1
|
Zhang BQ, Wang FQ, Yin J, Yu XT, Hu ZX, Gu LH, Tong QY, Zhang YH. Michael Acceptor Pyrrolidone Derivatives and Their Activity against Diffuse Large B-cell Lymphoma. Curr Med Sci 2024; 44:890-901. [PMID: 39285051 DOI: 10.1007/s11596-024-2922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This study aimed to design and evaluate the efficacy of pyrrolidone derivatives as potential therapeutic agents against diffuse large B-cell lymphoma (DLBCL), a common and heterogeneous malignancy of the adult lymphohematopoietic system. Given the limitations of current therapies, there is a pressing need to develop new and effective drugs for DLBCL treatment. METHODS A series of pyrrolidone derivatives were synthesized, and their antitumor activities were assessed, particularly against DLBCL cell lines. Structure-activity relationship (SAR) analysis was conducted to identify key structural components essential for activity. The most promising compound, referred to as compound 7, was selected for further mechanistic studies. The expression levels of relevant mRNA and protein were detected by RT-qPCR and Western blotting, and the expression of mitochondrial membrane potential and ROS was detected using flow cytometry for further assessment of cell cycle arrest and apoptosis. RESULTS The compound 7 exhibited good antitumor activity among the synthesized derivatives, specifically in DLBCL cell lines. SAR analysis highlighted the critical role of α, β-unsaturated ketones in the antitumor efficacy of these compounds. Mechanistically, compound 7 was found to induce significant DNA damage, trigger an inflammatory response, cause mitochondrial dysfunction, and disrupt cell cycle progression, ultimately leading to apoptosis of DLBCL cells. CONCLUSION The compound 7 has good antitumor activity and can induce multiple cellular mechanisms leading to cancer cell death. These findings warrant further investigation of the compound 7 as a potential therapeutic agent for DLBCL.
Collapse
Affiliation(s)
- Bi-Qiong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng-Qing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Tan Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng-Xi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang-Hu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Yi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yong-Hui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
da Silva TS, da Silva Souza M, Andricopulo AD, Coelho F. Discovery of indolizine lactones as anticancer agents and their optimization through late-stage functionalization. RSC Adv 2023; 13:20264-20270. [PMID: 37416908 PMCID: PMC10321224 DOI: 10.1039/d3ra03395c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Indolizines fused with a seven-member lactone ring were identified as a promising scaffold in the search for new anticancer agents. Through a modular synthetic sequence, a library of cis and trans indolizines lactones had their antiproliferative activity evaluated against hormone-refractory prostate DU-145 and triple-negative breast MDA-MB-231 cancer cell lines. A methoxylated analogue was identified as an initial hit against MDA-MB-231 and late-stage functionalization of the indolizine core led to analogues within potencies up to twenty times higher than the parent precursor.
Collapse
Affiliation(s)
- Thiago Sabino da Silva
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas Rua Monteiro Lobato, S/N, 13083-970, Campinas São Paulo Brazil
| | - Matheus da Silva Souza
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo - Avenida Joao Dagnone 1100-13563-120 - Sao Carlos SP Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo - Avenida Joao Dagnone 1100-13563-120 - Sao Carlos SP Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas Rua Monteiro Lobato, S/N, 13083-970, Campinas São Paulo Brazil
| |
Collapse
|
3
|
da Rocha MJ, Pires CS, Presa MH, Besckow EM, Nunes GD, Gomes CS, Penteado F, Lenardão EJ, Bortolatto CF, Brüning CA. Involvement of the serotonergic system in the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine in mice. Psychopharmacology (Berl) 2023; 240:373-389. [PMID: 36645465 DOI: 10.1007/s00213-023-06313-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Depression is a mental disorder that affects approximately 280 million people worldwide. In the search for new treatments for mood disorders, compounds containing selenium and indolizine derivatives show promising results. OBJECTIVES AND METHODS To evaluate the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) (0.5-50 mg/kg, intragastric-i.g.) on the tail suspension test (TST) and the forced swim test (FST) in adult male Swiss mice and to elucidate the role of the serotonergic system in this effect through pharmacological and in silico approaches, as well to evaluate acute oral toxicity at a high dose (300 mg/kg). RESULTS MeSeI administered 30 min before the FST and the TST reduced immobility time at doses from 1 mg/kg and at 50 mg/kg and increased the latency time for the first episode of immobility, demonstrating an antidepressant-like effect. In the open field test (OFT), MeSeI did not change the locomotor activity. The antidepressant-like effect of MeSeI (50 mg/kg, i.g.) was prevented by the pre-treatment with p-chlorophenylalanine (p-CPA), a selective tryptophan hydroxylase inhibitor (100 mg/kg, intraperitoneally-i.p. for 4 days), with ketanserin, a 5-HT2A/2C receptor antagonist (1 mg/kg, i.p.), and with GR113808, a 5-HT4 receptor antagonist (0.1 mg/kg, i.p.), but not with WAY100635, a selective 5-HT1A receptor antagonist (0.1 mg/kg, subcutaneous-s.c.) and ondansetron, a 5-HT3 receptor antagonist (1 mg/kg, i.p.). MeSeI showed a binding affinity with 5-HT2A, 5 -HT2C, and 5-HT4 receptors by molecular docking. MeSeI (300 mg/kg, i.g.) demonstrated low potential to cause acute toxicity in adult female Swiss mice. CONCLUSION In summary, MeSeI exhibits an antidepressant-like effect mediated by the serotonergic system and could be considered for the development of new treatment strategies for depression.
