1
|
Wang F, Xiao J, Li M, He Q, Wang X, Pan Z, Li S, Wang H, Zhou C. Picroside II suppresses chondrocyte pyroptosis through MAPK/NF-κB/NLRP3 signaling pathway alleviates osteoarthritis. PLoS One 2024; 19:e0308731. [PMID: 39208260 PMCID: PMC11361613 DOI: 10.1371/journal.pone.0308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Picroside II (P-II) is the main bioactive constituent of Picrorhiza Kurroa, a traditional Chinese herb of interest for its proven anti-inflammatory properties. Its beneficial effects have been noted across several physiological systems, including the nervous, circulatory, and digestive, capable of treating a wide range of diseases. Nevertheless, the potential of Picroside II to treat osteoarthritis (OA) and the mechanisms behind its efficacy remain largely unexplored. AIM This study aims to evaluate the efficacy of Picroside II in the treatment of osteoarthritis and its potential molecular mechanisms. METHODS In vitro, we induced cellular inflammation in chondrocytes with lipopolysaccharide (LPS) and subsequently treated with Picroside II to assess protective effect on chondrocyte. We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of Picroside II on cell viability and select the optimal Picroside II concentration for subsequent experiments. We explored the effect of Picroside II on chondrocyte pyroptosis and its underlying molecular mechanisms by qRT-PCR, Western blot (WB) and immunofluorescence. In vivo, we established the destabilization of the medial meniscus surgery to create an OA mouse model. The therapeutic effects of Picroside II were then assessed through Micro-CT scanning, Hematoxylin-eosin (H&E) staining, Safranin O-Fast Green (S&F) staining, immunohistochemistry and immunofluorescence. RESULTS In in vitro studies, toluidine blue and CCK-8 results showed that a certain concentration of Picroside II had a restorative effect on the viability of chondrocytes inhibited by LPS. Picroside II notably suppressed the expression levels of caspase-1, IL-18, and IL-1β, which consequently led to the reduction of pyroptosis. Moreover, Picroside II was shown to decrease NLRP3 inflammasome activation, via the MAPK/NF-κB signaling pathway. In vivo studies have shown that Picroside II can effectively reduce subchondral bone destruction and osteophyte formation in the knee joint of mice after DMM surgery. CONCLUSIONS Our research suggests that Picroside II can inhibit chondrocyte pyroptosis and ameliorate osteoarthritis progression by modulating the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanchen Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xintian Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaofeng Pan
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
2
|
Xu B, Xu Y, Kong J, Liu Y, Zhang L, Shen F, Wang J, Shen X, Chen H. Chrysin mitigated neuropathic pain and peripheral sensitization in knee osteoarthritis rats by repressing the RAGE/PI3K/AKT pathway regulated by HMGB1. Cytokine 2024; 180:156635. [PMID: 38749277 DOI: 10.1016/j.cyto.2024.156635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic progressive osteoarthropathy. Chrysin's anti-KOA action has been demonstrated, however more research is needed to understand how chrysin contributes to KOA. METHODS LPS/ATP-induced macrophages transfected with or without HMGB1 overexpression underwent 5 μg/mL chrysin. The cell viability and macrophage pyroptosis were examined by cell counting kit-8 and flow cytometer. In vivo experiments, rats were injected with 1 mg monosodium iodoacetate by the infrapatellar ligament of the bilateral knee joint to induce KOA. The histological damage was analyzed by Safranin O/Fast Green staining and hematoxylin and eosin staining. The PWT, PWL and inflammatory factors were analyzed via Von-Frey filaments, thermal radiometer and ELISA. Immunofluorescence assay examined the expressions of CGRP and iNOS. The levels of HMGB1/RAGE-, NLRP3-, PI3K/AKT- and neuronal ion channel-related markers were examined by qPCR and western blot. RESULTS Chrysin alleviated macrophage pyroptosis by inhibiting HMGB1 and the repression of chrysin on HMGB1/RAGE pathway and ion channel activation was reversed by overexpressed HMGB1. HMGB1 facilitated neuronal ion channel activation through the RAGE/PI3K/AKT pathway. Chrysin could improve the pathological injury of knee joints in KOA rats. Chrysin suppressed the HMGB1-regulated RAGE/PI3K/AKT pathway, hence reducing KOA damage and peripheral sensitization. CONCLUSION Chrysin mitigated neuropathic pain and peripheral sensitization in KOA rats by repressing the RAGE/PI3K/AKT pathway modulated by HMGB1.
Collapse
Affiliation(s)
- Bo Xu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Yue Xu
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, PR China
| | - Jian Kong
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Yujiang Liu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Long Zhang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Fan Shen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Jiangping Wang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China
| | - Xiaofeng Shen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China.
| | - Hua Chen
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Zhou J, Zheng Z, Luo Y, Dong Y, Yan Y, Zhang Y, Tang K, Quan R, Lin J, Zhang K, Dong P, Wang R, He H, Lin N, Weng X, Mi B, Zhang Y, Chen W. Clinical efficacy of Osteoking in knee osteoarthritis therapy: a prospective, multicenter, non-randomized controlled study in China. Front Pharmacol 2024; 15:1381936. [PMID: 39005940 PMCID: PMC11239513 DOI: 10.3389/fphar.2024.1381936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Background Osteoking has been extensively used for the treatment of knee osteoarthritis (KOA). However, it is lack of high-quality evidence on the clinical efficacy of Osteoking against KOA and the comparison with that of nonsteroidal anti-inflammatory drugs (NSAIDs). Aims To evaluate the efficacy and safety of Osteoking in treating KOA. Methods In the current study, a total of 501 subjects were recruited from 20 medical centers, and were divided into the Osteoking treatment group (n = 428) and the NSAIDs treatment group (n = 73). The Propensity Score Matching method was used to balance baseline data of different groups. Then, the therapeutic effects of Osteoking and NSAIDs against KOA were evaluated using VAS score, WOMAC score, EQ-5D-3L and EQ-VAS, while the safety of the two treatment were both assessed based on dry mouth, dizziness, diarrhea, etc. Results After 8 weeks of treatment, the Osteoking group was compared with the NSAIDs group, the VAS score [2.00 (1.00, 3.00) vs. 3.00 (2.00, 4.00)], WOMAC pain score [10.00 (8.00, 13.00) vs. 11.00 (8.00, 16.00) ], WOMAC physical function score [32.00 (23.00, 39.00) vs. 39.07 ± 16.45], WOMAC total score [44.00 (31.00, 55.00) vs. 53.31 ± 22.47) ], EQ-5D-3L score [0.91 (0.73, 0.91) vs. 0.73 (0.63, 0.83) ] and EQ-VAS score [80.00 (79.00, 90.00) vs. 80.00 (70.00, 84.00) ] were improved by the treatment of Osteoking for 8 weeks more effectively than that by the treatment of NSAIDs. After 8 weeks of treatment with Osteoking, the VAS scores of KOA patients with the treatment of Osteoking for 8 weeks were reduced from 6.00 (5.00, 7.00) to 2.00 (1.00, 3.00) (p < 0.05), which was better than those with the treatment of NSAIDs starting from 2 weeks during this clinical observation. Importantly, further subgroup analysis revealed that the treatment of Osteoking was more suitable for alleviating various clinical symptoms of KOA patients over 65 years old, with female, KL II-III grade and VAS 4-7 scores, while the clinical efficacy of NSAIDs was better in KOA patients under 65 years old and with VAS 8-10 scores. Of note, there were no differences in adverse events and adverse reactions between the treatment groups of the two drugs. Conclusion Osteoking may exert a satisfying efficacy in relieving joint pain and improving life quality of KOA patients without any adverse reactions, especially for patients with KL II-III grades and VAS 4-7 scores. Clinical Trial Registration https://www.chictr.org.cn/showproj.html?proj=55387, Identifier ChiCTR2000034475.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Zelu Zheng
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Yuxin Luo
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Yawei Dong
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Yan Yan
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Yi Zhang
