1
|
Jalali-Zefrei F, Mousavi SM, Delpasand K, Shourmij M, Farzipour S. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells. Curr Gene Ther 2025; 25:113-135. [PMID: 38676526 DOI: 10.2174/0115665232301727240422092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical researches.
Collapse
Affiliation(s)
- Fatemeh Jalali-Zefrei
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mehdi Mousavi
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Delpasand
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Wang M, Wang X, Wang Y, Gai Y, Ye J, Xu X, You X. Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review). Oncol Lett 2024; 28:541. [PMID: 39310022 PMCID: PMC11413475 DOI: 10.3892/ol.2024.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Globally, nearly 2 million deaths annually are attributed to the development of liver diseases, with liver cancer and cirrhosis being particularly prominent, which makes liver disease a significant global health concern. Cirrhosis is closely linked to the evolution of hepatitis, hepatic fibrosis and fatty liver. However, most liver diseases have an insidious onset, are challenging to treat and the prognosis and efficacy of current therapies are unsatisfactory, which can result in irreversible functional damage to the liver. Therefore, there is an urgent need to explore the molecular mechanisms underlying liver disease and identify new biomarkers and therapeutic targets. In previous years, microRNAs (miRs), a class of short non-coding RNAs comprising 17-25 nucleotides, have attracted attention for their roles in various types of liver diseases. Among them, miR-22 serves a unique role in mediating multiple pathway mechanisms and epigenetic modifications and can act both as an inhibitor of liver cancer and a metabolic blocker. Given its close association with the liver, several studies have reported that the differential expression of miR-22 regulates the metabolic process of liver cancer and is involved in the evolution of hepatic fibrosis and steatohepatitis, making it a potential target for early diagnosis and treatment. The present manuscript aimed to comprehensively review the key role of miR-22 in the evolution of liver diseases and offer valuable references and guidance for subsequent studies by identifying its specific mechanism of action and future development prospects.
Collapse
Affiliation(s)
- Minghe Wang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xuejing Wang
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanqi Wang
- College of Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yikuo Gai
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jingran Ye
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xinyan Xu
- College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
3
|
Li LF, Yu J, Li R, Li SS, Huang JY, Wang MD, Jiang LN, Xu JH, Wang Z. Apoptosis, Mitochondrial Autophagy, Fission, and Fusion Maintain Mitochondrial Homeostasis in Mouse Liver Under Tail Suspension Conditions. Int J Mol Sci 2024; 25:11196. [PMID: 39456978 PMCID: PMC11508632 DOI: 10.3390/ijms252011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microgravity can induce alterations in liver morphology, structure, and function, with mitochondria playing an important role in these changes. Tail suspension (TS) is a well-established model for simulating the effects of microgravity on muscles and bones, but its impact on liver function remains unclear. In the current study, we explored the regulatory mechanisms of apoptosis, autophagy, fission, and fusion in maintaining liver mitochondrial homeostasis in mice subjected to TS for 2 or 4 weeks (TS2 and TS4). The results showed the following: (1) No significant differences were observed in nuclear ultrastructure or DNA fragmentation between the control and TS-treated groups. (2) No significant differences were detected in the mitochondrial area ratio among the three groups. (3) Cysteine aspartic acid-specific protease 3 (Caspase3) activity and the Bcl-2-associated X protein (bax)/B-cell lymphoma-2 (bcl2) ratio were not higher in the TS2 and TS4 groups compared to the control group. (4) dynamin-related protein 1 (DRP1) protein expression was increased, while mitochondrial fission factor (MFF) protein levels were decreased in the TS2 and TS4 groups compared to the control, suggesting stable mitochondrial fission. (5) No significant differences were observed in the optic atrophy 1 (OPA1), mitofusin 1 and 2 (MFN1 and MFN2) protein expression levels across the three groups. (6) Mitochondrial autophagy vesicles were present in the TS2 and TS4 groups, with a significant increase in Parkin phosphorylation corresponding to the duration of the TS treatment. (7) ATP synthase and citrate synthase activities were significantly elevated in the TS2 group compared to the control group but were significantly reduced in the TS4 group compared to the TS2 group. In summary, the coordinated regulation of apoptosis, mitochondrial fission and fusion, and particularly mitochondrial autophagy preserved mitochondrial morphology and contributed to the restoration of the activities of these two key mitochondrial enzymes, thereby maintaining liver mitochondrial homeostasis in mice under TS conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Hui Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| | - Zhe Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| |