Collapse
Affiliation(s)
- Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Caroline Signorini Gomes
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Filipe Penteado
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Eder João Lenardão
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
4
|
Xie Z, Lu G, Zhou R, Ma Y. Thiacloprid-induced hepatotoxicity in zebrafish: Activation of the extrinsic and intrinsic apoptosis pathways regulated by p53 signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106147. [PMID: 35349858 DOI: 10.1016/j.aquatox.2022.106147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 05/21/2023]
Abstract
Thiacloprid (THCP) is one of the major neonicotinoid insecticides, and its wide use has led to high detection in various media of aquatic environment, posing potential risks to aquatic organisms. This study was focused on the phenotypic responses and mechanisms of toxicity in zebrafish (Danio rerio) upon treatment with waterborne THCP (0.4, 4 and 40 μM) for 21 days in vivo or 412.9 μM for 24 h in vitro. In vivo, we found that THCP induced severe oxidative stress, hepatic abnormalities, leakage of alanine aminotransferase and aspartate aminotransferase and apoptosis. The analysis of RNA-sequencing suggested the activation of the p53 signaling pathway under THCP exposure. The following in vitro study showed that THCP intoxication activated reactive oxygen species (ROS)-dependent p53 signaling pathway and induced hepatotoxicity in the zebrafish liver cells. The addition of p53 inhibitor pifithrin-α (10 μM) exerted protection against of THCP-induced hepatotoxicity by reducing oxidative stress and inhibiting the p53 signaling pathway and apoptosis. Moreover, gene expression analyses indicated that both the extrinsic and intrinsic apoptosis pathways were involved in apoptosis induced by p53 activation. Overall, our results suggest that activation of the p53 signaling pathway is an important mechanism of THCP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhongtang Xie
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuchen Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
5
|
Li L, Wang H, Li H, Lu X, Gao Y, Guo X. Long noncoding RNA BACE1-antisense transcript plays a critical role in Parkinson's disease via microRNA-214-3p/Cell death-inducing p53-target protein 1 axis. Bioengineered 2022; 13:10889-10901. [PMID: 35481549 PMCID: PMC9208522 DOI: 10.1080/21655979.2022.2066750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study aimed to analyze the function and latent mechanism of long noncoding RNA BACE1-antisense transcript (lncRNA BACE1-AS) in MPP+-induced SH-SY5Y cells. SH-SY5Y cells were cultivated in 1 mM MPP+ for 24 h to establish Parkinson’s disease (PD) model in vitro. TargetScan and luciferase reporter assay were conducted to predict and verify the interaction between microRNA (miR)-214-3p and CDIP1 (Cell death-inducing p53-target protein 1). Cell viability, lactate dehydrogenase (LDH) release, and cell apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT), LDH, and flow cytometer. The secretion of inflammatory factors and representative biomarkers of oxidative stress, including reactive oxygen species (ROS) and superoxide dismutase (SOD) were assessed using enzyme-linked immunosorbent assay (ELISA) and specific assay kits. Results suggested that lncRNA BACE1-AS was over-expressed and miR-214-3p was under-expressed in MPP+-stimulated SH-SY5Y cells. Further analyses revealed that MPP+ inhibited cell viability; enhanced cell apoptosis, Cleaved Caspase-3 expression and Cleaved