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiqiang Tang
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Rui Quan
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Jiaming Lin
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Kuayue Zhang
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Pengxuan Dong
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Rongtian Wang
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Haijun He
- Chinese Academy of Traditional Chinese Medicine, Wangjing Hospital, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Baohong Mi
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiheng Chen
- Department of Mini-Invasive Joint surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- Engineering Research Center of Chinese Orthopaedic and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Jia Z, Zhang J, Yang X, Chen H, Wang Y, Francis OB, Li Y, Liu Z, Zhang S, Wang Q. Bioactive components and potential mechanisms of Biqi Capsule in the treatment of osteoarthritis: based on chondroprotective and anti-inflammatory activity. Front Pharmacol 2024; 15:1347970. [PMID: 38694911 PMCID: PMC11061359 DOI: 10.3389/fphar.2024.1347970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Cartilage damage and synovial inflammation are vital pathological changes in osteoarthritis (OA). Biqi Capsule, a traditional Chinese medicine formula used for the clinical treatment of arthritis in China, yields advantages in attenuating OA progression. The drawback here is that the bioactive components and pharmacological mechanisms by which Biqi Capsule exerts its anti-inflammatory and chondroprotective effects have yet to be fully clarified. For in vivo studies, a papain-induced OA rat model was established to explore the pharmacological effects and potential mechanisms of Biqi Capsule against OA. Biqi Capsule alleviated articular cartilage degeneration and chondrocyte damage in OA rats and inhibited the phosphorylation of NF-κB and the expression of pro-inflammatory cytokines in synovial tissue. Network pharmacology analysis suggested that the primary biological processes regulated by Biqi Capsule are inflammation and oxidative stress, and the critical pathway regulated is the PI3K/AKT signaling pathway. The result of this analysis was later verified on SW1353 cells. The in vitro studies demonstrated that Glycyrrhizic Acid and Liquiritin in Biqi Capsule attenuated H2O2-stimulated SW1353 chondrocyte damage via activation of PI3K/AKT/mTOR pathway. Moreover, Biqi Capsule alleviated inflammatory responses in LPS-stimulated RAW264.7 macrophages via the NF-κB/IL-6 pathway. These observations were suggested to have been facilitated by Brucine, Liquiritin, Salvianolic Acid B, Glycyrrhizic Acid, Cryptotanshinone, and Tanshinone ⅡA. Put together, this study partially clarifies the pharmacological mechanisms and the bioactive components of Biqi capsules against OA and suggests that it is a promising therapeutic option for the treatment of OA. Chemical compounds studied in this article. Strychnine (Pubchem CID:441071); Brucine (Pubchem CID:442021); Liquiritin (Pubchem CID:503737); Salvianolic Acid B (Pubchem CID:6451084); Glycyrrhizic Acid (Pubchem CID:14982); Cryptotanshinone (Pubchem CID:160254); Tanshinone ⅡA (Pubchem CID:164676).
Collapse
Affiliation(s)
- Ziyue Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiale Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xintong Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiyou Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Opoku Bonsu Francis
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanchao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhanbiao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Liu YS, Zhong HB, Liu WL, He XH, Zhan XR, Sun CH. Icariin alleviates the apoptosis of chondrocytes in osteoarthritis through regulating SIRT-1-Nrf2-HO-1 signaling. Chem Biol Drug Des 2024; 103:e14518. [PMID: 38570329 DOI: 10.1111/cbdd.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Icariin has shown the potential to treat osteoarthritis (OA), but the specific mechanism still needs further exploration. Therefore, this study attempted to reveal the effect and mechanism of icariin on OA based on in vitro and in vivo experiments. In vivo, a mouse model of OA was established by cutting the anterior cruciate ligament, and 10 mg/kg icariin was given to mice orally. Then, the OA injury and pathological changes of cartilage tissue in mice were identified by OA index and hematoxylin and eosin staining. In vitro, the viability of C28/I2 cells incubated with different concentrations of icariin was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Subsequently, C28/I2 cells induced by IL-1β were used as the cell model of OA, the expression of Sirtuin (SIRT)-1 in cells was knocked down, and icariin was added for intervention. Next, western blot was used to observe the expression level of sirtuin 1 (SIRT-1)-Nrf2-heme oxygenase 1 (HO-1) signaling pathway-related proteins in cells of each group. Besides, cell viability and apoptosis were detected by MTT and apoptosis assay, and DNA damage was observed by comet assay. In vivo experiments, intragastric administration of icariin could effectively reduce the OA index of mice, improve the pathological changes of cartilage tissue, and obviously activated the SIRT-1-Nrf2-HO-1 signaling pathway. In vitro experiments, icariin did not exhibit toxic effect on C28/I2 cells, but could activate the SIRT-1-Nrf2-HO-1 signaling pathway, improve the viability, reduce the level of apoptosis and relieve the DNA damage in OA cells; however, these effects were inhibited by si- SIRT-1. Icariin can improve the symptoms of OA by activating the SIRT-1-Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Ying-Song Liu
- Department of Orthopaedics, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Hao-Bo Zhong
- Department of Orthopaedics, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Wei-le Liu
- Department of Orthopaedics, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Xin-Huan He
- Department of Orthopaedics, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiao-Rui Zhan
- Department of Orthopaedics, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| | - Chun-Han Sun
- Department of Orthopaedics, The First Huizhou Affiliated Hospital of Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
6
|
Song X, Liu Y, Chen S, Zhang L, Zhang H, Shen X, Du H, Sun R. Knee osteoarthritis: A review of animal models and intervention of traditional Chinese medicine. Animal Model Exp Med 2024; 7:114-126. [PMID: 38409942 PMCID: PMC11079151 DOI: 10.1002/ame2.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) characterized by degeneration of knee cartilage and subsequent bone hyperplasia is a prevalent joint condition primarily affecting aging adults. The pathophysiology of KOA remains poorly understood, as it involves complex mechanisms that result in the same outcome. Consequently, researchers are interested in studying KOA and require appropriate animal models for basic research. Chinese herbal compounds, which consist of multiple herbs with diverse pharmacological properties, possess characteristics such as multicomponent, multipathway, and multitarget effects. The potential benefits in the treatment of KOA continue to attract attention. PURPOSE This study aims to provide a comprehensive overview of the advantages, limitations, and specific considerations in selecting different species and methods for KOA animal models. This will help researchers make informed decisions when choosing an animal model. METHODS Online academic databases (e.g., PubMed, Google Scholar, Web of Science, and CNKI) were searched using the search terms "knee osteoarthritis," "animal models," "traditional Chinese medicine," and their combinations, primarily including KOA studies published from 2010 to 2023. RESULTS Based on literature retrieval, this review provides a comprehensive overview of the methods of establishing KOA animal models; introduces the current status of advantages and disadvantages of various animal models, including mice, rats, rabbits, dogs, and sheep/goats; and presents the current status of methods used to establish KOA animal models. CONCLUSION This study provides a review of the animal models used in recent KOA research, discusses the common modeling methods, and emphasizes the role of traditional Chinese medicine compounds in the treatment of KOA.
