1
|
Ma T, Wu J, Chen S, Bian J, Gao G, Nong L. pH-Responsive Modified HAMA Microspheres Regulate the Inflammatory Microenvironment of Intervertebral Discs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63295-63305. [PMID: 39529398 PMCID: PMC11583120 DOI: 10.1021/acsami.4c14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Currently, intervertebral disc (IVD) degeneration is believed to lead to local accumulation of lactic acid in the IVD, a decrease in pH, activation of the inflammatory pathway, and continued destruction of homeostasis of the IVD. To address these issues, the intelligent and accurate release of drugs is particularly important. In this study, acid-sensitive release methacrylated hyaluronic acid (HAMA) microspheres were constructed by using microfluidic technology, which can be used as a targeted drug delivery system for intervertebral disc degeneration (IVDD) through Schiff base chemical bonding on the surface of the microspheres to achieve intelligent drug release. Interleukin-1 receptor antagonist (IL-1 Ra) is a naturally occurring anti-inflammatory antagonist of the interleukin-1 family of pro-inflammatory cytokines. Despite its outstanding broad-spectrum anti-inflammatory effects, IL-1 Ra has a short biological half-life (4-6 h). The slow-release performance of IL-1 Ra can be greatly improved using bovine serum albumin nanoparticles (BNP). In addition, the modified HAMA microspheres exhibited good injectability and porosity, and efficient and uniform loading of nanoparticles was achieved via the Schiff base bond. The inflammatory microenvironment can be significantly reversed by transporting the modified HAMA microspheres-BNPs (Modified MS) to the degenerative nucleus pulposus.
Collapse
Affiliation(s)
- Tao Ma
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jingwei Wu
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Senlin Chen
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Department
of Orthopedics, Nanjing Medical University, Jiangsu 211166, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Jiang Bian
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Gongming Gao
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Luming Nong
- Department
of Orthopedics, The Affiliated Changzhou
No. 2 People’s Hospital with Nanjing Medical University, Changzhou 213003, China
- Changzhou
Medical Center, Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
2
|
Zhang X, Sun L, Wu M, Yu C, Zhao D, Wang L, Zhang Z, Yi D, Hou Y, Wu T. Effect of supplementation with Lactobacillus rhamnosus GG powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide. Front Microbiol 2024; 15:1466274. [PMID: 39534507 PMCID: PMC11555397 DOI: 10.3389/fmicb.2024.1466274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the effect of dietary along with Lactobacillus rhamnosus GG (LGG) powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide (LPS). A total of 100 healthy 1-day-old Ross 308 broiler chickens were selected and randomly divided into two treatments: the control group and the LGG treatment group. There were five replicates for each group, with 10 chickens per replicate. The chickens in the control group were fed a basal diet, while LGG treatment was supplemented with 1,000 mg/kg LGG along with the basal diet. The experiment lasted 29 days, and the trial included two phases. During the first 27 days, the animals were weighed on the 14th and 27th days to calculate growth performance. Then, on day 29, 2 animals from each replicate were intraperitoneally injected with 1 mg/kg BW LPS, and another 2 animals were treated with an equal volume of saline. The chickens were slaughtered 3 h later for sampling and further analysis. (1) LGG addition to the diet did not affect growth performance, including average daily gain (ADG), average daily feed intake (ADFI), and feed-to-weight ratio (F/G) of broiler chickens; (2) LPS stimulation decreased villus height (VH), and caused oxidative stress and increased the amount of diamine oxidase (DAO) in plasma, and the relative expression of intestinal inflammation genes (interleukin-8 [IL-8], interleukin 1β [IL-1β], inducible nitric oxide synthase [iNOS], and tumor necrosis factor-α [TNF-α]) and the relative expression of liver injury genes (b-cell lymphoma 2 [BCL2], heat shock protein70 [HSP70], and matrix metallopeptidase 13 [MMP13]). (3) Supplementation of LGG increased VH and the relative expression of intestinal barrier genes (mucins 2 [Mucin2] and occludin [Occludin]) and decreased the amount of DAO in plasma and the relative expression of intestinal inflammatory factors (IL-8, iNOS, and IL-1β). LGG supplementation also increased the expression of liver injury-related genes (MMP13 and MMP9). In conclusion, LGG enhanced intestinal barrier function, improved intestinal morphology, and alleviated the intestines' inflammatory response in LPS-stimulated broiler chicken, and it has a slightly protective effect on liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Relvas M, Mendes-Frias A, Gonçalves M, Salazar F, López-Jarana P, Silvestre R, Viana da Costa A. Salivary IL-1β, IL-6, and IL-10 Are Key Biomarkers of Periodontitis Severity. Int J Mol Sci 2024; 25:8401. [PMID: 39125970 PMCID: PMC11312971 DOI: 10.3390/ijms25158401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