Caspase-3/GAPDH ratio; induced oxidative stress and inflammation in SH-SY5Y cells were inhibited by lncRNA BACE1-AS-siRNA transfection; and all these inhibitions were reversed by miR-214-3p inhibitor. In addition, we found that CDIP1 was directly targeted by miR-214-3p and up-regulated in MPP+-stimulated SH-SY5Y cells. Further functional assays suggested that CDIP1-plasmid reversed the effects of miR-214-3p mimic on MPP+-stimulated SH-SY5Y cells. In conclusion, lncRNA BACE1-AS regulates SH-SY5Y cell proliferation, apoptosis, inflammatory response, and oxidative stress through direct regulation of miR-214-3p/CDIP1 signaling axis, and could be a potential candidate associated with the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Lina Li
- First Department of Neurology, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi, China
| | - Hongjuan Wang
- Second Department of Neurology, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi, China
| | - Huicang Li
- First Department of Neurology, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi, China
| | - Xin Lu
- First Department of Neurology, Baoji Hospital of Traditional Chinese Medicine, Baoji, Shaanxi, China
| | - Yanxiang Gao
- First Department of Neurology, Yangquan Third People's Hospital, Yangquan Shaanxi, Yangquan, Shaanxi, China
| | - Xiaofeng Guo
- Department of Neurology, Baoji People's Hospital, Baoji, Shaanxi, China
| |
Collapse
|
6
|
Cui X, Zhou S, Lin Y. Long non-coding RNA DHRS4 antisense RNA 1 inhibits ectopic endometrial cell proliferation, migration, and invasion in endometriosis by regulating microRNA-139-5p expression. Bioengineered 2022; 13:9792-9804. [PMID: 35414313 PMCID: PMC9161999 DOI: 10.1080/21655979.2022.2060781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Endometriosis is an estrogen-dependent chronic gynecological syndrome. Recent studies have shown that long non-coding RNAs participate in the pathogenesis and development of endometriosis. This study aimed to explore the mechanisms of DHRS4 antisense RNA 1 (DHRS4-AS1) in endometriosis. Dual-luciferase reporter assays were conducted to determine the relationship between DHRS4-AS1, microRNA (miR)-139-5p, and arrestin domain-containing 3 (ARRDC3). Furthermore, the expression of DHRS4-AS1 and miR-139-5p in ectopic endometrial stromal cells (EC-ESCs) and endometriosis tissues was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, and Transwell assays were performed to evaluate the proliferation, apoptosis, and migration and invasion of EC-ESCs, respectively. Western blotting and RT-qPCR were further utilized to determine cleaved-Caspase 3, Caspase 3, and matrix metalloproteinase 9 (MMP-9) expression levels. Compared with the EN group, DHRS4-AS1 levels were lower and miR-139-5p levels were higher in EC-ESCs and tissues obtained from patients with endometriosis. Functional assays validated that DHRS4-AS1 targets miR-139-5p, with ARRDC3 being a downstream target of miR-139-5p. Rescue experiments demonstrated that DHRS4-AS1 inhibited EC-ESC proliferation, migration, and invasion, but promoted apoptosis, by targeting miR-139-5p in endometriosis. cleaved-Caspase3 expression level and the cleaved-Caspase 3/Caspase 3 ratio increased, while the expression levels of MMP-9 decreased, after transfection with DHRS4-AS1 overexpression plasmids; however, the effects induced by DHRS4-AS1 overexpression could be partially reversed by co-transfection with the miR-139-5p mimic. The current study demonstrates that the DHRS4-AS1/miR-139-5p/ARRDC3 axis participates in the regulation of EC-ESC function.