Collapse
|
4
|
Liu X, Zhao P, Du X, Hou J, Zhang G, Zhang W, Yang L, Chen Y. Let-7b-5p promotes triptolide-induced growth-inhibiting effects in glioma by targeting IGF1R. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5909-5925. [PMID: 38363352 DOI: 10.1007/s00210-024-02957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Glioma is one of the most common malignancies of the central nervous system. The therapeutic effect has not been satisfactory despite advances in comprehensive treatment techniques. Our previous studies have found that triptolide inhibits glioma proliferation through the ROS/JNK pathway, but in-depth mechanisms need to be explored. Recent studies have confirmed that miRNAs may function as tumor suppressor genes or oncogenes and be involved in cancer development and progression. In this study, we found that let-7b-5p expression levels closely correlated with WHO grades and overall survival in patients in tumor glioma-CGGA-mRNAseq-325, and the upregulation of let-7b-5p can inhibit the proliferation and induce apoptosis of glioma cells. Functionally, upregulation of let-7b-5p increased the inhibitory effect on cell viability and colony formation caused by triptolide and promoted the apoptosis rate of triptolide-treated U251 cells. Conversely, downregulation of let-7b-5p had the opposite effect, indicating that let-7b-5p is a tumor suppressor miRNA in glioma cells. Moreover, target prediction, luciferase reporter assays and functional experiments revealed that IGF1R was a direct target of let-7b-5p. In addition, upregulation of IGF1R reversed the triptolide-regulated inhibition of cell viability but promoted glioma cell apoptosis and activated the ROS/JNK signaling pathway induced by triptolide. The results obtained in vivo experiments substantiated those from the in vitro experiments. In summary, the current study provides evidence that triptolide inhibits the growth of glioma cells by regulating the let-7b-5p-IGF1R-ROS/JNK axis in vitro and in vivo. These findings may provide new ideas and potential targets for molecularly targeted therapies for comprehensive glioma treatment.
Collapse
Affiliation(s)
- Xihong Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Peiyuan Zhao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Xiaodan Du
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Junlin Hou
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Guanghui Zhang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenxian Zhang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Liping Yang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China.
| | - Yulong Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, NO. 156 Jinshui East Road, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Naseer QA, Malik A, Zhang F, Chen S. Exploring the enigma: history, present, and future of long non-coding RNAs in cancer. Discov Oncol 2024; 15:214. [PMID: 38847897 PMCID: PMC11161455 DOI: 10.1007/s12672-024-01077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length and do not encode proteins, play crucial roles in governing gene expression at both the transcriptional and posttranscriptional levels. These molecules demonstrate specific expression patterns in various tissues and developmental stages, suggesting their involvement in numerous developmental processes and diseases, notably cancer. Despite their widespread acknowledgment and the growing enthusiasm surrounding their potential as diagnostic and prognostic biomarkers, the precise mechanisms through which lncRNAs function remain inadequately understood. A few lncRNAs have been studied in depth, providing valuable insights into their biological activities and suggesting emerging functional themes and mechanistic models. However, the extent to which the mammalian genome is transcribed into functional noncoding transcripts is still a matter of debate. This review synthesizes our current understanding of lncRNA biogenesis, their genomic contexts, and their multifaceted roles in tumorigenesis, highlighting their potential in cancer-targeted therapy. By exploring historical perspectives alongside recent breakthroughs, we aim to illuminate the diverse roles of lncRNA and reflect on the broader implications of their study for understanding genome evolution and function, as well as for advancing clinical applications.
