI: 10.1016/j.biopha.2022.114043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Dendrobium is a traditional medicinal plant, which has a variety of clinical applications in China. It has been reported that Dendrobium contains various bioactive components, mainly including polysaccharides and alkaloids. Previous studies have shown that Dendrobium has pharmacological activities including antiviral, anti-inflammatory, and antioxidant effects, as well as immune regulation. Particularly, the anti-aging functions and neuroprotective effects of Dendrobium have been well characterized in a wide array of cell and animal models. In recent years, the effect of Dendrobium on the liver has emerged as a new direction to explore its therapeutic benefits and has received more and more attention. This review is focused on the beneficial effects of Dendrobium on liver toxicity and various liver disorders, which presumably are attributed to a consequence of an array of modes of action due to its multiple bioactive components, and largely lack mechanistic and pharmacokinetic characterization. A particular emphasis is placed on the potential action mechanisms related to Dendrobium's liver protection. Research perspectives in regard to the potential therapeutic application for Dendrobium are also discussed in this review.
Collapse
Affiliation(s)
- Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shu Chen
- Cell and Tissue Bank of Guizhou Province, Zunyi, Guizhou, China
| | - Siting Xian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
15
|
Zhao Y, Qin L, Tan D, Wu D, Wu X, Fan Q, Bai C, Yang J, Xie J, He Y. Fatty acid metabolites of Dendrobium nobile were positively correlated with representative endophytic fungi at altitude. Front Microbiol 2023; 14:1128956. [PMID: 37180253 PMCID: PMC10172574 DOI: 10.3389/fmicb.2023.1128956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/01/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Altitude, as a comprehensive ecological factor, regulates the growth and development of plants and microbial distribution. Dendrobium nobile (D. nobile) planted in habitats at different elevations in Chishui city, also shows metabolic differences and endophytes diversity. What is the triangular relationship between altitude, endophytes, and metabolites? Methods In this study, the diversity and species of endophytic fungi were tested by ITS sequencing and metabolic differences in plants were tested by UPLC-ESI-MS/MS. Elevation regulated the colonization of plant endophytic fungal species and fatty acid metabolites in D. nobile. Results The results indicate that and high altitude was better for the accumulation of fatty acid metabolites. Therefore, the high-altitude characteristic endophytic floras were screened, and the correlation with fatty acid metabolites of plants was built. The colonization of T. rubrigenum, P. Incertae sedis unclassified, Phoma. cf. nebulosa JZG 2008 and Basidiomycota unclassified showed a significantly positive correlation with fatty acid metabolites, especially 18-carbon-chain fatty acids, such as (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid, 3,7,11,15-tetramethyl-12-oxohexadeca-2,4-dienoic acid and Octadec-9-en-12-ynoic acid. What is more fascinating is these fatty acids are the essential substrates of plant hormones. Discussion Consequently, it was speculated that the D. nobile- colonizing endophytic fungi stimulated or upregulated the synthesis of fatty acid metabolites and even some plant hormones, thus affecting the metabolism and development of D. nobile.