Collapse
Affiliation(s)
- Xuyu Song
- Orthopaedic trauma surgeryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Ying Liu
- Academy of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Siyi Chen
- Academy of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Lei Zhang
- Department of Traditional Chinese MedicineThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Huijie Zhang
- College of pharmacyShandong University of Traditional Chinese MedicineJinanShandongChina
| | - Xianhui Shen
- The Second Clinical College of Shandong UniversityShandong UniversityJinanShandongChina
| | - Hang Du
- The Second Clinical College of Shandong UniversityShandong UniversityJinanShandongChina
| | - Rong Sun
- Advanced Medical Research InstituteShandong UniversityJinanShandongChina
- The Second Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
7
|
Sun P, Zhao X, Zhao W, Chen L, Liu X, Zhan Z, Wang J. Sophora flavescens-Angelica sinensis in the treatment of eczema by inhibiting TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117626. [PMID: 38154523 DOI: 10.1016/j.jep.2023.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens Ait.-Angelica sinensis(Oliv.) Diels drug pairing (SA) is a transformed drug pairing from Shengui pill, a traditional Chinese medicine prescription in the ninth volume of Traditional Chinese Medicine classic "Gu Jin Yi Jian", which is famous for clearing heat, moistening dryness, and promoting blood circulation. It is commonly used in the treatment of eczema, a skin condition that causes itching and inflammation. Despite its widespread use, there is still limited research on the mechanism of how SA treats eczema. This paper aims to fill this gap by conducting animal experiments to uncover the mechanism behind SA's therapeutic effects on eczema. Our findings provide a solid foundation for the clinical use of this TCM prescription. AIM OF THE STUDY The basic purpose of this study is to clarify the therapeutic mechanism of Sophora flavescens-Angelica sinensis (SA) in the treatment and control of eczema. MATERIALS AND METHODS The chemical compositions of SA were analyzed using HPLC-Q-Orbitrap-MS. In vivo, a mouse model of eczema was created, and the serum levels of TNF-α and IL-1β were quantified using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining was performed to assess the pathological state of the mouse skin, and immunohistochemical technique (IHC) was employed to estimate the contents of TNF-α, TLR4, and NF-κB semi-quantitatively. The expression levels of TLR4, MyD88, and NF-κB mRNA were determined through real-time quantitative polymerase chain reaction (qRT-PCR). Western Blotting was utilized to identify the protein levels of TLR4, MyD88, and NF-κB in mouse skin tissue. RESULTS SA identified 18 active chemicals, some of which were shown in vivo to inhibit the TLR4/MyD88/NF-κB signaling pathway while reducing serum levels of TNF-α and IL-1β, making them ideal agents for the treatment of eczema. CONCLUSIONS SA's anti-inflammatory properties are attributed to its ability to reduce serum levels of TNF-α and IL-1β, likewise inhibit the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Peng Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Xiangfeng Zhao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lele Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Xinyue Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Zhaoshuang Zhan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Jiafeng Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| |
Collapse
|
8
|
Zhou X, Li WK, Zhuang C, Zhou XC, Zhao XF, Pan Y, Guo WX, Yang YW, Sheng CZ, Xie ZF, Yu JS, Chen YX, Wang LK, Ma TY, Zhu KX, Xiang KM, Zhuang RJ. Lei's formula attenuates osteoarthritis mediated by suppression of chondrocyte senescence via the mTOR axis: in vitro and in vivo experiments. Aging (Albany NY) 2024; 16:4250-4269. [PMID: 38407978 PMCID: PMC10968702 DOI: 10.18632/aging.205582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.
Collapse
Affiliation(s)
- Xing Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wen-Kai Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing-Chen Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xue-Fei Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Pan
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wen-Xuan Guo
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yi-Wen Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cen-Zhuo Sheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhe-Fei Xie
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin-Sheng Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi-Xuan Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li-Kang Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tian-You Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kang-Xiang Zhu
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
- Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| | - Ke-Meng Xiang
- Taizhou Traditional Chinese Medicine Hospital, Taizhou, Zhejiang, China
| | - Ru-Jie Zhuang
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
- Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, China
| |
Collapse
|
9
|
Xu R, Zheng L, Huang M, Zhao M. High gastrointestinal digestive stability endows chondroitin sulfate-soluble undenatured type II collagen complex with high activity: Improvement of osteoarthritis in rats. Int J Biol Macromol 2024; 257:128630. [PMID: 38070808 DOI: 10.1016/j.ijbiomac.2023.128630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Previously, we prepared a chondroitin sulfate-soluble undenatured type II collagen complex (CS-SC II) with low salt content. This paper further explored the differences between CS-SC II and SC II in terms of gastrointestinal digestive characteristics and osteoarthritis (OA) improvement. In vitro and in vivo experiments showed that the gastric digestive stability of CS-SC II was high under both pH 2.0 and pH 3.0, the α1 chain and triple helix structure of type II collagen retained >60 %. However, SC II had high gastric digestive stability only under pH 3.0. Furthermore, intestinal digestion had little effect on α1 chains of CS-SC II and SC II, and distribution experiments showed that they might exert their biological activities in the intestine. CS-SC II had obvious improvement in OA rats at 1.0 mg/kg/d, that is, the joint swelling was significantly reduced and the weight-bearing ratio of the right hind limb was increased to 49 %, which was close to that of 4.0 mg/kg/d SC II. The wear of articular cartilage, Mankin and OARSI scores of rats in CS-SC II group were significantly reduced. The effects of low-dose CS-SC II on the proportion of regulatory T cells (Treg), mRNA expression of OA key biomarkers (Il6, Ccl7, MMP-3 and MMP13) and signaling pathway genes (NF-κB, AKT or AMPKα) were comparable to those of high-dose SC II. These results showed that CS-SC II might have greater potential to improve OA at a lower dose than SC II due to its high gastrointestinal digestive stability at a wide range of pH conditions.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
10
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
11
|
Sun Q, Jin H, Li W, Tong P, Yuan W. Study of the curative effect of Zhang's Xibi formula and its underlying mechanism involving inhibition of inflammatory responses and delay of knee osteoarthritis. J Orthop Surg Res 2023; 18:963. [PMID: 38098028 PMCID: PMC10722826 DOI: 10.1186/s13018-023-04453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To verify the clinical efficacy of Zhang's Xibi formula (ZSXBF) and explain the mechanism underlying its therapeutic effect. METHODS Preliminary elucidation of the clinical efficacy of ZSXBF in treating KOA in self-control studies, exploration of its mechanism of action with network pharmacology methods, and validation in animal experiments. RESULTS In clinical studies, ZSXBF administration effectively improved patient quality of life and reduce pain. Network pharmacology was used to explore the possible mechanisms underlying its treatment effect, and after verification in clinical experience and animal experiments, it was found that ZSXBF regulated the expression of immune-related proteins such as IL-17, ERK1, and TP53 in mouse knee joints. CONCLUSION ZSXBF, which is a traditional Chinese medicine compound that is used to clear heat and detoxify, can effectively improve the clinical symptoms of KOA patients, and its underlying mechanism includes the regulation of human immune-related proteins.