Collapse
Affiliation(s)
- Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Abdul Malik
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengyuan Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Shengxia Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Pericoli G, Galardi A, Paolini A, Petrilli LL, Pepe G, Palma A, Colletti M, Ferretti R, Giorda E, Levi Mortera S, Burford A, Carai A, Mastronuzzi A, Mackay A, Putignani L, Jones C, Pascucci L, Peinado H, Helmer-Citterich M, de Billy E, Masotti A, Locatelli F, Di Giannatale A, Vinci M. Inhibition of exosome biogenesis affects cell motility in heterogeneous sub-populations of paediatric-type diffuse high-grade gliomas. Cell Biosci 2023; 13:207. [PMID: 37957701 PMCID: PMC10641969 DOI: 10.1186/s13578-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Paediatric-type diffuse High-Grade Gliomas (PDHGG) are highly heterogeneous tumours which include distinct cell sub-populations co-existing within the same tumour mass. We have previously shown that primary patient-derived and optical barcoded single-cell-derived clones function as interconnected networks. Here, we investigated the role of exosomes as a route for inter-clonal communication mediating PDHGG migration and invasion. RESULTS A comprehensive characterisation of seven optical barcoded single-cell-derived clones obtained from two patient-derived cell lines was performed. These analyses highlighted extensive intra-tumour heterogeneity in terms of genetic and transcriptional profiles between clones as well as marked phenotypic differences including distinctive motility patterns. Live single-cell tracking analysis of 3D migration and invasion assays showed that the single-cell-derived clones display a higher speed and longer travelled distance when in co-culture compared to mono-culture conditions. To determine the role of exosomes in PDHGG inter-clonal cross-talks, we isolated exosomes released by different clones and characterised them in terms of marker expression, size and concentration. We demonstrated that exosomes are actively internalized by the cells and that the inhibition of their biogenesis, using the phospholipase inhibitor GW4689, significantly reduced the cell motility in mono-culture and more prominently when the cells from the clones were in co-culture. Analysis of the exosomal miRNAs, performed with a miRNome PCR panel, identified clone-specific miRNAs and a set of miRNA target genes involved in the regulation of cell motility/invasion/migration. These genes were found differentially expressed in co-culture versus mono-culture conditions and their expression levels were significantly modulated upon inhibition of exosome biogenesis. CONCLUSIONS In conclusion, our study highlights for the first time a key role for exosomes in the inter-clonal communication in PDHGG and suggests that interfering with the exosome biogenesis pathway may be a valuable strategy to inhibit cell motility and dissemination for these specific diseases.
Collapse
Affiliation(s)
- Giulia Pericoli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Palma
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Roberta Ferretti
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Ezio Giorda
- Core Facilities research laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Burford
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Andrea Carai
- Oncological Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alan Mackay
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Lorenza Putignani
- Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chris Jones
- Department of Molecular Pathology, The Institute of Cancer Research, Sutton, UK
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Hector Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Emmanuel de Billy
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Onco-hematology, Gene and Cell Therapy, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Taheri M, Askari A, Behzad Moghadam K, Hussen BM, Ghafouri-Fard S, Kiani A. A review on the role of NCK1 Antisense RNA 1 (NCK1-AS1) in diverse disorders. Pathol Res Pract 2023; 245:154451. [PMID: 37028107 DOI: 10.1016/j.prp.2023.154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
NCK1 Antisense RNA 1 (NCK1-AS1), alternatively named as NCK1-DT, is a long non-coding RNA (lncRNA) with important roles in the carcinogenesis. Multiple studies verified its oncogenic role in different types of cancer, including gastric cancer, non-small cell lung cancer, glioma, prostate cancer and cervical cancer. NCK1-AS1 functions as a sponge for several microRNAs, including miR-137, miR-22-3p, miR-526b-5p, miR-512-5p, miR-138-2-3p and miR-6857. In this review we present an outline of NCK1-AS1 function in malignant conditions as well as atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
10
|
He XY, Wang XQ, Xiao QL, Liu D, Xu QR, Liu S. Long non-coding RNA NCK1-AS1 functions as a ceRNA to regulate cell viability and invasion in esophageal squamous cell carcinoma via microRNA-133b/ENPEP axis. Cell Cycle 2023; 22:596-609. [PMID: 36412985 PMCID: PMC9928473 DOI: 10.1080/15384101.2022.2138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 01/04/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
This study is designed to explore the role of long non-coding RNAs (lncRNAs) NCK1-AS1 in proliferative and invasive activities of esophageal squamous cell carcinoma (ESCC) cells by binding to microRNA-133b (miR-133b) to regulate ENPEP. Differentially expressed lncRNAs, miRs, genes and their targeting relationships were screened on ESCC-related gene expression datasets GSE17351 and GSE6188. The targeting relationships among NCK1-AS1, miR-133b, and ENPEP were verified using functional assays. Loss- and gain- of function assays were carried out to examine the roles of NCK1-AS1, miR-133b, and ENPEP in ESCC cell proliferative, invasive, migrative and apoptotic abilities as well as tumorigenesis in vivo. Elevated NCK1-AS1 and ENPEP but reduced miR-133b expression were found in ESCC. NCK1-AS1 knockdown or miR-133b overexpression inhibited the malignant properties of ESCC cells as well as tumorigenesis in vivo. NCK1-AS1 regulated the ENPEP expression by competitively binding to miR-133b. ENPEP overexpression reversed inhibition of NCK1-AS1 knockdown on the function of ESCC cells. This study provides evidence that silencing NCK1-AS1 inhibits expression of ENPEP by sponging miR-133b, thereby suppressing ESCC.