Collapse
Affiliation(s)
- Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
| | - Chaojun Bai
- Guangxi Shenli Pharmaceutical Co., Ltd, Yulin, China
| | - Jiyong Yang
- Chishui Xintian Chinese Medicine Industry Development Co., Ltd, Zunyi, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
- *Correspondence: Jian Xie,
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile and Engineering Research Center of Pharmaceutical Orchid Plant Breeding and High Efficiency Application in Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- 2011 Cooperative Inovational Center for Guizhou Traditional Chinese Medicine and Ethnic Medicine Zunyi Medical University, Zunyi, China
- Yuqi He,
| |
Collapse
|
16
|
Transcriptome Analysis of Protection by Dendrobium Nobile Alkaloids (DNLA) against Chronic Alcoholic Liver Injury in Mice. Biomedicines 2022; 10:biomedicines10112800. [PMID: 36359319 PMCID: PMC9687597 DOI: 10.3390/biomedicines10112800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: To investigate the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) against chronic alcoholic liver injury. C57BL/6J mice were fed with the Lieber−DeCarli alcohol diet to induce chronic alcoholic liver injury. DNLA (20 mg/kg/day) was gavaged along with the alcohol diet for 28 days. Liver injury was evaluated by serum enzymes. Triglyceride levels, histopathology, and transcriptome changes were examined by RNA-Seq and qPCR. DNLA decreased serum triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were ameliorated by DNLA, as evidenced by H&E and Oil-red O staining. DNLA brought the alcohol-induced aberrant gene expression pattern towards normal. Alcohol induced 787 differentially expressed genes (padj < 0.01). DNLA induced 280 differentially expressed genes to a much less extent. Ingenuity pathway analysis showed that DNLA ameliorated alcohol-induced oxidative stress and xenobiotic metabolism disruption. qPCR verified that DNLA alleviated over-activation of Cyp2a4, Cyp2b10, and Abcc4; attenuated oxidative stress (Hmox1, Gstm3, Nupr1), reduced the expression of Nrf2 genes (Nqo1, Gclc, Vldlr); and rescued some metabolic genes (Insig1, Xbp1, Socs3, Slc10a2). In conclusion, DNLA was effective against alcohol-induced fatty liver disease, and the protection may be attributed to alleviated oxidative stress and restored metabolism homeostasis, probably through modulating nuclear receptor CAR-, PXR-, and Nrf2-mediated gene expression pathways.
Collapse
|
17
|
Sun L, Zhang Y, Wen S, Li Q, Chen R, Lai X, Zhang Z, Zhou Z, Xie Y, Zheng X, Zhang K, Li D, Sun S. Extract of Jasminum grandiflorum L. alleviates CCl 4-induced liver injury by decreasing inflammation, oxidative stress and hepatic CYP2E1 expression in mice. Biomed Pharmacother 2022; 152:113255. [PMID: 35689859 DOI: 10.1016/j.biopha.2022.113255] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022] Open
Abstract
Jasminum grandiflorum L. (JG) is a medicinal plant containing many bioactive ingredients. Herein, we analyzed the effects of four different extracts and two compounds of JG on acute liver injury caused by carbon tetrachloride (CCl4) and underlying molecular mechanisms. 7 weeks old C57BL/6 male mice were used to establish a liver injury model by injecting with 1% CCl4, 10 mL/kg ip. Four different extracts and two compounds of JG were given to mice by gavage for 3 days. Clinical and histological chemistry assays were performed to assess liver injury. Moreover, hepatic oxidative stress and inflammation related markers were determined by immunohistochemistry and western blotting. As a result, JG extracts and two functional components showed different degree of protect effects against CCl4-induced liver injury by the decrease of elevated serum transaminases and liver index, and the attenuation of histopathological changes in mice, among which JG extracted with petroleum ether (PET) had the most significant effect. In addition, PET remarkably alleviated hepatic oxidative stress and inflammation. Further studies revealed that PET significantly inhibited the TNF-α expression, signal pathway expression, NF-κB p65 and inflammatory factors IL-1β and IL-6 expression in CCl4-induced liver injury mice. Nevertheless, hydroxytyrosol (HT) alleviated liver injury by reducing oxidative stress. Apart from PET extract, other extracts of JG can inhibit cytochrome CYP2E1 expression to protect liver tissue. These findings suggest that the extracts and its components of JG possesses the potential protective effects against CCl4-induced liver injury in mice by exerting antioxidative stress and anti-inflammation.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Yizi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhiyan Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yinzheng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
18
|
Song C, Ma J, Li G, Pan H, Zhu Y, Jin Q, Cai Y, Han B. Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2022; 13:850949. [PMID: 35599884 PMCID: PMC9121007 DOI: 10.3389/fpls.2022.850949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, some of which have both ornamental and therapeutic values. Alkaloids are a group of active chemicals found in Dendrobium plants. Dendrobine has emerged specific pharmacological and therapeutic properties. Although Dendrobium alkaloids have been isolated and identified since the 1930s, the composition of alkaloids and their biosynthesis pathways, including metabolic intermediates, alkaloid transporters, concrete genes involved in downstream pathways, and associated gene clusters, have remained unresolved scientific issues. This paper comprehensively reviews currently identified and tentative alkaloids from the aspect of biogenic pathways or metabolic genes uncovered based on the genome annotations. The biosynthesis pathways of each class of alkaloids are highlighted. Moreover, advances of the high-throughput sequencing technologies in the discovery of Dendrobium alkaloid pathways have been addressed. Applications of synthetic biology in large-scale production of alkaloids are also described. This would serve as the basis for further investigation into Dendrobium alkaloids.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yanfang Zhu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| |