To explore severity and progression biomarkers, we examined the clinical relevance of multiple cytokines and mediators involved in the inflammatory response in periodontitis. A cohort of 68 patients was enrolled in the study and periodontal status assessed by the current classification of periodontal diseases. Immune mediators present in saliva, of both patients and healthy controls, were quantified using a Legendplex-13 panel. Clinic parameters were significantly higher in PD patients compared with HC, with a strong significant association with the disease severity (stage) (p < 0.001), but not with progression (grade). The panel of immune mediators evidenced elevated levels of pro-inflammatory cytokines IL-6 and IL-1β as disease established (p < 0.01). IL-1β/IL-1RA ratio was increased in PD patients, being associated with disease stage. An anti-inflammatory response was spotted by higher IL-10. Lower levels of IL-23 and IP-10 were associated with disease severity. No significant statistical differences were found by grade classification. Moreover, salivary IL-1β and IL-6 exhibited significant positive correlations with several clinical measurements (PI, BOP, PPD, CAL), while IP-10 showed a statistical negative correlation with BOP, PPD, and CAL. These insights highlight the complexity of the periodontitis inflammatory network and the potential of cytokines as biomarkers for refined diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Relvas
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.M.-F.); (R.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Gonçalves
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Filomena Salazar
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Paula López-Jarana
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS-CESPU), CRL, 4585-116 Gandra, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (A.M.-F.); (R.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Alexandra Viana da Costa
- University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal; (M.G.); (F.S.); (P.L.-J.); (A.V.d.C.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
4
|
Xu X, Li T, Tang J, Wang D, Zhou Y, Gou H, Li L, Xu Y. CXCR4-mediated neutrophil dynamics in periodontitis. Cell Signal 2024; 120:111212. [PMID: 38719020 DOI: 10.1016/j.cellsig.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a common oral disease closely related to immune response and this study is aimed to identify the key immune-related pathogenic genes and analyze the infiltration and function of immune cells in the disease using bioinformatics methods. METHODS Transcriptome datasets and single-cell RNA sequencing (scRNA-seq) datasets were downloaded from the GEO database. We utilized weighted correlation network analysis and least absolute selection and shrinkage operator, protein-protein interaction network construction to screen out key pathogenic genes as well as conducted the cell-type identification by estimating relative subsets of RNA transcripts algorithm to analyze and characterize immune cell types in periodontal tissues. In addition to bioinformatics validations, clinical and cell samples were collected and mouse periodontitis models were constructed to validate the important role of key genes in periodontitis. RESULTS Bioinformatics analysis pointed out the positive correlation between CXCR4 expression and periodontitis, and revealed the increased infiltration of neutrophils in periodontal inflammatory. Similar results were obtained from clinical samples and animal models. In addition, the clustering and functional enrichment results based on CXCR4 expression levels included activation of immune response and cell migration, implying the possible function of CXCR4 on regulating neutrophil dynamics, which might contribute to periodontitis. Subsequent validation experiments confirmed that the increased expression of CXCR4 in neutrophils under periodontitis, where cell migration-related pathways also were activated. CONCLUSION CXCR4 could be the key pathogenic gene of periodontitis and CXCR4/CXCL12 signal axial might contribute to the development of periodontitis by mediating neutrophil dynamics, suggesting that CXCR4 could be a potential target to help identify novel strategies for the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Tiange Li
- School of Stomatology, China Medical University, Shenyang 110122, China
| | - Jingqi Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Danlei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Huiqing Gou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.; Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China..
| |
Collapse
|
5
|
Tan X, Pan J, Cai J, Jiang S, Shu F, Xu M, Peng H, Tang J, Zhang H. Relevant Research of Inflammatory Cytokines Spectrum in Peripheral Blood of Sudden Hearing Loss. Laryngoscope 2024; 134:3293-3301. [PMID: 38193513 DOI: 10.1002/lary.31276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE To investigate whether there is a correlation between the inflammatory state and the pathogenesis and clinical features of sudden hearing loss (SHL) by studying the expression of inflammation-related cytokines in the peripheral blood of patients with SHL. METHODS In this work, we analyzed the cytokine profiles of 48 analytes in 38 patients with SHL compared to 38 healthy donors using a multiplex immunoassay. This study used appropriate statistical methods to screen for inflammatory cytokines associated with the pathogenesis of SHL, to analyze their network correlation, and to analyze the relationship between clinical features of SHL and inflammatory cytokines. RESULTS Several cytokines, including CTACK, Eotaxin, HGF, INF-α2, IFN-β, IL-1β, IL-1ra, IL-2Rα, IL-4, IL-7, IL-8, IL-9, IL-10, IL-12(p40), IL-13, MIG, β-NGF, SCF, and TNF-α, exhibited significantly higher levels in the peripheral blood of the SHL group compared to the control group. An inflammatory network composed of multiple cytokines, including IL-1β, is a risk factor for the development of SHL. CONCLUSION This study identified several inflammatory cytokines with elevated expression, which may be linked with the onset of SHL. The results of this study also provide a basis for the theoretical hypothesis of inflammation in SHL. LEVEL OF EVIDENCE 3 Laryngoscope, 134:3293-3301, 2024.