Collapse
Affiliation(s)
- Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiu-Qi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Lu Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Duan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
11
|
Wang Y, Pan J, Sun Z. LncRNA NCK1-AS1-mediated regulatory functions in human diseases. Clin Transl Oncol 2023; 25:323-332. [PMID: 36131072 DOI: 10.1007/s12094-022-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Disease development requires the activation of complex multi-factor processes involving numerous long noncoding RNAs (lncRNAs), which describe non-protein-coding RNAs longer than 200 nucleotides. Emerging evidence indicates that lncRNAs act as essential regulators that perform pivotal roles in the pathogenesis and progression of human diseases. The mechanisms underlying lncRNA involvement in diverse diseases have been extensively explored, and lncRNAs are considered powerful biomarkers for clinical practice. The lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) antisense 1 (NCK1-AS1), also known as NCK1 divergent transcript (NCK1-DT), is encoded on human chromosome 3q22.3 and produces a 27,274-base-long transcript. NCK1-AS1 has increasingly been characterized as a causative agent for multiple diseases. The abnormal expression and involvement of NCK1-AS1 in various biological processes have been associated with several diseases. Further exploration of the mechanisms through which NCK1-AS1 contributes to disease development and progression will provide a foundation for potential clinical applications of NCK1-AS1 in the diagnosis and treatment of various diseases. This review summarizes the current understanding of the various functions and mechanisms through which NCK1-AS1 contributes to various diseases and the clinical application prospects for NCK1-AS1.
Collapse
Affiliation(s)
- Yingfan Wang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. JOURNAL OF ONCOLOGY 2022; 2022:4022960. [PMID: 36185622 PMCID: PMC9519330 DOI: 10.1155/2022/4022960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.
Collapse
|
13
|
Wu W, Zhang S, He J. The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review. Front Pharmacol 2022; 13:879704. [PMID: 35600868 PMCID: PMC9117703 DOI: 10.3389/fphar.2022.879704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background and purpose: Radioresistance remains a significant challenge in tumor therapy. This systematic review aims to demonstrate the role of long non-coding RNA (lncRNA) in cancer radioresistance/radiosensitivity. Material and methods: The electronic databases Pubmed, Embase, and Google Scholar were searched from January 2000 to December 2021 to identify studies addressing the mechanisms of lncRNAs in tumor radioresistance/sensitivity, each of which required both in vivo and in vitro experiments. Results: Among the 87 studies identified, lncRNAs were implicated in tumor radioresistance/sensitivity mainly in three paradigms. 1) lncRNAs act on microRNA (miRNA) by means of a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) lncRNAs directly interact with proteins, affecting the cell cycle and autophagy to contribute to tumor radioresistance. 3) lncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance. Conclusion: lncRNAs are important regulators involved in tumor radioresistance\sensitivity. Different lncRNAs may participate in the radioresistance with the same regulatory paradigm, and the same lncRNAs may also participate in the radioresistance in different ways. Future research should focus more on comprehensively characterizing the mechanisms of lncRNAs in tumor radioresistance to help us identify corresponding novel biomarkers and develop new lncRNA-based methods to improve radioresistance.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Wenhan Wu,
| | - Shijian Zhang
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
MicroRNA-22 represses glioma development via activation of macrophage-mediated innate and adaptive immune responses. Oncogene 2022; 41:2444-2457. [PMID: 35279703 DOI: 10.1038/s41388-022-02236-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 01/29/2023]
Abstract
Macrophage-mediated tumor cell phagocytosis and subsequent neoantigen presentation are critical for generating anti-tumor immunity. This study aimed to uncover the potential clinical value and molecular mechanisms of miRNA-22 (miR-22) in tumor cell phagocytosis via macrophages and more efficient T cell priming. We found that miR-22 expression was markedly downregulated in primary macrophages from glioma tissue samples compared to adjacent tissues. miR-22-overexpressing macrophages inhibited glioma cell proliferation and migration, respectively. miR-22 upregulation stimulated the phagocytic ability of macrophages, enhanced tumor cell phagocytosis, antigen presentation, and efficient T cell priming. Additionally, our data revealed that miR-22-overexpressing macrophages inhibited glioma formation in vivo, HDAC6 was a target, and NF-κB signaling was a pathway closely associated with miR-22 in tumor-associated macrophages (TAMs) of glioma. Our findings revealed the essential roles of miR-22 in tumor cell phagocytosis by macrophages and more efficient T cell priming, facilitating further research on phagocytic regulation to enhance the response to tumor immunotherapy.