Collapse
Affiliation(s)
- Qi Sun
- Institute of Orthopedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- Fuyang TCM Hospital of Orthopedics Affiliated to Zhejiang, Chinese Medical University (Hangzhou Fuyang Hospital of Orthopedics of Traditional Chinese Medicine), Hangzhou, China
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Hongting Jin
- Institute of Orthopedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Wuyin Li
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Peijian Tong
- Institute of Orthopedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
12
|
Chen J, Huang L, Liao X. Protective effects of ginseng and ginsenosides in the development of osteoarthritis (Review). Exp Ther Med 2023; 26:465. [PMID: 37664679 PMCID: PMC10468808 DOI: 10.3892/etm.2023.12164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint disease. Traditional chinese medicine provides a resource for drug screening for OA treatment. Ginseng and the associated bioactive compound, ginsenosides, may reduce inflammation, which is considered a risk factor for the development of OA. Specifically, ginsenosides may exhibit anti-inflammatory and anti-oxidative stress activities, and inhibit extracellular matrix degradation by suppressing the NF-κB and MAPK signaling pathways. Notably, specific ginsenosides, such as compound K and Rk1, may physically interact with IκB kinase and inhibit the associated phosphorylation. Thus, ginsenosides exhibit potential as therapeutic candidates in the management of OA. However, the low water solubility limits the clinical applications of ginsenosides. Numerous effective strategies have been explored to improve bioavailability; however, further investigations are still required.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lin Huang
- Department of Internal Medicine, Ganzhou Hospital of Traditional Chinese Medicine, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
13
|
Lee HY, Park YM, Hwang HM, Shin DY, Jeong HN, Kim JG, Park HY, Kim DS, Yoo JJ, Kim MS, Kim MJ, Yang HJ, Choi SC, Lee IA. The Effect of the Mixed Extract of Kalopanax pictus Nakai and Achyranthes japonica Nakai on the Improvement of Degenerative Osteoarthritis through Inflammation Inhibition in the Monosodium Iodoacetate-Induced Mouse Model. Curr Issues Mol Biol 2023; 45:6395-6414. [PMID: 37623223 PMCID: PMC10453891 DOI: 10.3390/cimb45080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoarthritis is a chronic inflammatory disease, and, due to the lack of fundamental treatment, the main objective is to alleviate pain and prevent cartilage damage. Kalopanax pictus Nakai and Achyranthes japonica Nakai are herbal plants known for their excellent anti-inflammatory properties. The objective of this study is to confirm the potential of a mixture extract of Kalopanax pictus Nakai and Achyranthes japonica Nakai as a functional raw material for improving osteoarthritis through anti-inflammatory effects in macrophages and MIA-induced arthritis experimental animals. In macrophages inflamed by lipopolysaccharide (LPS), treatment of Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture inhibits NF-κB and mitogen-activated protein kinase (MAPK) activities, thereby inhibiting inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), inflammatory factors PGE2, MMP-2, and MMP-9, and nitric oxide (NO) was reduced. In addition, in an animal model of arthritis induced by MIA (monosodium iodoacetate), administration of Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture reduced blood levels of inflammatory cytokines TNF-α and IL-6, inflammatory factors prostaglandin E2(PGE2), matrix metalloproteinase-2(MMP-2), and NO. Through these anti-inflammatory effects, MIA-induced pain reduction (recovery of clinical index, increase in weight bearing, and increase in area and width of the foot), recovery of meniscus damage, loss of cartilage tissue or inflammatory cells in tissue infiltration reduction, and recovery of the proteglycan layer were confirmed. Therefore, it is considered that Kalopanax pictus Nakai and Achyranthes japonica Nakai mixture has the potential as a functional raw material that promotes joint health.
Collapse
Affiliation(s)
- Hak-Yong Lee
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Young-Mi Park
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Hai-Min Hwang
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Dong-Yeop Shin
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Han-Na Jeong
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Jae-Gon Kim
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Hyo-Yeon Park
- INVIVO Co., Ltd., Nonsan 32992, Republic of Korea; (H.-Y.L.); (Y.-M.P.); (H.-M.H.); (D.-Y.S.); (H.-N.J.); (J.-G.K.); (H.-Y.P.)
| | - Dae-Sung Kim
- Central Research and Development, Hanpoong Pharm & Foods, Wanju 55314, Republic of Korea; (D.-S.K.); (J.-J.Y.)
| | - Jin-Joo Yoo
- Central Research and Development, Hanpoong Pharm & Foods, Wanju 55314, Republic of Korea; (D.-S.K.); (J.-J.Y.)
| | - Myung-Sunny Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea; (M.-S.K.); (M.-J.K.); (H.-J.Y.)
| | - Min-Jung Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea; (M.-S.K.); (M.-J.K.); (H.-J.Y.)
| | - Hye-Jeong Yang
- Korea Food Research Institute, Wanju 55365, Republic of Korea; (M.-S.K.); (M.-J.K.); (H.-J.Y.)