Collapse
Affiliation(s)
- Xinyuan Tan
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Pan
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jieqing Cai
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shanshan Jiang
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Shu
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muqing Xu
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Peng
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
7
|
Do MH, Li H, Shin SY, Cho SY, Oh S, Jeong JM. Antimicrobial and anti-inflammatory effects of BenTooth: A natural product blend of burdock root, persimmon leaf extracts, and quercetin on periodontal disease. Heliyon 2024; 10:e30835. [PMID: 38770307 PMCID: PMC11103472 DOI: 10.1016/j.heliyon.2024.e30835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Periodontal disease represents a condition that exhibits substantial global morbidity, and is characterized by the infection and inflammation of the periodontal tissue effectuated by bacterial pathogens. The present study aimed at evaluating the therapeutic efficacy of BenTooth, an edible natural product mixture comprising burdock root extract, persimmon leaf extract and quercetin, against periodontitis both in vitro and in vivo. BenTooth was examined for antimicrobial properties and its impact on cellular responses related to inflammation and bone resorption. Its effects were also assessed in a rat model of ligature-induced periodontitis. BenTooth demonstrated potent antimicrobial activity against P. gingivalis and S. mutans. In RAW264.7 cells, it notably diminished the expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as reduced interleukin-6 and tumor necrosis factor-α levels triggered by P. gingivalis-derived lipopolysaccharide. Furthermore, BenTooth inhibited osteoclastogenesis mediated by the receptor activator of nuclear factor κB ligand. In the rat model, BenTooth consumption mitigated the ligature-induced expansion in distance between the cementoenamel junction and the alveolar bone crest and bolstered the bone volume fraction. These results present BenTooth as a potential therapeutic candidate for the prevention and remediation of periodontal diseases.
Collapse
Affiliation(s)
- Moon Ho Do
- Biotechnology Research Center, Ben's Lab Co., Ltd., Beolmal-ro 123, Dongan-gu, Anyang-si, 14056, Republic of Korea
| | - Hua Li
- Biotechnology Research Center, Ben's Lab Co., Ltd., Beolmal-ro 123, Dongan-gu, Anyang-si, 14056, Republic of Korea
| | - Soo Yong Shin
- Biotechnology Research Center, Ben's Lab Co., Ltd., Beolmal-ro 123, Dongan-gu, Anyang-si, 14056, Republic of Korea
| | - Su Yeon Cho
- Biotechnology Research Center, Ben's Lab Co., Ltd., Beolmal-ro 123, Dongan-gu, Anyang-si, 14056, Republic of Korea
| | - Subin Oh
- Biotechnology Research Center, Ben's Lab Co., Ltd., Beolmal-ro 123, Dongan-gu, Anyang-si, 14056, Republic of Korea
| | - Jong-Moon Jeong
- Biotechnology Research Center, Ben's Lab Co., Ltd., Beolmal-ro 123, Dongan-gu, Anyang-si, 14056, Republic of Korea
| |
Collapse
|
8
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
9
|
Zhao Q, Leng C, Lau M, Choi K, Wang R, Zeng Y, Chen T, Zhang C, Li Z. Precise healing of oral and maxillofacial wounds: tissue engineering strategies and their associated mechanisms. Front Bioeng Biotechnol 2024; 12:1375784. [PMID: 38699431 PMCID: PMC11063293 DOI: 10.3389/fbioe.2024.1375784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Precise healing of wounds in the oral and maxillofacial regions is usually achieved by targeting the entire healing process. The rich blood circulation in the oral and maxillofacial regions promotes the rapid healing of wounds through the action of various growth factors. Correspondingly, their tissue engineering can aid in preventing wound infections, accelerate angiogenesis, and enhance the proliferation and migration of tissue cells during wound healing. Recent years, have witnessed an increase in the number of researchers focusing on tissue engineering, particularly for precise wound healing. In this context, hydrogels, which possess a soft viscoelastic nature and demonstrate exceptional biocompatibility and biodegradability, have emerged as the current research hotspot. Additionally, nanofibers, films, and foam sponges have been explored as some of the most viable materials for wound healing, with noted advantages and drawbacks. Accordingly, future research is highly likely to explore the application of these materials harboring enhanced mechanical properties, reduced susceptibility to external mechanical disturbances, and commendable water absorption and non-expansion attributes, for superior wound healing.
Collapse
Affiliation(s)
- Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Changyun Leng
- School of stomatology, Jinan University, Guangzhou, China
| | - Manting Lau
- Department of Stomatology, Baoan Central Hospital of Shenzhen, Shenzhen, China
| | - Kawai Choi
- School of stomatology, Jinan University, Guangzhou, China
| | - Ruimin Wang
- School of stomatology, Jinan University, Guangzhou, China
| | - Yuyu Zeng
- School of stomatology, Jinan University, Guangzhou, China
| | - Taiying Chen
- School of stomatology, Jinan University, Guangzhou, China
| | - Canyu Zhang
- School of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Pensado-López A, Ummarino A, Khan S, Guildford A, Allan IU, Santin M, Chevallier N, Varaillon E, Kon E, Allavena P, Torres Andón F. Synthetic peptides of IL-1Ra and HSP70 have anti-inflammatory activity on human primary monocytes and macrophages: Potential treatments for inflammatory diseases. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102719. [PMID: 37977510 DOI: 10.1016/j.nano.2023.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity in vitro in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy.
| | - Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy.
| | - Sophia Khan
- Tissue Click Ltd, The Knoll Business Centre, Old Shoreham Rd, Hove, BN3 7GS, UK.
| | - Anna Guildford
- Tissue Click Ltd, The Knoll Business Centre, Old Shoreham Rd, Hove, BN3 7GS, UK.
| | - Iain U Allan
- Tissue Click Ltd, The Knoll Business Centre, Old Shoreham Rd, Hove, BN3 7GS, UK.