Collapse
|
15
|
Zhang B, Wang J, Du L, Shao L, Zou Y, Liu H, Liu J. Knockdown of NCK1-AS1 inhibits the development of atherosclerosis by targeting miR-1197/COX10 axis. J Biol Eng 2022; 16:2. [PMID: 34986861 PMCID: PMC8734181 DOI: 10.1186/s13036-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although long non-coding RNA (lncRNA) NCK1-AS1 plays important roles in human cancer, its function in atherosclerosis (AS) remains unclear. METHOD The expression of NCK1-AS1 in AS blood samples was detected by qRT-PCR. Oxidized low-density lipoprotein (ox-LDL) was used to construct the AS cell model, and quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to evaluate NCK1-AS1 level. Cell phenotypes including proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assay and flow cytometer, respectively. The malondialdehyde level was measured to evaluate oxidative stress. The expression of apoptosis-related proteins was evaluated by western blot. The expression of inflammatory cytokines (IL-1β, IL-6 and TNK-α) was measured by qRT-PCR and ELISA assays. The relationship among NCK1-AS1, miR-1197 and COX10 was determined by bioinformatic analysis and luciferase reporter assay. RESULTS NCK1-AS1 was significantly upregulated in AS blood samples and ox-LDL stimulated vascular smooth muscle cells (VSMCs). Knockdown of NCK1-AS1 increased cell viability, reduced cell apoptosis and MDA level, and also inhibited the expression of inflammatory cytokines (IL-1β, IL-6 and TNK-α) in ox-LDL stimulated VSMCs. NCK1-AS1 could positively regulate COX10 expression by directly sponging miR-1197. Moreover, co-transfection of sh-NCK1-AS1 and miR-1197 inhibitor, or co-transfection of sh-NCK1-AS1 and pc-COX10 (COX10 overexpressing plasmid) obviously reduced cell viability, promoted cell apoptosis, and increased MDA level in VSMCs followed by ox-LDL treatment for 24 h compared to that in sh-NCK1-AS1 transfected VSMCs. CONCLUSION Our study revealed that knockdown of NCK1-AS1 attenuated the development of AS by regulating miR-1197/COX10 axis, suggesting that this lncRNA might be a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No.804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China
| | - Juncheng Wang
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China
| | - Lei Du
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No.804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China
| | - Lufei Shao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No.804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China
| | - Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No.804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China
| | - Haibo Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No.804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jinfang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No.804 Shengli Street, Xingqing District, Yinchuan City, Ningxia Hui Autonomous Region, 750004, PR China.
| |
Collapse
|
16
|
Chen M, Zhou H, Mao J, Li Z, Zha Z. miR-56a Mediates the Wnt/ β-Catenin Pathway to Promote the Efficacy of Radiation on Glioma. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clarification of the miR-56a-mediated effect of Wnt/β-catenin pathway in glioma cells on radiosensitization. miRNA arrays were used to analyze the differential expression of miRNAs in biopsies from glioma patients. qRT-PCR to detect the levels of miR-56a and Wnt/β-catenin
expressed in glioma cells and tissues. Evaluation of the impact of miR-56a on cell growth, invasion, and migrationforming ability by MTT assay and colony formation experiments. To analyze the involvement of miR-56a-mediated Wnt/β-catenin pathway in glioma biological processes and
to examine the impact of miR-56a in glioma cell radiosensitivity. After miRNA array analysis, we found that miR-56a expression was significantly increased, and further studies showed that ectopic miR-56a expression in glial cells was sensitive to radiotherapy. miR-56a induction of Wnt/β-catenin
promotes the upregulation of Parp in glioma cells. miR-56a can promote glioma cell migration and invasion in vitro as an important potential target for glioma disease.