| | - Soo-Cheol Choi
- Department of Chemistry, Kunsan National University, Gunsan 54150, Republic of Korea
| | - In-Ah Lee
- Department of Chemistry, Kunsan National University, Gunsan 54150, Republic of Korea
| |
Collapse
|
14
|
Li Q, Xu JY, Hu X, Li J, Huang XJ, Wu ZY, Wang DG, Ge YB. The protective effects and mechanism of Ruyi Zhenbao Pill, a Tibetan medicinal compound, in a rat model of osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116255. [PMID: 36809823 DOI: 10.1016/j.jep.2023.116255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruyi Zhenbao Pill (RZP) is a prescribed Tibetan formulation for the treatment of white-pulse-disease, yellow-water-disease as well as pain-related disease. RZP is composed of 30 medicinal materials including herbal medicine, animal medicine and mineral medicine. They are widely used in the Tibetan area to treat cerebrovascular disease, hemiplegia, rheumatism, and pain diseases for centuries. AIM OF THE STUDY The aim of the present study was to evaluate the anti-osteoarthritis function of RZP and to clarify the underlying mechanisms. MATERIALS AND METHODS The active components in RZP were identified using HPLC methods. Osteoarthritis (OA) animal model was established via intra-articular injection of papain in rat knees. After the administration of RZP (0.45, 0.9 g/kg) for 28 days, the clinical observation was conducted, and pathological changes as well as serum biochemical indexes were detected. Moreover, therapeutic targets and pathways of RZP were discussed. RESULTS The results showed that RZP could suppress knee joint swelling and arthralgia, thus relieving joint pain and inflammation in OA rats. Microcomputed tomography (μCT)-based physiological imaging and staining pictures confirmed the therapeutic effects of RZP on OA symptoms including knee joint swelling and structural changes with progressive inflammation in OA rats. RZP could promote the synthesis or inhibit the degradation of COLⅡ, attenuate OA-induced OPN up-regulation and thus relieve the OA symptom. Furthermore, RZP (0.45-0.9 g/kg) could all ameliorate the imbalance of biomarkers related to OA such as MMP1, TNF-α, COX2, IL-1β and iNOS in knee joints or serum. CONCLUSION In conclusion, RZP could effectively relieve inflammatory reaction induced by OA injury and the formulation could be applied to the treatment of OA therapy.
Collapse
Affiliation(s)
- Qien Li
- Tibetan Medical College, Qinghai University, Xining, PR China
| | - Jing-Yi Xu
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, PR China
| | - Xin Hu
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, PR China
| | - Jun Li
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, PR China
| | - Xian-Ju Huang
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, PR China; Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, South-Central Minzu University, Wuhan, 430074, PR China.
| | - Zhou-Yang Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Da-Gui Wang
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, PR China
| | - Yue-Bin Ge
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, PR China
| |
Collapse
|
15
|
Shen Y, Teng L, Qu Y, Huang Y, Peng Y, Tang M, Fu Q. Hederagenin Suppresses Inflammation and Cartilage Degradation to Ameliorate the Progression of Osteoarthritis: An In vivo and In vitro Study. Inflammation 2023; 46:655-678. [PMID: 36348189 DOI: 10.1007/s10753-022-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the progressive degradation of articular cartilage and inflammation. Hederagenin (HE) is a pentacyclic triterpenoid saponin extracted from many herb plants. It has anti-inflammatory, anti-lipid peroxidative, anti-cancer, and neuroprotective activities. However, its effect on OA has not been investigated. Our study found that HE may be a potential anti-OA drug. In vitro, HE could suppress extracellular matrix (ECM) degradation via up-regulating aggrecan and Collagen II levels as well as downregulating MMPs and ADAMTS5 levels. It could also reduce proinflammatory and inflammatory cytokines or enzymes production, including TNF-α, IL-6, iNOS, COX-2, NO, and PGE2. Besides, HE markedly reduced IL-1β-induced C28/I2 cell apoptosis and ROS accumulation. Mechanistically, HE exerted chondroprotective and anti-inflammatory effects by partly inhibiting JAK2/STAT3/MAPK signalling pathway and the crosstalk of the two pathways. Also, HE exhibited anti-apoptotic and anti-oxidative effect via targeting Keap1-Nrf2/HO-1/ROS/Bax/Bcl-2 axis. In vivo, HE significantly reduced monosodium iodoacetate (MIA) induced cartilage destruction of rats with a lower OARSI score and inflammatory cytokine levels, further demonstrating its protective effects in OA progression. These results suggest that HE is a potential compound for the development of drugs to treat OA.
Collapse
Affiliation(s)
- Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Teng
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuhan Qu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yi Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Min Tang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
16
|
Lee YM, Kim M, Yuk HJ, Kim SH, Kim DS. Siraitia grosvenorii Residual Extract Inhibits Inflammation in RAW264.7 Macrophages and Attenuates Osteoarthritis Progression in a Rat Model. Nutrients 2023; 15:nu15061417. [PMID: 36986147 PMCID: PMC10058211 DOI: 10.3390/nu15061417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterised by cartilage degeneration and chondrocyte inflammation. We investigated the anti-inflammatory effects of the Siraitia grosvenorii residual extract (SGRE) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages in vitro and its anti-osteoarthritic effects in a monosodium iodoacetate (MIA)-induced OA rat model. SGRE dose-dependently decreased nitric oxide (NO) production in LPS-induced RAW264.7 cells. Moreover, SGRE reduced the pro-inflammatory mediator (cyclooxygenase-2 (COX2), inducible NO synthase (iNOS), and prostaglandin E2 (PGE2)) and pro-inflammatory cytokine (interleukin-(IL)-1β, IL-6, and tumour necrosis factor (TNF-α)) levels. SGRE suppressed nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation in RAW264.7 macrophages, thus reducing inflammation. Rats were orally administered SGRE (150 or 200 mg/kg) or the positive control drug JOINS (20 mg/kg) 3 days before MIA injection, and once daily for 21 days thereafter. SGRE elevated the hind paw weight-bearing distribution, thus relieving pain. It also reduced inflammation by inhibiting inflammatory mediator (iNOS, COX-2, 5-LOX, PGE2, and LTB4) and cytokine (IL-1β, IL-6, and TNF-α) expression, downregulating cartilage-degrading enzymes, such as MMP-1, -2, -9, and -13. SGRE significantly reduced the SOX9 and extracellular matrix component (ACAN and COL2A1) levels. Therefore, SGRE is a potential therapeutic active agent against inflammation and OA.
Collapse
Affiliation(s)
- Yun Mi Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Misun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Heung Joo Yuk
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (Y.M.L.)