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Huxley Building Lewes Road, Brighton BN 24GJ, UK.
| | - Nathalie Chevallier
- IMRB, U955, INSERM, Unite d'Ingenierie et de Therapie Cellulaire-Etablissement Français du Sang, Universite Paris-EST Créteil, 94017 Créteil, France.
| | - Elina Varaillon
- IMRB, U955, INSERM, Unite d'Ingenierie et de Therapie Cellulaire-Etablissement Français du Sang, Universite Paris-EST Créteil, 94017 Créteil, France.
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy.
| | - Paola Allavena
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy.
| | - Fernando Torres Andón
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; Instituto de Investigación Biomédica de A Coruña (INIBIC), Medical Oncology Unit, Complexo Hospitalario de A Coruña (CHUAC), 15006 A Coruña, Spain.
| |
Collapse
|
11
|
Gonzalez OA, Kirakodu SS, Ebersole JL. DAMPs and alarmin gene expression patterns in aging healthy and diseased mucosal tissues. FRONTIERS IN ORAL HEALTH 2023; 4:1320083. [PMID: 38098978 PMCID: PMC10720672 DOI: 10.3389/froh.2023.1320083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Periodontitis is delineated by a dysbiotic microbiome at sites of lesions accompanied by a dysregulated persistent inflammatory response that undermines the integrity of the periodontium. The interplay of the altered microbial ecology and warning signals from host cells would be a critical feature for maintaining or re-establishing homeostasis in these tissues. Methods This study used a nonhuman primate model (Macaca mulatta) with naturally-occurring periodontitis (n = 34) and experimental ligature-induced periodontitis (n = 36) to describe the features of gene expression for an array of damage-associate molecular patterns (DAMPs) or alarmins within the gingival tissues. The animals were age stratified into: ≤3 years (Young), 7-12 years (Adolescent), 12-15 years (Adult) and 17-23 years (Aged). Gingival tissue biopsies were examined via microarray. The analysis focused on 51 genes representative of the DAMPs/alarmins family of host cell warning factors and 18 genes associated with tissue destructive processed in the gingival tissues. Bacterial plaque samples were collected by curette sampling and 16S rRNA gene sequences used to describe the oral microbiome. Results A subset of DAMPs/alarmins were expressed in healthy and naturally-occurring periodontitis tissues in the animals and suggested local effects on gingival tissues leading to altered levels of DAMPs/alarmins related to age and disease. Significant differences from adult healthy levels were most frequently observed in the young and adolescent animals with few representatives in this gene array altered in the healthy aged gingival tissues. Of the 51 target genes, only approximately ⅓ were altered by ≥1.5-fold in any of the age groups of animals during disease, with those increases observed during disease initiation. Distinctive positive and negative correlations were noted with the DAMP/alarmin gene levels and comparative expression changes of tissue destructive molecules during disease across the age groups. Finally, specific correlations of DAMP/alarmin genes and relative abundance of particular microbes were observed in health and resolution samples in younger animals, while increased correlations during disease in the older groups were noted. Conclusions Thus, using this human-like preclinical model of induced periodontitis, we demonstrated the dynamics of the activation of the DAMP/alarmin warning system in the gingival tissues that showed some specific differences based on age.
Collapse
Affiliation(s)
- O. A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S. S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - J. L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
12
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Prasetyo EP, Sampoerno G, Juniarti DE, Cahyani F, Saraswati W, Kuntjoro M, Tjendronegoro E. Effect of Lipopolysaccharide-Induced Apical Periodontitis in Diabetes Mellitus Rats on Periapical Inflammation. Eur J Dent 2023; 17:1146-1152. [PMID: 36599453 PMCID: PMC10756800 DOI: 10.1055/s-0042-1758790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To evaluate periapical inflammation through immunohistochemical analysis of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-a) expression resulting from lipopolysaccharide (LPS)-induced apical periodontitis in diabetes mellitus rats, observed at 14, 28, and 42 days. MATERIALS AND METHODS Diabetes model on rats was induced by streptozotocin (STZ). Fifteen rats were injected with low-dose STZ for 5 days and waited for 5 days until the blood glucose level was stable and measured above 300 mg/dL confirmed by a digital glucometer. LPS was used to induce apical periodontitis. After performing access cavity, pulpal and root canal extirpation was done on the right mandibular first molar's root canal space of rats, under anesthesia. LPS of 1 mg/mL dose was induced in the pulpal and root canal space. Apical periodontitis was expected 14 days afterward and then, the rats were randomly allocated to three groups. The first group was terminated 14 days after induction and used as control. The second group was observed 28 days after induction, and the third group was observed 42 days after induction. IL-6 and TNF-a expression was analyzed by immunohistochemistry on macrophages in the periapical area. STATISTICAL ANALYSIS Data were analyzed using one-way ANOVA and continued with the post hoc Tukey HSD test. Significance was considered if p < 0.05. RESULTS LPS induced apical periodontitis in diabetes mellitus rats at control (14 days), 28 and 42 days observation showed a significant increase in the expression of IL-6 and TNF-a. There were significant differences between the control and observed groups (p < 0.05). The expression of IL-6 in the apical area was not significant at 14 and 28 days (p > 0.05) but increased significantly at 42 days (p < 0.05). The expression of TNF-a in the apical area was significantly increased after 14 days (p < 0.05) and remained stable at 28 and 42 days (p > 0.05). CONCLUSIONS The periapical inflammation of LPS-induced apical periodontitis in diabetes mellitus rats increased macrophages' expression of IL-6 at 42 days and TNF-a at 28 days.