Collapse
Affiliation(s)
- Xuan Cui
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai'an, China
| | - Shisan Zhou
- Department of Anesthesiology, Huaian Maternity and Child Health Care Hospital, Huai'an, China
| | - Yongtao Lin
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, P.R. China
| |
Collapse
|
7
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
8
|
Gu F, Lu D, Zhang L. MicroRNA-30a contributes to pre-eclampsia through regulating the proliferation, apoptosis, and angiogenesis modulation potential of mesenchymal stem cells by targeting AVEN. Bioengineered 2022; 13:8724-8734. [PMID: 35322749 PMCID: PMC9161923 DOI: 10.1080/21655979.2022.2054909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pre-eclampsia (PE) is a pregnancy-associated disease related to an unprecedented hypertension attack. Mesenchymal stem cells (MSCs) play a crucial role in PE pathology. . Our research was designed to illustrate the functions of microRNA-30a (miR-30a) in proliferation, apoptosis, and the potential of regulating angiogenesis in MSCs, and to analyze its potential molecular mechanisms. TargetScan software and the luciferase reporter assay were used to forecast and verify the relationship between miR-30a and AVEN. MiR-30a and AVEN expression in the decidual tissue and decidua (d)MSCs of healthy pregnant women and PE patients were assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT), flow cytometry, and transwell assays were used to evaluate cell proliferation, growth, the cell cycle, apoptosis, and migration. Furthermore, the tube formation ability was evaluated using the human umbilical vein endothelial cell (HUVEC) tube formation assay. AVEN is the target gene of miR-30a. MiR-30a was upregulated in decidual tissues and dMSCs of PE patients. However, AVEN was weakly expressed, and AVEN expression was negatively related to miR-30a levels in decidual tissues and dMSCs of PE patients. Compared to the mimic control group, upregulation of miR-30a inhibited dMSC proliferation and cell growth, promoted G0/G1 phase arrest, and induced apoptosis. Furthermore, the miR-30a mimic transfected dMSC culture supernatant suppressed HTR-8/SVneo cell migration ability and HUVEC tube formation ability. However, AVEN reversed these changes. In conclusion, miR-30a/AVEN may serve as a new axis for PE treatment.
Collapse
Affiliation(s)
- Fangle Gu
- Department of Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou China
| | - Dan Lu
- Department of Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou China
| | - Liying Zhang
- Department of Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou China
| |
Collapse
|
9
|
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging Dis 2022; 13:157-174. [PMID: 35111368 PMCID: PMC8782557 DOI: 10.14336/ad.2021.0729] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction may play a crucial role in various diseases due to its roles in the regulation of energy production and cellular metabolism. Serine/threonine kinase (AKT) is a highly recognized antioxidant, immunomodulatory, anti-proliferation, and endocrine modulatory molecule. Interestingly, increasing studies have revealed that AKT can modulate mitochondria-mediated apoptosis, redox states, dynamic balance, autophagy, and metabolism. AKT thus plays multifaceted roles in mitochondrial function and is involved in the modulation of mitochondria-related diseases. This paper reviews the protective effects of AKT and its potential mechanisms of action in relation to mitochondrial function in various diseases.
Collapse
Affiliation(s)
- Xiaoxian Xie
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zezhi Li
- 2Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Yan S, Zhang B, Feng J, Wu H, Duan N, Zhu Y, Zhao Y, Shen S, Zhang K, Wu W, Liu N. FGFC1 Selectively Inhibits Erlotinib-Resistant Non-Small Cell Lung Cancer via Elevation of ROS Mediated by the EGFR/PI3K/Akt/mTOR Pathway. Front Pharmacol 2022; 12:764699. [PMID: 35126111 PMCID: PMC8807551 DOI: 10.3389/fphar.2021.764699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been used as a first-line treatment for patients harboring with EGFR mutations in advanced NSCLC. Nevertheless, the drug resistance after continuous and long-term chemotherapies considerably limits its clinical efficacy. Therefore, it is of great importance to develop new chemotherapeutic agents and treatment strategies to conquer the drug resistance. FGFC1 (Fungi fibrinolytic compound 1), a type of bisindole alkaloid from a metabolite of the rare marine fungi Starchbotrys longispora. FG216, has exhibited excellent fibrinolytic and anti-inflammatory activity. However, the potent efficacy of FGFC1 in human cancer therapy requires further study. Herein, we demonstrated that FGFC1 selectively suppressed the growth of NSCLC cells with EGFR mutation. Mechanistically, FGFC1 treatment significantly induced the apoptosis of erlotinib-resistant NSCLC cells H1975 in a dose-dependent manner, which was proved to be mediated by mitochondrial dysfunction and elevated accumulation of intracellular reactive oxygen species (ROS). Scavenging ROS not only alleviated FGFC1-induced apoptosis but also relieved the decrease of phospho-Akt. We further confirmed that FGFC1 significantly decreased the phosphorylation of protein EGFR, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) in H1975 cells. Notably, PI3K inhibitor (LY294002) could promote the accumulation of ROS and the expression levels of apoptosis-related proteins induced by FGFC1. Molecular dynamics simulations indicated that FGFC1 can inhibit EGFR and its downstream PI3K/Akt/mTOR pathway through directly binding to EGFR, which displayed a much higher binding affinity to EGFRT790M/L858R than EGFRWT. Additionally, FGFC1 treatment also inhibited the migration and invasion of H1975 cells. Finally, FGFC1 effectively inhibited tumor growth in the nude mice xenograft model of NSCLC. Taken together, our results indicate that FGFC1 may be a potential candidate for erlotinib-resistant NSCLC therapy.