- Correspondence: ; Tel.: +82-42-868-9639
| |
Collapse
|
17
|
Shenhuang plaster ameliorates the Inflammation of postoperative ileus through inhibiting PI3K/Akt/NF-κB pathway. Biomed Pharmacother 2022; 156:113922. [DOI: 10.1016/j.biopha.2022.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
|
18
|
Kim BS, Jin S, Park JY, Kim SY. Scoping review of the medicinal effects of Eupolyphaga sinensis Walker and the underlying mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115454. [PMID: 35700853 DOI: 10.1016/j.jep.2022.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eupolyphaga sinensis Walker (ES) is an insect widely used in traditional East Asian medicine known to exhibit clinical effects on various pathological conditions. Overall, ES is a useful medicinal insect that can treat various diseases, including cancer and immune diseases. However, further mechanistic studies based on its therapeutic effects in clinical settings are required. AIM OF THE STUDY We aimed to evaluate the current research landscape and diseases associated with ES to synthesize the clinical value of ES based on the associated diseases and underlying therapeutic mechanisms. MATERIALS AND METHODS Embase and PubMed databases were searched for experimental studies that evaluated the therapeutic efficacy or underlying mechanisms of ES until May 2021. The evidence for each study was summarized using a narrative synthesis approach. Studies on extracted or dried whole ES and ES-derived compounds were quantitatively analyzed by year and disease type. Meanwhile, the overall research trend was confirmed for studies on ES-containing prescriptions by visualizing the disease type analysis. RESULTS A total of 151 studies were identified, of which 51 were included in our review. There were 14 studies on extracted or dried whole ES, 15 on ES-derived compounds, and 22 on ES-containing prescriptions. ES was most commonly used for cancer-related diseases, followed by those related to endocrine function and immunity. ES regulates the cell cycle, tumor suppressor genes and proteins, immune-related biomarkers, and antioxidant molecules. CONCLUSIONS Overall, ES is a beneficial medicinal insect that can treat various diseases, including cancer and immune diseases. However, further mechanistic studies based on its therapeutic effects in clinical settings are required.
Collapse
Affiliation(s)
- Byoung-Soo Kim
- College of Korean Medicine, Daejeon University, Daejeon, 34520, South Korea.
| | - Shihui Jin
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea.
| | - Ji-Yeun Park
- College of Korean Medicine, Daejeon University, Daejeon, 34520, South Korea.
| | - Song-Yi Kim
- College of Korean Medicine, Gachon University, Seongnam, 13120, South Korea.
| |
Collapse
|
19
|
Cazuza RA, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Effects of treatment with a carbon monoxide donor and an activator of heme oxygenase 1 on the nociceptive, apoptotic and/or oxidative alterations induced by persistent inflammatory pain in the central nervous system of mice. Brain Res Bull 2022; 188:169-178. [PMID: 35952846 DOI: 10.1016/j.brainresbull.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
20
|
Zhang J, Ou A, Tang X, Wang R, Fan Y, Fang Y, Zhao Y, Zhao P, Chen D, Wang B, Huang Y. "Two-birds-one-stone" colon-targeted nanomedicine treats ulcerative colitis via remodeling immune microenvironment and anti-fibrosis. J Nanobiotechnology 2022; 20:389. [PMID: 36042499 PMCID: PMC9429315 DOI: 10.1186/s12951-022-01598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dysregulated mucosal immune responses and colonic fibrosis impose two formidable challenges for ulcerative colitis treatment. It indicates that monotherapy could not sufficiently deal with this complicated disease and combination therapy may provide a potential solution. A chitosan-modified poly(lactic-co-glycolic acid) nanoparticle (CS-PLGA NP) system was developed for co-delivering patchouli alcohol and simvastatin to the inflamed colonic epithelium to alleviate the symptoms of ulcerative colitis via remodeling immune microenvironment and anti-fibrosis, a so-called “two-birds-one-stone” nanotherapeutic strategy. The bioadhesive nanomedicine enhanced the intestinal epithelial cell uptake efficiency and improved the drug stability in the gastrointestinal tract. The nanomedicine effectively regulated the Akt/MAPK/NF-κB pathway and reshaped the immune microenvironment through repolarizing M2Φ, promoting regulatory T cells and G-MDSC, suppressing neutrophil and inflammatory monocyte infiltration, as well as inhibiting dendritic cell maturation. Additionally, the nanomedicine alleviated colonic fibrosis. Our work elucidates that the colon-targeted codelivery for combination therapy is promising for ulcerative colitis treatment and to address the unmet medical need.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 501450, China
| | - Rong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Yujuan Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China
| | - Yuge Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| | - Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongying Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Wang
- School of Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, 528437, China. .,NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China.
| |
Collapse
|
21
|
Zhu ZH, Yin XY, Xu TS, Tao WW, Yao GD, Wang PJ, Qi Q, Jia QF, Wang J, Zhu Y, Hui L. Morinda officinalis oligosaccharides mitigate chronic mild stress-induced inflammation and depression-like behaviour by deactivating the MyD88/PI3K pathway via E2F2. Front Pharmacol 2022; 13:855964. [PMID: 36052143 PMCID: PMC9426723 DOI: 10.3389/fphar.2022.855964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Morinda officinalis oligosaccharides (MOs) are natural herbal extracts that have been shown to exert antidepressant effects. However, the mechanism of this effect remains unclear. Here, we explored the mechanism by which MOs improved experimental depression. Using a chronic mild stress (CMS) murine model, we examined whether MOs could protect against depressive-like behaviour. Lipopolysaccharide (LPS)- and ATP-treated BV2 cells were used to examine the potential mechanism by which MOs mediate the inflammatory response. We found that MOs prevented the CMS-induced reduction in the sucrose preference ratio in the sucrose preference test (SPT) and shortened the immobility durations in both the tail suspension test (TST) and forced swim test (FST). We also noticed that MOs suppressed inflammatory effects by deactivating the MyD88/PI3K pathway via E2F2 in CMS mice or LPS- and ATP-stimulated BV2 cells. Furthermore, overexpression of E2F2 blunted the beneficial effects of MOs in vitro. Collectively, these data showed that MOs exerted antidepressant effects in CMS mice by targeting E2F2-mediated MyD88/PI3K signalling pathway.