Collapse
|
19
|
Xu J, Shen J, Yuan R, Jia B, Zhang Y, Wang S, Zhang Y, Liu M, Wang T. Mitochondrial Targeting Therapeutics: Promising Role of Natural Products in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 12:796207. [PMID: 35002729 PMCID: PMC8733608 DOI: 10.3389/fphar.2021.796207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, and its prevalence is still growing rapidly. However, the efficient therapies for this liver disease are still limited. Mitochondrial dysfunction has been proven to be closely associated with NAFLD. The mitochondrial injury caused reactive oxygen species (ROS) production, and oxidative stress can aggravate the hepatic lipid accumulation, inflammation, and fibrosis. which contribute to the pathogenesis and progression of NAFLD. Therefore, pharmacological therapies that target mitochondria could be a promising way for the NAFLD intervention. Recently, natural products targeting mitochondria have been extensively studied and have shown promising pharmacological activity. In this review, the recent research progress on therapeutic effects of natural-product-derived compounds that target mitochondria and combat NAFLD was summarized, aiming to provide new potential therapeutic lead compounds and reference for the innovative drug development and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Jingqi Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Mou Z, Zhao Y, Ye F, Shi Y, Kennelly EJ, Chen S, Zhao D. Identification, Biological Activities and Biosynthetic Pathway of Dendrobium Alkaloids. Front Pharmacol 2021; 12:605994. [PMID: 33959002 PMCID: PMC8096351 DOI: 10.3389/fphar.2021.605994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Dendrobium is a genus of flowering plants belonging to the Orchidaceae family with more than 1,400 species. Many Dendrobium species have been used as medicinal plants in several Asian countries for thousands of years. Alkaloids were reported as the major biological markers due to their complex chemical compositions and various types. In this review, we summarized the structural types of alkaloids, their pharmacological activities, as well as the mechanisms of biological activities. More than sixty alkaloids were isolated and identified from the Dendrobium genus. Moreover, the pharmacological effects of Dendrobium alkaloids as hepatic lipid and gluconeogenesis regulation, as neuroprotection, and as anti-tumor, anti-inflammatory, anti-diabetes, and anti-virus factors were described. Besides, the total chemical synthesis of dendrobine is provided, while the biosynthetic pathway of dendrobine has been proposed based on the functions of associated genes. For applications of these invaluable herbs, more researches on the extraction of biological markers from compounds are needed. Further confirmation of the proposed biosynthetic pathways is anticipated as well.
Collapse
Affiliation(s)
- Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Fei Ye
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yana Shi
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China.,Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, NY, United States.,Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Fu X, Chen S, Wang X, Shen Y, Zeng R, Wu Q, Lu Y, Shi J, Zhou S. Dendrobium nobile Lindl. alkaloids alleviate Mn-induced neurotoxicity via PINK1/Parkin-mediated mitophagy in PC12 cells. Biochem Biophys Rep 2021; 26:100877. [PMID: 33889759 PMCID: PMC8047462 DOI: 10.1016/j.bbrep.2020.100877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
Modern pharmacological studies have demonstrated that Dendrobium nobile Lindl. Alkaloids (DNLA), the main active ingredients of Dendrobium nobile, is valuable as an anti-aging and neuroprotective herbal medicine. The present study was designed to determine whether DNLA confers protective function over neurotoxicant manganese (Mn)-induced cytotoxicity and the mechanism involved. Our results showed that pretreatment of PC12 cells with DNLA alleviated cell toxicity induced by Mn and improved mitochondrial respiratory capacity and oxidative status. Mn treatment increased apoptotic cell death along with a marked increase in the protein expression of Bax and a decrease in the expression of Bcl-2 protein, all of which were noticeably reversed by DNLA. Furthermore, DNLA significantly abolished the decrease in protein levels of both PINK1 and Parkin, and mitigated the increased expression of autophagy marker LC3-II and accumulation of p62 caused by Mn. These results demonstrate that DNLA inhibits Mn induced cytotoxicity, which may be mediated through modulating PINK1/Parkin-mediated autophagic flux and improving mitochondrial function. Dendrobium nobile Lindl. alkaloids (DNLA) significantly alleviate cytotoxicity of PC12 cells induced by manganese (Mn) and improve mitochondrial function. Activation of PINK1/Parkin-mediated autophagic flux is involved in the protective action of DNLA on Mn-induced neurotoxicity. DNLA reduces Mn-induced ROS generation and suppresses Mn-induced apoptosis.