Collapse
Affiliation(s)
- Eric Priyo Prasetyo
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Galih Sampoerno
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Devi Eka Juniarti
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Febriastuti Cahyani
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Widya Saraswati
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mefina Kuntjoro
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Evelyn Tjendronegoro
- Healthcare and Research, Irvine Medical Center, University of California, Irvine, California, United States
| |
Collapse
|
14
|
Su BY, Chen ZJ, Lv JC, Wang ZG, Huang FW, Liu Y, Luo E, Wang J, Xu JZ, Li ZM. Scalable Fabrication of Polymeric Composite Microspheres to Inhibit Oral Pathogens and Promote Osteogenic Differentiation of Periodontal Membrane Stem Cells. ACS Biomater Sci Eng 2023; 9:4431-4441. [PMID: 37452570 DOI: 10.1021/acsbiomaterials.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Periodontitis is a worldwide bacterial infectious disease, resulting in the resorption of tooth-supporting structures. Biodegradable polymeric microspheres are emerging as an appealing local therapy candidate for periodontal defect regeneration but suffer from tedious procedures and low yields. Herein, we developed a facile yet scalable approach to prepare polylactide composite microspheres with outstanding drug-loading capability. It was realized by blending equimolar polylactide enantiomers at the temperature between the melting point of homocrystallites and stereocomplex (sc) crystallites, enabling the precipitation of sc crystallites in the form of microspheres. Meanwhile, epigallocatechin gallate (EGCG) and nano-hydroxyapatite were encapsulated in the microspheres in the designated amount. Such an assembly allowed the fast and sustained release of EGCG and Ca2+ ions. The resultant hybrid composite microspheres not only exhibited strong antimicrobial activity against typical oral pathogens (Porphyromonas gingivalis and Enterococcus faecalis), but also directly promoted osteogenic differentiation of periodontal ligament stem cells with good cytocompatibility. These dual-functional composite microspheres offer a desired drug delivery platform to address the practical needs for periodontitis treatment.
Collapse
Affiliation(s)
- Biao-Yao Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Cheng Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fu-Wen Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Hascoët E, Blanchard F, Blin-Wakkach C, Guicheux J, Lesclous P, Cloitre A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res 2023; 11:26. [PMID: 37217496 DOI: 10.1038/s41413-023-00257-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.
Collapse
Affiliation(s)
- Emilie Hascoët
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Frédéric Blanchard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | | | - Jérôme Guicheux
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
| | - Philippe Lesclous
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexandra Cloitre
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| |
Collapse
|
16
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
17
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Gopinath VK, Mohammad MG, Sheela S. Immunomodulatory effect of IL-1RA in LPS-activated macrophage/dental pulp stem cells co-culture. Int Endod J 2023; 56:27-38. [PMID: 36190353 DOI: 10.1111/iej.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
AIMS Lipopolysaccharides (LPS)-activated human dental pulp stem cells (hDPSCs) and macrophage co-cultures showed downregulated TNF-α secretion that is modulated by hDPSCs through IDO axis, whereas the secretory levels of IL-1β remained unchanged. Therefore, sustained production of IL-1β could contribute to progressive dental pulp inflammation. However, the role of interleukin-1 receptor antagonist (IL-1RA) in downregulating the secretion of IL-1β and TNF-α in LPS-activated M0/M1/M2 macrophage and hDPSCs co-culture has not been studied yet. Therefore, the aim of the present study was to determine the immunomodulatory role of blocking IL-1 receptors in DPSCs macrophage co-culture activated with LPS. METHODOLOGY Human monocytic cell line THP-1 was polarized to M0, M1 and M2 macrophages and co-cultured with hDPSCs. The viability of the co-cultured cells was assessed by apoptosis assay. Co-cultures were activated with LPS followed by the assessment of gene expression and protein levels of IL-1β and TNF-α with and without IL-1RA blocking via qRT-PCR and cytokine flex assay by flow cytometry. Data from three separate experiments were analysed using one-way anova followed by Tukey's post hoc test and a p-value of <.05 was considered statistically significant. RESULTS THP-1-derived M0, M1 and M2 macrophages co-cultured with hDPSCs showed spindle and round-shaped cells, with >90% viability when assessed by apoptosis assay. Inflammatory TNF-α and IL-1β profiles in stimulated co-cultures showed upregulated IL-1β, whereas TNF-α was downregulated (p < .05). Anti-inflammatory gene expression levels of IL-10 and TGF-β were downregulated (p < .05). Blocking with IL-1RA resulted in a remarkable decrease in IL-1β at the gene expression and protein production levels whilst TNF-α levels remained low (p < .05). Levels of anti-inflammatory cytokine IL-10 showed no significant difference. CONCLUSION Blocking the IL-1 receptor in hDPSCs and macrophage (M0, M1, M2) co-cultures activated with LPS resulted in downregulation of inflammatory cytokines IL-1β and TNF-α. These findings highlight the immunomodulatory effect of IL-1RA in inflammatory conditions of dental pulp infections.