Collapse
Affiliation(s)
- Min Chen
- Department of Neurosurgry, Anqing Municipal Hospital, Anqing, Anhui, 246001, China
| | - Heping Zhou
- Department of Neurosurgry, Anqing Municipal Hospital, Anqing, Anhui, 246001, China
| | - Jun Mao
- Department of Neurosurgry, Anqing Municipal Hospital, Anqing, Anhui, 246001, China
| | - Zhihong Li
- Department of Neurosurgry, Anqing Municipal Hospital, Anqing, Anhui, 246001, China
| | - Zhengjiang Zha
- Department of Neurosurgry, Anqing Municipal Hospital, Anqing, Anhui, 246001, China
| |
Collapse
|
17
|
Guan B, Ma J, Yang Z, Yu F, Yao J. LncRNA NCK1-AS1 exerts oncogenic property in gastric cancer by targeting the miR-22-3p/BCL9 axis to activate the Wnt/β-catenin signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1640-1653. [PMID: 33974352 DOI: 10.1002/tox.23160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) exert crucial effects on the development of many malignancies, including gastric cancer. Herein, we investigated the role of lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) divergent transcript (NCK1-DT, also known as NCK1-AS1) in gastric cancer. Reverse transcription quantitative polymerase chain reaction demonstrated that NCK1-AS1 exhibited high expression in gastric cancer tissues and cells. In vitro assays including MTT, colony formation, Transwell, wound healing and sphere formation assays indicated that NCK1-AS1 depletion inhibited cell proliferation, migration, invasion and stemness maintenance. Luciferase reporter and RIP assays suggested that NCK1-AS1 functioned as a competitive endogenous RNA (ceRNA) for miR-22-3p to positively modulate BCL9 expression. BCL9 was a target gene of miR-22-3p. According to western blot analysis and TOP/FOP flash assay, NCK1-AS1 activated the Wnt/β-catenin signaling via the miR-22-3p/BCL9 axis. Furthermore, rescue experiments verified that NCK1-AS1 affected cellular processes by activating the Wnt/β-catenin signaling pathway via the miR-22-3p/BCL9 axis. Tumor xenograft model validated that NCK1-AS1 promoted tumor growth in vivo via the Wnt/β-catenin signaling by upregulating BCL9 expression. Overall, NCK1-AS1 functions as an oncogene and promotes gastric cancer progression via the miR-22-3p/BCL9-Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Bugao Guan
- Department of General Surgery, Jinhu People's Hospital, Huaian, Jiangsu, China
| | - Jun Ma
- Department of General Surgery, Jinhu People's Hospital, Huaian, Jiangsu, China
| | - Zhi Yang
- Department of Gastroenterology, Jinhu People's Hospital, Huaian, Jiangsu, China
| | - Fei Yu
- Department of General Surgery, Jinhu People's Hospital, Huaian, Jiangsu, China
| | - Jian Yao
- Department of Gastroenterology, Jinhu People's Hospital, Huaian, Jiangsu, China
| |
Collapse
|
18
|
Lin Q, Jia Y, Zhang D, Jin H. NCK1-AS1 promotes the progression of melanoma by accelerating cell proliferation and migration via targeting miR-526b-5p/ADAM15 axis. Cancer Cell Int 2021; 21:367. [PMID: 34247598 PMCID: PMC8273965 DOI: 10.1186/s12935-021-02055-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are vital regulators of gene expression and cellular processes in multiple cancers, including melanoma. Nevertheless, the function of lncRNA NCK1-antisense 1 (NCK1-AS1) in melanoma remains unknown. Methods RT-qPCR was used to analyze the expression of NCK1-AS1, microRNA-526b-5p (miR-526b-5p) and ADAM metallopeptidase domain 15 (ADAM15). Cell proliferation was determined by CCK-8, colony formation and EdU assays. Cell migration was assessed by transwell migration and wound healing assays. Mechanism experiments including luciferase reporter, RIP and RNA pull down assays were conducted to demonstrate the interactions between RNAs. Xenograft model was established to verify the function of NCK1-AS1 and miR-526b-5p in melanoma in vivo. Results NCK1-AS1 was overexpressed in melanoma cell lines and NCK1-AS1 knockdown hampers the proliferation and migration of melanoma cells. Besides, miR-526b-5p binds to NCK1-AS1 in melanoma and ADAM15 was validated as its downstream target. Further, the inhibitory effects of NCK1-AS1 knockdown on cell proliferation and migration in melanoma were reversed by the depletion of miR-526b-5p and further counteracted by ADAM15 knockdown. The growth of melanoma tumors was hindered by the down-regulation of NCK1-AS1 or up-regulation of miR-526b-5p. Conclusion NCK1-AS1 facilitates cell proliferation and migration in melanoma via targeting miR-526b-5p/ADAM15 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02055-y.