Collapse
Affiliation(s)
- Xiaolong Fu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shu Chen
- Cell and Tissue Bank of Guizhou Province, Zunyi, Guizhou, China
| | - Xueting Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ru Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
22
|
Zhang Y, Zhou J, Liu J, Li S, Zhou S, Zhang C, Wang Y, Shi J, Liu J, Wu Q. RNA-Seq analysis of the protection by Dendrobium nobile alkaloids against carbon tetrachloride hepatotoxicity in mice. Biomed Pharmacother 2021; 137:111307. [PMID: 33561648 DOI: 10.1016/j.biopha.2021.111307] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Dendrobium nobile is a genuine Chinese medicine. Dendrobium nobile Lindl. alkaloids (DNLA) protects against CCl4-induced acute liver injury. This study used RNA-Seq to explore the mechanisms. METHODS Mice were pretreated with DNLA (10 and 20 mg/kg, po) for 7 days, and subsequently intoxicated with CCl4 (20 μL/kg, ip for 24 h). Liver RNA was extracted and subjected to RNA-Seq. The bioinformatics, including PCA, GO, KEGG, two-dimensional clustering, Ingenuity Pathways Analysis (IPA), and Illumina BaseSpace Correlation Engine (BSCE) were used to analyze the data. qPCR was performed on selected genes to verify RNA-Seq results. RESULTS DNLA protection against CCl4 hepatotoxicity was confirmed by histopathology. PCA revealed the distinct gene expression patterns between the different treatment groups. GO showed that CCl4 induced the activation, adhesion and proliferation of immune cells. KEGG showed CCl4 induced oxidative stress, diseases and compromised adaptive responses. CCl4 induced differentially expressed genes (DEGs) were identified by DESeq2 with Padj < 0.05 and 2D-clustered with other groups. DNLA reverted CCl4-induced DEGs in a dose-dependent manner. qPCR analysis of S100 g, Sprr1, CCL3/7, Saa2/3, IL1rn, Cox7a2 and Rad15 confirmed RNA-Seq results. IPA showed that CCl4 treatment altered some signaling and metabolic pathways, which were ameliorated or returned to normal following DNLA treatment. The CCl4-activated mitochondrial oxidative phosphorylation was illustrated as an example. IPA Upstream Regulator Analysis further revealed the activated or inhibited molecules and chemicals that are responsible for CCl4-induced DEGs, and DNLA attenuated these changes. BSCE analysis verified that CCl4-induced DEGs were highly correlated with the GEO database of CCl4 hepatotoxicity in rodents, and DNLA dose-dependently attenuated such correlation. CONCLUSION RNA-Seq revealed CCl4-induced DEGs, disruption of canonical pathways, activation or inhibition of upstream regulators, which are highly correlated with database for CCl4 hepatotoxicity. All these changes were attenuated or returned to normal by DNLA, demonstrating the mechanisms for DNLA to protect against CCl4 hepatotoxicity.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jinxin Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jiajia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Shujun Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Chengchen Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
23
|
Zhang J, Xu HX, Zhao ZL, Xian YF, Lin ZX. Dendrobium nobile Lindl: A Review on Its Chemical Constituents and Pharmacological Effects. CHINESE MEDICINE AND CULTURE 2021. [DOI: 10.4103/cmac.cmac_44_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|