Collapse
Affiliation(s)
- Zhen-Hua Zhu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Xu-Yuan Yin
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Tu-Sun Xu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Wei-Wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Da Yao
- Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Nanjing, China
| | - Pei-Jie Wang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Qi Qi
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Qiu-Fang Jia
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Jing Wang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yue Zhu, ; Li Hui,
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yue Zhu, ; Li Hui,
| |
Collapse
|
22
|
Xiao J, Zhang G, Mai J, He Q, Chen W, Li J, Ma Y, Pan Z, Yang J, Li S, Li M, Chen B, Wang H. Bioinformatics analysis combined with experimental validation to explore the mechanism of XianLing GuBao capsule against osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115292. [PMID: 35447200 DOI: 10.1016/j.jep.2022.115292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE XianLing GuBao Capsule (XLGB) is often used to treat osteoarthritis (OA), osteoporosis, fractures, and other musculoskeleton disorders. However, the molecular mechanism of XLGB for treating OA is still unclear. AIM OF THE STUDY This study set out to uncover the molecular mechanism underlying the treatment of osteoarthritis with XLGB. MATERIALS AND METHODS Disease genes were obtained from CTD, DisGeNET, and GeneCards databases, and XLGB drug targets were obtained from ETCM and target genes predicted by XLGB metabolic components reported in the literature. Then we used the Venn diagram viewer to extract disease and drug intersection genes as potential therapeutic genes for Protein-protein interaction (PPI), GO terminology, and KEGG pathway analysis. Subsequently, we performed qRT-PCR, Western blot and histological analysis to validate the therapeutic effect of XLGB against OA and its molecular mechanism. RESULTS A total of 1039 OA genes and 949 XLGB target genes were collected, and finally 188 potential therapeutic target genes were obtained. PPI network analysis indicated that the main target genes for XLGB to treat OA include Akt1, Mapk3, Il-6, Il-1β, Ptgs2, Mmp9, etc. The results of KEGG and GO enrichment analysis suggested that XLGB may treat OA by anti-inflammatory and reducing extracellular matrix degradation. In vitro, XLGB down-regulated the expressions of Mmp3, Mmp9, Mmp12, Mmp13, Cox-2, Il-6, increased the expression of Collagen II and Sox9. Mechanistically, XLGB inhibits the activation of PI3K/AKT/NF-κB and MAPK pathways. Moreover, the results of animal experiments indicated that XLGB reduced cartilage destruction, bone resorption, and synovitis in osteoarthritic rats. CONCLUSIONS XLGB has a protective effect against OA by suppressing PI3K/AKT/NF-κB and MAPK signaling. Our study provides a theoretical basis for XLGB in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jiacong Xiao
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Gangyu Zhang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jiale Mai
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Qi He
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Weijian Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jianliang Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yanhuai Ma
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Zhaofeng Pan
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Junzheng Yang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Shaocong Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Miao Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Bohao Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China.
| |
Collapse
|
23
|
Sanse Powder Essential Oil Nanoemulsion Negatively Regulates TRPA1 by AMPK/mTOR Signaling in Synovitis: Knee Osteoarthritis Rat Model and Fibroblast-Like Synoviocyte Isolates. Mediators Inflamm 2021; 2021:4736670. [PMID: 34876884 PMCID: PMC8645395 DOI: 10.1155/2021/4736670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/16/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Synovitis is the primary driving factor for the occurrence and development of knee osteoarthritis (KOA) and fibroblast-like synoviocytes (FLSs) and plays a crucial role during this process. Our previous works revealed that transient receptor potential ankyrin 1 (TRPA1) ion channels mediate the amplification of KOA synovitis. In recent years, essential oils have been proved to have blocking effect on transient receptor potential channels. Meanwhile, the therapeutic effect of Sanse Powder on KOA synovitis has been confirmed in clinical trials and basic studies; although, the mechanism remains unclear. In the present study, Sanse Powder essential oil nanoemulsion (SP-NEs) was prepared, and then chemical composition, physicochemical properties, and stability were investigated. Besides, both in MIA-induced KOA rats and in LPS-stimulated FLSs, we investigated whether SP-NES could alleviate KOA synovitis by interfering with AMP-activated protein kinase- (AMPK-) mammalian target of rapamycin (mTOR), an energy sensing pathway proved to negatively regulate the TRPA1. Our research shows that the top three substances in SP-NEs were tumerone, delta-cadinene, and Ar-tumerone, which accounted for 51.62% of the total, and should be considered as the main pharmacodynamic ingredient. Less inflammatory cell infiltration and type I collagen deposition were found in the synovial tissue of KOA rats treated with SP-NEs, as well as the downregulated expressions of interleukin (IL)-1β, IL-18, and TRPA1. Besides, SP-NEs increased the phosphorylation level of AMPK and decreased the phosphorylation level of mTOR in the KOA model, and SP-NEs also upregulated expressions of peroxisome proliferator-activated receptor-gamma (PPARγ) and PPARγ coactivator-1α and downstream signaling molecules of AMPK-mTOR in vivo and in vitro. To conclude, a kind of Chinese herbal medicine for external use which is effective in treating synovitis of KOA was extracted and prepared into essential oil nanoemulsion with stable properties in the present study. It may alleviate synovitis in experimental KOA through the negative regulation of TRPA1 by AMPK-mTOR signaling.
Collapse
|
24
|
Xie J, Zhang D, Liu C, Wang L. A periodic review of chemical and pharmacological profiles of Tubiechong as insect Chinese medicine. RSC Adv 2021; 11:33952-33968. [PMID: 35497279 PMCID: PMC9042404 DOI: 10.1039/d1ra05425b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Tubiechong, in Chinese medicine, denotes the dried female insects of Eupolyphaga sinensis Walker (ESW) or Polyphaga plancyi Bolivar (PPB). As a traditional insect-type, in medicine, it has been historically utilized to treat bruises, fractures, amenorrhea, postpartum blood stasis, lumps and relieving pain. We herein have performed a systematic survey involving the chemical and biological studies in the past decades to reveal the value of such insect resources for their development and clinical utilization. Chemical studies indicated that Tubiechong generated many active compounds, including proteins, amino acids, peptides, fatty acids, alkaloids, nucleosides, polysaccharides, fat-soluble vitamins and mineral elements. Tubiechong or its extract has a wide range of activities including anticoagulation and anti-thrombosis, anti-tumor, antioxidant, immune regulation, blood lipid regulation and hepatoprotection. Finally, a periodic mini-review was conducted to summarize such chemical and pharmacological profiles of Tubiechong medicine. The active peptides in Tubiechong are majorly focused in this review and introduced as one important aspect since there is much literature and huge investigative interest in it. Traditional medical use of the insect was also stressed in this review associating with its disease-eliminating actions by promoting blood circulation or eliminating tissue-swelling pains, which might play important roles in anticancer practices or investigation. In accordance with the modern pharmacological progress, Tubiechong and its extracts indeed exerted antitumor actions through multiple pathways, such as interfering with tumor biological behaviors (growth, apoptosis, invasion, metastasis and angiogenesis), and regulating host immune function. To some extent, this knowledge would provide a basis for further research and application of Tubiechong medicine.