Collapse
Affiliation(s)
- Quan Lin
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China
| | - Hongjuan Jin
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
19
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
20
|
Ghafouri-Fard S, Agabalazadeh A, Abak A, Shoorei H, Hassanzadeh Taheri MM, Taheri M, Sharifi G. Role of Long Non-Coding RNAs in Conferring Resistance in Tumors of the Nervous System. Front Oncol 2021; 11:670917. [PMID: 34178658 PMCID: PMC8219921 DOI: 10.3389/fonc.2021.670917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023] Open
Abstract
Tumors of the nervous system can be originated from several locations. They mostly have high mortality and morbidity rate. The emergence of resistance to chemotherapeutic agents is a hurdle in the treatment of patients. Long non-coding RNAs (lncRNAs) have been shown to influence the response of glioblastoma/glioma and neuroblastoma to chemotherapeutic agents. MALAT1, NEAT1, and H19 are among lncRNAs that affect the response of glioma/glioblastoma to chemotherapy. As well as that, NORAD, SNHG7, and SNHG16 have been shown to be involved in conferring this phenotype in neuroblastoma. Prior identification of expression amounts of certain lncRNAs would help in the better design of therapeutic regimens. In the current manuscript, we summarize the impact of lncRNAs on chemoresistance in glioma/glioblastoma and neuroblastoma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Agabalazadeh
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang F, Zhang L, Luo Y, Zhang Q, Zhang Y, Shao Y, Yuan L. The LncRNA RP11-279C4.1 Enhances the Malignant Behaviour of Glioma Cells and Glioma Stem-Like Cells by Regulating the miR-1273g-3p/CBX3 Axis. Mol Neurobiol 2021; 58:3362-3373. [PMID: 33694060 DOI: 10.1007/s12035-021-02337-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Glioma is the most common type of solid tumour affecting the central nervous system, and the survival rate of patients with glioma is low. However, the mechanism associated with glioma progression remains unclear. Growing evidence suggests that lncRNAs play essential roles in the initiation and progression of tumours, including gliomas. In the present study, we identified and verified the expression of the novel lncRNA RP11-279C4.1 by analyzing the TANRIC database and performing qRT-PCR assays, the results of which revealed its upregulation in glioma tissues and cell lines. The results of multiple functional experiments demonstrated that RP11-279C4.1 knockdown inhibited glioma malignant phenotypes, including cell proliferation, migration, invasion and cell self-renew ability in vitro. In addition, RP11-279C4.1 downregulation suppressed tumour growth in vivo. Mechanistically, RP11-279C4.1 induced CBX3 activation via competitively sponging miR-1273g-3p, and rescue assay results confirmed the importance of the RP11-279C4.1/miR-1273g-3p/CBX3 axis. Overall, the results of our present study demonstrated that RP11-279C4.1 functions as an oncogene that promotes tumour progression by modulating the miR-1273g-3p/CBX3 axis in glioma, suggesting that RP11-279C4.1 may be a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Faming Wang
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, # 87 Dingjiaqiao, Nanjing, 210009, China
| | - Le Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Yao Luo
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, # 87 Dingjiaqiao, Nanjing, 210009, China
| | - Qingyun Zhang
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, # 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yueling Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Yingying Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Liudi Yuan
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, # 87 Dingjiaqiao, Nanjing, 210009, China. .,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| |
Collapse
|