Collapse
Affiliation(s)
- Shike Yan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Namin Duan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yamin Zhu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yueliang Zhao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
11
|
Anticancer Action of Xiaoxianxiong Tang in Non-Small Cell Lung Cancer by Pharmacological Analysis and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9930082. [PMID: 34938346 PMCID: PMC8687818 DOI: 10.1155/2021/9930082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Xiaoxianxiong Tang (XXXT) is a well-known traditional Chinese medicine formula. Evidence is emerging supporting the benefits of XXXT in ameliorating therapy for non-small cell lung cancer (NSCLC). The purpose of this study aimed to explore the effects and mechanisms of XXXT through network pharmacological analysis and biological validation. TCMSP database was used to identify potentially active compounds in XXXT with absorption, distribution, metabolism, excretion screening, and their potential targets. The disease targets related to NSCLC were predicted by searching for Therapeutic Target database, GeneCards database, DrugBank database, and DisGeNET database. Of the 4385 NSCLC-related targets, 156 targets were also the targets of compounds present in XXXT. Subsequently, GO function and KEGG pathway enrichment and PPI network analyses revealed that, of the 95 targets and 20 pathways influenced by 20 ingredients in XXXT, 20 targets were associated with patient survival, and XXXT could exert an inhibitory action on the PI3K-AKT signaling pathway. Moreover, XXXT restrained the proliferation of A549 and H460 cells in a concentration-dependent manner and suppressed the mRNA and protein levels of key targets CCNA2, FOSL2, and BIRC5 closely linked to the PI3K-AKT pathway. Hence, XXXT has the potential to improve therapy for NSCLC by targeting the PI3K-AKT signaling pathway.
Collapse
|
12
|
Liu D, Cheng Y, Tang Z, Mei X, Cao X, Liu J. Toxicity mechanism of acrolein on DNA damage and apoptosis in BEAS-2B cells: Insights from cell biology and molecular docking analyses. Toxicology 2021; 466:153083. [PMID: 34958888 DOI: 10.1016/j.tox.2021.153083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Acrolein is a hazardous air pollutant for humans and is responsible for many pulmonary diseases, but the underlying mechanisms have not been completely elucidated. This work is focused on the genotoxicity effects of human bronchial epithelial (BEAS-2B) cells induced by acrolein (20, 40, 80 μM). The molecular mechanism was investigated base on DNA damage and mitochondrial apoptosis pathways. The results showed that after exposure to acrolein, the cell viability, glutathione (GSH) of BEAS-2B cells were reduced. Reactive oxygen species (ROS) level significantly increased, accompanied by increased levels of DNA damage-related indicators 8-hydroxy-2 deoxyguanosine (8-OHdG), DNA content of comet tail (Tail DNA%), olive tail moment (OTM), and nucleus morphology. Cell arrested at the G2/M phase. Then, the DNA damage response (DDR) signaling pathway (Ataxia-telangiectasia-mutated (ATM) and Rad-3-related (ATR)/Chk1 and ATM/Chk2) and the consequent cell cycle checkpoints were activated. The expression of γ-H2AX was significantly increased, indicating that acrolein induced DNA double-strand breaks. Molecular docking assay showed that acrolein bound to DNA in a spontaneous process. Moreover, mitochondrial apoptosis pathway involved in apoptosis, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) content of BEAS-2B cells were significantly reduced, and the apoptosis rate was significantly increased. The protein expression of Bax/Bcl-2 and Cleaved Caspase-3 were increased, and JNK signaling pathway was activated. All the results indicated that acrolein induced DNA damage, activated DDR and mitochondrial apoptosis pathways, which might be the pivotal factors to mediate cytotoxicity in BEAS-2B cells.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|