Collapse
Affiliation(s)
- Jiayu Xie
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing City Jiangsu Province 210023 P. R. China (+86)-15050581339
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai City 200062 P. R. China (+86)-021-22233329
| | - Dapeng Zhang
- The First Affiliated Hospital of Guangzhou Medical University Guangzhou City 510120 P. R. China
| | - Cheng Liu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai City 200062 P. R. China (+86)-021-22233329
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing City Jiangsu Province 210023 P. R. China (+86)-15050581339
| |
Collapse
|
25
|
Wang S, Ding P, Xia X, Chen X, Mi D, Sheng S, Gu F, Li Z, Su K, Li Y. Bugan Rongjin decoction alleviates inflammation and oxidative stress to treat the postmenopausal knee osteoarthritis through Wnt signaling pathway. Biomed Eng Online 2021; 20:103. [PMID: 34645468 PMCID: PMC8513287 DOI: 10.1186/s12938-021-00939-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine has been found effective for the therapy of knee osteoarthritis (KOA). This study was aimed at investigating the underlying mechanism of Bugan Rongjin decoction (BGRJ) in treating the postmenopausal KOA. RESULTS Ovariectomized rat model of KOA and LPS-induced chondrocytes were successfully constructed for in vivo and in vitro model of postmenopausal KOA. X-ray and hematoxylin-eosin (H&E) staining showed that BGRJ alleviated pathological damage of articular cartilage in OVX rats with KOA. In addition, BGRJ inhibited inflammation and oxidative stress through decreasing the levels of serum IL-6, IL-1β, TNF-α and NO and regulated Wnt signaling pathway by downregulating the expression of Wnt5a and β-catenin and upregulating the expression of Sox9 and Collagen II in cartilage tissue, detected by immunohistochemistry (IHC) and western blot analysis. Furthermore, Wnt5a silencing reduced the apoptosis of LPS-induced ADTC5 cells, which was further suppressed by the combination of downregulation of Wnt5a and BGRJ. CONCLUSIONS In summary, BGRJ alleviates inflammation and oxidative stress to treat the postmenopausal KOA through Wnt signaling pathway.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Orthopedics and Traumatology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Pei Ding
- Department of Pediatrics, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Xiaopeng Xia
- Department of Orthopedics and Traumatology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Xuexian Chen
- Department of Orthopedics and Traumatology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Daguo Mi
- Department of Orthopedics and Traumatology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Shuijie Sheng
- Department of Science and Education, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Fulong Gu
- Department of Orthopedics and Traumatology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Zhongwei Li
- Department of Orthopedics and Traumatology, Nantong TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226001, Jiangsu, China
| | - Kelei Su
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Number 100, Cross Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu, China.
| | - Yuwei Li
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Number 18 Yangsu Road, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
26
|
Xu J, Ma X. Hsa_circ_0032131 knockdown inhibits osteoarthritis progression via the miR-502-5p/PRDX3 axis. Aging (Albany NY) 2021; 13:15100-15113. [PMID: 34032607 PMCID: PMC8221332 DOI: 10.18632/aging.203073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a chronic disease characterized by progressive loss of cartilage and failure of the diarthrodial joint. Circular RNAs (circRNAs) are known to participate in the pathogenesis of multiple diseases, including OA. We investigated the functions of hsa_circ_0032131, a circRNA upregulated in OA, using CHON-001 cells and an in vivo OA rat model. CHON-001 cells were treated with interleukin (IL)-1β to mimic OA in vitro. IL-1β-induced inhibition of CHON-001 growth was reversed by silencing hsa_circ_0032131. In addition, hsa_circ_0032131 knockdown reversed IL-1β-induced activation of Trx1, Cyclin D and PRDX3, whereas overexpression of PRDX3, a direct target of miR-502-5p, reversed this effect. Hsa_circ_0032131 served as a competing endogenous RNA for miR-502-5p. Moreover, knockdown of hsa_circ_0032131 attenuated OA symptoms in vivo by inactivating the STAT3 signaling pathway. Thus, silencing of hsa_circ_0032131 inhibited the progression of OA by inactivating the miR-502-5p/PRDX3/Trx1/STAT3 axis, which highlights its potential as a therapeutic target for OA.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pain Treatment, Tianjin Hospital, Tianjin 300211, China
| | - Xinlong Ma
- Department of Pain Treatment, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
27
|
Resveratrol alleviates the interleukin-1β-induced chondrocytes injury through the NF-κB signaling pathway. J Orthop Surg Res 2020; 15:424. [PMID: 32948212 PMCID: PMC7501644 DOI: 10.1186/s13018-020-01944-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a regular age-related disease that affects millions of people. Resveratrol (RSV) is a flavonoid with a stilbene structure with different pharmacological effects. The purpose of the experiment was to evaluate the protective role of RSV against the human OA chondrocyte injury induced by interleukin-1β (IL-1β). METHODS Chondrocytes were isolated from OA patients and identified by type II collagen, safranin O staining, and toluidine blue staining. Differentially expressed genes in chondrocytes treated RSV were identified by RNA sequencing. Kyoto encyclopedia of genes and genomes (KEGG) pathway as well as gene ontology (GO) were further conducted through Metascape online tool. A cell counting kit-8 (CCK-8) assay was applied to discover the viability of chondrocytes (6, 12, 24, and 48 μM). Many genes associated with inflammation and matrix degradation are evaluated by real-time PCR (RT-PCR) as well as western blot (WB). The mechanism of RSV for protecting IL-1β induced chondrocytes injury was further measured through immunofluorescence and WB assays. RESULTS A total of 845 differentially expressed genes (upregulated = 499, downregulated = 346) were found. These differentially expressed genes mainly enriched into negative regulation of catabolic process, autophagy, and cellular catabolic process, intrinsic apoptotic, apoptotic, and regulation of apoptotic signaling pathway, cellular response to abiotic stimulus, external stimuli, stress, and radiation. These differentially expressed genes were obviously enriched in NF-kB signaling pathway. RSV at the concentration of 48 μM markedly weakened the viability of the cells after 24 h of treatment (87% vs 100%, P < 0.05). No obvious difference was observed between the 6, 12, and 24 μM groups (106% vs 100%, 104% vs 100%, 103% vs 100%, P > 0.05). RSV (24 μM) also markedly depressed the levels of PGE2 and NO induced by IL-1β by 25% and 29% respectively (P < 0.05). Our experiment pointed out that RSV could dramatically inhibit the inflammatory response induced by IL-1β, including the MMP-13, MMP-3, and MMP-1 in human OA chondrocytes by 50%, 35%, and 33% respectively. On the other hand, RSV inhibited cyclooxygenase-2 (COX-2), matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-13, and inducible nitric oxide synthase (iNOs) expression (P < 0.05), while increased collagen-II and aggrecan levels (P < 0.05). From a mechanistic perspective, RSV inhibited the degradation of IκB-α as well as the activation of nuclear factor-kappa B (NF-κB) induced by IL-1β. CONCLUSION In summary, RSV regulates the signaling pathway of NF-κB, thus inhibiting inflammation and matrix degradation in chondrocytes. More studies should be focused on the treatment efficacy of RSV for OA in vivo.
Collapse
|