Collapse
Affiliation(s)
- Vellore Kannan Gopinath
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Mohammad G Mohammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| |
Collapse
|
19
|
An Injectable Hydrogel Scaffold Loaded with Dual-Drug/Sustained-Release PLGA Microspheres for the Regulation of Macrophage Polarization in the Treatment of Intervertebral Disc Degeneration. Int J Mol Sci 2022; 24:ijms24010390. [PMID: 36613833 PMCID: PMC9820357 DOI: 10.3390/ijms24010390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Due to the unique physical characteristics of intervertebral disc degeneration (IVDD) and the pathological microenvironment that it creates, including inflammation and oxidative stress, effective self-repair is impossible. During the process of intervertebral disc degeneration, there is an increase in the infiltration of M1 macrophages and the secretion of proinflammatory cytokines. Here, we designed a novel injectable composite hydrogel scaffold: an oligo [poly (ethylene glycol) fumarate]/sodium methacrylate (OPF/SMA) hydrogel scaffold loaded with dual-drug/sustained-release PLGA microspheres containing IL-4 (IL-4-PLGA) and kartogenin (KGN-PLGA). This scaffold exhibited good mechanical properties and low immunogenicity while also promoting the sustained release of drugs. By virtue of the PLGA microspheres loaded with IL-4 (IL-4-PLGA), the composite hydrogel scaffold induced macrophages to transition from the M1 phenotype into the M2 phenotype during the early induced phase and simultaneously exhibited a continuous anti-inflammatory effect through the PLGA microspheres loaded with kartogenin (KGN-PLGA). Furthermore, we investigated the mechanisms underlying the immunomodulatory and anti-inflammatory effects of the composite hydrogel scaffold. We found that the scaffold promoted cell proliferation and improved cell viability in vitro. While ensuring mechanical strength, this composite hydrogel scaffold regulated the local inflammatory microenvironment and continuously repaired tissue in the nucleus pulposus via the sequential release of drugs in vivo. When degenerative intervertebral discs in a rat model were injected with the scaffold, there was an increase in the proportion of M2 macrophages in the inflammatory environment and higher expression levels of type II collagen and aggrecan; this was accompanied by reduced levels of MMP13 expression, thus exhibiting long-term anti-inflammatory effects. Our research provides a new strategy for promoting intervertebral disc tissue regeneration and a range of other inflammatory diseases.
Collapse
|
20
|
An injectable multifunctional thermo-sensitive chitosan-based hydrogel for periodontitis therapy. BIOMATERIALS ADVANCES 2022; 142:213158. [PMID: 36288629 DOI: 10.1016/j.bioadv.2022.213158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Bacteria are recognized as the driving factors of periodontitis. However, excessive reactive oxygen species (ROS) can harm periodontal tissue while also causing an uncontrolled inflammatory response. Hence, eliminating excessive ROS and blocking ROS-induced abnormal inflammatory response by antioxidants are achieving remarkable results in periodontitis therapy. Moreover, influenced by the deep and irregular periodontal pockets, injectable thermo-sensitive chitosan-based hydrogels have attracted a lot of attention. This study aimed to formulate an antibacterial and antioxidant therapeutic regimen by incorporating antimicrobial peptides (Nal-P-113) and/or antioxidants (polydopamine nanoparticles, PDNPs) into chitosan-based hydrogels. The hydrogel was characterized in vitro and finally examined in rats using the experimental periodontitis model. The release kinetics showed that the hydrogel could stably release Nal-P-113 and PDNPs for up to 13 days. The scavenging activity of the hydrogel against DPPH was about 80 % and the antibacterial ratio against Streptococcus gordonii (S. gordonii), Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis) was about 99 %. Importantly, it was examined that the hydrogel had the ability to prevent periodontal tissue damage. Thus, chitosan-based hydrogels may provide a basis for designing multifunctional local drug delivery biomaterials for the treatment of periodontitis.
Collapse
|
21
|
Huang H, Zhang P, Xiang C, Zeng C, Du Q, Huang W. Effect of bone marrow mesenchymal stem cell transplantation combined with lugua polypeptide injection on osteoarthritis in rabbit knee joint. Connect Tissue Res 2022; 63:370-381. [PMID: 34355626 DOI: 10.1080/03008207.2021.1962314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE This study aimed to elucidate the effect of bone marrow mesenchymal stem cell (BMSC) transplantation combined with the administration of Lugua polypeptide injection into the knee joint cavity to treat knee osteoarthritis (KOA) in rabbits. MATERIAL AND METHODS Sixty white New Zealand rabbits were randomly divided into the blank, model, Lugua polypeptide, BMSC, and combined (Lugua polypeptide plus BMSC) groups, with 12 rabbits in each group. The mRNA and protein expression levels of cyclin D1, bcl-2, TIMP-1, p21, caspase-3, Bax, MMP-1, MMP-13, TLR-4, and NF-κB p65 in chondrocytes, and levels of IL-1, NO, TNF-α, and IL-6 in the synovial fluid were compared. RESULTS The severity of cartilage damage in the combined group was significantly less (P <0.01). Compared to the MG, the mRNA and protein expression levels of cyclin D1, bcl-2 and TIMP-1 in chondrocytes of the three other groups were significantly increased, while those of p21, caspase-3, Bax, MMP-1, MMP-13, TLR-4, and NF-κB p65 in the chondrocytes and levels of IL-1, NO, TNF-α, and IL-6 in the synovial fluid of the three other groups were significantly reduced (P <0.05). The aforementioned indicators in the combined group were significantly better than those of the Lugua polypeptide and BMSCs groups (P <0.05). CONCLUSIONS BMSC transplantation combined with Lugua polypeptide injection may improve KOA-related cartilage tissue damage in rabbits.
Collapse
Affiliation(s)
- Huajun Huang
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Shunde, China.,Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Devision of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunling Xiang
- Devision of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingjun Du
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Shunde, China
| | - Wenhua Huang
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
22
|
Wang X, Sun H, Song M, Yan G, Wang Q. The Biodegradability and in Vitro Cytological Study on the Composite of PLGA Combined With Magnesium Metal. Front Bioeng Biotechnol 2022; 10:859280. [PMID: 35372307 PMCID: PMC8965571 DOI: 10.3389/fbioe.2022.859280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The main goal of this study was to develop a novel poly (lactic-co-glycolic acid) (PLGA) composite biodegradable material with magnesium (Mg) metal to overcome the acidic degradation of PLGA and to investigate the cytocompatibility and osteogenesis of the novel material. PLGA composites with 5 and 10 wt% Mg were prepared. The samples were initially cut into 10 mm × 10 mm films, which were used to detect the pH value to evaluate the self-neutralized ability. Murine embryo osteoblast precursor (MC3T3-E1) cells were used for in vitro experiments to evaluate the cytotoxicity, apoptosis, adhesion, and osteogenic differentiation effect of the composite biodegradable material. pH monitoring showed that the average value of PLGA with 10 wt% Mg group was closer to the normal physiological environment than that of other groups. Cell proliferation and adhesion assays indicated no significant difference between the groups, and all the samples showed no toxicity to cells. As for cell apoptosis detection, the rate of early apoptotic cells was proportional to the ratio of Mg. However, the ratios of the experimental groups were lower than those of the control group. Alkaline phosphatase activity staining demonstrated that PLGA with 10 wt% Mg could effectively improve the osteogenic differentiation of MC3T3-E1 cells. In summary, PLGA with 10 wt% Mg possessed effective osteogenic properties and cytocompatibility and therefore could provide a wide range of applications in bone defect repair and scaffold-based tissue engineering in clinical practice.
Collapse
Affiliation(s)
- Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hui Sun
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Mang Song
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Guangqi Yan,
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
23
|
Lin J, Huang J, Wu J, Tang B, Li C, Xiao H. Poly(lactic acid-co-glycolic acid)-based celecoxib extended-release microspheres for the local treatment of traumatic heterotopic ossification. J Biomater Appl 2022; 36:1458-1468. [PMID: 35043696 DOI: 10.1177/08853282211056937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic heterotopic ossification (THO) is a serious and common clinical post-traumatic complication for which there is no effective and safe drug treatment. Routine administration of nonsteroidal anti-inflammatory drugs (NSAIDs) after injury is extensively used approach for THO. However, serious adverse events can occur in the event of an overdose of NSAIDs. In our study, we have developed a poly(lactic acid-co-glycolic acid) (PLGA) microsphere by emulsifying solvent volatilization for the prolonged slow delivery of celecoxib (CLX). Three groups of celecoxib-poly(lactic acid-co-glycolic acid) microspheres (CLX-PLGA MPs) were prepared with particle sizes of 3.75±1.28 μm, 49.56±17.15 μm, and 94.98±42.53 μm. Meanwhile, related parameters of microspheres in each group were studied: drug loading (DL), encapsulation rate (EE), and slow-release behavior. The DL and EE of the 3 CLX-PLGA MPs did not vary significantly, and subsequently, we selected the second drug loading microspheres with a retardation period of about 70 days for subsequent experiments. Moreover, cellular and animal experiments suggest that the microspheres are biocompatible and can be safely applied to localized trauma tissue. Finally, it is demonstrated that CLX-PLGA MPs have an effect on inhibiting the osteogenic differentiation of bone marrow mesenchymal stem cells and have the potential to inhibit ectopic bone formation of the THO model in Sprague-Dawley rat. Therefore, this study suggests that CLX-PLGA MPs are expected to be applied topically in the early post-traumatic period to prevent the development of THO.
Collapse
Affiliation(s)
- Jialiang Lin
- The Third Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Junchao Huang
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Jiang Wu
- Tinglin Hospital of Jinshan District, Shanghai, China
| | - Bo Tang
- The Third Clinical Medical College of Southern Medical University, Guangzhou, China
| | - Congbin Li
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Haijun Xiao
- Affiliated Fengxian Hospital to Southern Medical University, Shanghai, China
| |
Collapse
|
24
|
Yang Y, Ren D, Zhao D, Zhang B, Ye R. MicroRNA-203 mediates P. gingivalis LPS-induced inflammation and differentiation of periodontal ligament cells. Oral Dis 2022; 29:1715-1725. [PMID: 35034420 DOI: 10.1111/odi.14132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/07/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023]
Abstract
AIM In this study, we aimed to explore the effects of microRNA-203 (miR-203) on P. gingivalis lipopolysaccharide (P.g. LPS)-stimulated periodontal ligament cells (PDLCs) and identify potential molecular targets for periodontitis treatment. METHODS PDLCs were stimulated by P.g. LPS, followed by quantification of miR-203 and AP-1 expression. Next, loss- and gain-of-function experiments were applied in P.g. LPS-induced PDLCs. The proliferation, apoptosis, and differentiation of PDLCs were determined and mineralized nodule numbers were counted. Functional assays were used to identify interactions among miR-203, activator protein 1 (AP-1), and intercellular adhesion molecule 1 (ICAM-1). In addition, expression of osteogenesis-related genes and release of proinflammatory factors were analyzed. RESULTS miR-203 was found to be downregulated while AP-1 was upregulated in PDLCs stimulated by P.g. LPS. The overexpression of miR-203 promoted P.g. LPS-stimulated PDLC proliferation and differentiation, inhibited apoptosis, and increased the number of mineralized nodules. miR-203 was verified to downregulate AP-1/ICAM-1 axis. miR-203 overexpression reduced the secretion of proinflammatory factors while increasing expression of osteogenesis-related genes in P.g. LPS-stimulated PDLCs, which was reversed by overexpressing AP-1 and ICAM-1. CONCLUSION These experimental data demonstrated the potential inhibitory effects of overexpressed miR-203 on periodontitis development by promoting PDLC differentiation and suppressing inflammatory responses through AP-1/ICAM-1 axis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Dongping Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Duo Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 610041, Sichuan, China
| |
Collapse
|
25
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
26
|
Preparation and Sustained-Release Performance of PLGA Microcapsule Carrier System. NANOMATERIALS 2021; 11:nano11071758. [PMID: 34361144 PMCID: PMC8308152 DOI: 10.3390/nano11071758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Microcapsules have been widely studied owing to their biocompatibility and potential for application in various areas, particularly drug delivery. However, the size of microcapsules is difficult to control, and the size distribution is very broad via various encapsulation techniques. Therefore, it is necessary to obtain microcapsules with uniform and tailored size for the construction of controlled-release drug carriers. In this study, emulsification and solvent evaporation methods were used to prepare a variety of ovalbumin-loaded poly (lactic-co-glycolic acid) (PLGA) microcapsules to determine the optimal preparation conditions. The particle size of the PLGA microcapsules prepared using the optimum conditions was approximately 200 nm, which showed good dispersibility with an ovalbumin encapsulation rate of more than 60%. In addition, porous microcapsules with different pore sizes were prepared by adding a varying amount of porogen bovine serum albumin (BSA) to the internal water phase. The release curve showed that the rate of protein release from the microcapsules could be controlled by adjusting the pore size. These findings demonstrated that we could tailor the morphology and structure of microcapsules by regulating the preparation conditions, thus controlling the encapsulation efficiency and the release performance of the microcapsule carrier system. We envision that this controlled-release novel microcapsule carrier system shows great potential for biomedical applications.
Collapse
|
27
|
Baranov N, Popa M, Atanase LI, Ichim DL. Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis. Molecules 2021; 26:2735. [PMID: 34066568 PMCID: PMC8125343 DOI: 10.3390/molecules26092735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Periodontal diseases are worldwide health problems that negatively affect the lifestyle of many people. The long-term effect of the classical treatments, including the mechanical removal of bacterial plaque, is not effective enough, causing the scientific world to find other alternatives. Polymer-drug systems, which have different forms of presentation, chosen depending on the nature of the disease, the mode of administration, the type of polymer used, etc., have become very promising. Hydrogels, for example (in the form of films, micro-/nanoparticles, implants, inserts, etc.), contain the drug included, encapsulated, or adsorbed on the surface. Biologically active compounds can also be associated directly with the polymer chains by covalent or ionic binding (polymer-drug conjugates). Not just any polymer can be used as a support for drug combination due to the constraints imposed by the fact that the system works inside the body. Biopolymers, especially polysaccharides and their derivatives and to a lesser extent proteins, are preferred for this purpose. This paper aims to review in detail the biopolymer-drug systems that have emerged in the last decade as alternatives to the classical treatment of periodontal disease.
Collapse
Affiliation(s)
- Nicolae Baranov
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania;
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| | | | | |
Collapse
|