1
|
Zhao L, Tian C, Yang Y, Guan H, Wei Y, Zhang Y, Kang X, Zhou L, Li Q, Ma J, Wan L, Zheng Y, Tong X. Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19. Front Med 2023; 17:1014-1029. [PMID: 38157191 DOI: 10.1007/s11684-023-1040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
Traditional Chinese medicine (TCM) has played an important role in the prevention and treatment of Coronavirus disease 2019 (COVID-19) epidemic in China. The integration of Chinese and Western medicine is an important feature of Chinese COVID-19 prevention and treatment. According to a series of evidence-based studies, TCM can reduce the infection rate of severe acute respiratory syndrome coronavirus 2 in high-risk groups. For patients with mild and moderate forms of COVID-19, TCM can relieve the related signs and symptoms, shorten the period of nucleic-acid negative conversion, and reduce conversion rate to the severe form of the disease. For COVID-19 patients with severe and critical illnesses, TCM can improve inflammatory indicators and blood oxygen saturation, shorten the hospital stay, and reduce the mortality rate. During recovery, TCM can improve patients' symptoms, promote organ function recovery, boost the quality of patients' life, and reduce the nucleic-acid repositive conversion rate. A series of mechanism research studies revealed that capability of TCM to treat COVID-19 through antiviral and anti-inflammatory effects, immune regulation, and protection of organ function via a multicomponent, multitarget, and multipathway approach.
Collapse
Affiliation(s)
- Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chuanxi Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingying Yang
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaomin Kang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qingwei Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Li Wan
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
2
|
Elkaeed EB, Alsfouk BA, Ibrahim TH, Arafa RK, Elkady H, Ibrahim IM, Eissa IH, Metwaly AM. Computer-assisted drug discovery of potential natural inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase through a multi-phase in silico approach. Antivir Ther 2023; 28:13596535231199838. [PMID: 37669909 DOI: 10.1177/13596535231199838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND The COVID-19 pandemic has led to significant loss of life and economic disruption worldwide. Currently, there are limited effective treatments available for this disease. SARS-CoV-2 RNA-dependent RNA polymerase (SARS-CoV-2 RdRp) has been identified as a potential target for drug development against COVID-19. Natural products have been shown to possess antiviral properties, making them a promising source for developing drugs against SARS-CoV-2. OBJECTIVES The objective of this study is to identify the most effective natural inhibitors of SARS-CoV-2 RdRp among a set of 4924 African natural products using a multi-phase in silico approach. METHODS The study utilized remdesivir (RTP), the co-crystallized ligand of RdRp, as a starting point to select compounds that have the most similar chemical structures among the examined set of compounds. Molecular fingerprints and structure similarity studies were carried out in the first part of the study. The second part of the study included molecular docking against SARS-CoV-2 RdRp (PDB ID: 7BV2) and Molecular Dynamics (MD) simulations including the calculation of RMSD, RMSF, Rg, SASA, hydrogen bonding, and PLIP. Moreover, the calculations of Molecular mechanics with generalised Born and surface area solvation (MM-GBSA) Lennard-Jones and Columbic electrostatic interaction energies have been conducted. Additionally, in silico ADMET and toxicity studies were performed to examine the drug likeness degrees of the selected compounds. RESULTS Eight compounds were identified as the most effective natural inhibitors of SARS-CoV-2 RdRp. These compounds are kaempferol 3-galactoside, kaempferol 3-O-β-D-glucopyranoside, mangiferin methyl ether, luteolin 7-O-β-D-glucopyranoside, quercetin-O-β-D-3-glucopyranoside, 1-methoxy-3-indolylmethyl glucosinolate, naringenin, and asphodelin A 4'-O-β-D-glucopyranoside. CONCLUSION The results of this study provide valuable information for the development of natural product-based drugs against COVID-19. However, the elected compounds should be further studied in vitro and in vivo to confirm their efficacy in treating COVID-19.
Collapse
Affiliation(s)
- Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tuqa H Ibrahim
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
3
|
Zhang S, Wang B, Yin L, Wang S, Hu W, Song X, Feng H. Novel Evidence Showing the Possible Effect of Environmental Variables on COVID-19 Spread. GEOHEALTH 2022; 6:e2021GH000502. [PMID: 35317468 PMCID: PMC8923516 DOI: 10.1029/2021gh000502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/09/2023]
Abstract
Coronavirus disease (COVID-19) remains a serious issue, and the role played by meteorological indicators in the process of virus spread has been a topic of academic discussion. Previous studies reached different conclusions due to inconsistent methods, disparate meteorological indicators, and specific time periods or regions. This manuscript is based on seven daily meteorological indicators in the NCEP reanalysis data set and COVID-19 data repository of Johns Hopkins University from 22 January 2020 to 1 June 2021. Results showed that worldwide average temperature and precipitable water (PW) had the strongest correlation (ρ > 0.9, p < 0.001) with the confirmed COVID-19 cases per day from 22 January to 31 August 2020. From 22 January to 31 August 2020, positive correlations were observed between the temperature/PW and confirmed COVID-19 cases/deaths in the northern hemisphere, whereas negative correlations were recorded in the southern hemisphere. From 1 September to 31 December 2020, the opposite results were observed. Correlations were weak throughout the near full year, and weak negative correlations were detected worldwide (|ρ| < 0.4, p ≤ 0.05); the lag time had no obvious effect. As the latitude increased, the temperature and PW of the maximum confirmed COVID-19 cases/deaths per day generally showed a decreasing trend; the 2020-year fitting functions of the response latitude pattern were verified by the 2021 data. Meteorological indicators, although not a decisive factor, may influence the virus spread by affecting the virus survival rates and enthusiasm of human activities. The temperature or PW threshold suitable for the spread of COVID-19 may increase as the latitude decreases.
Collapse
Affiliation(s)
- Sixuan Zhang
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| | - Bingyun Wang
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| | - Li Yin
- Panzhihua Central HospitalPanzhihuaChina
| | - Shigong Wang
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
- Zunyi Academician Work CenterZunyiChina
| | - Wendong Hu
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| | - Xueqian Song
- College of ManagementChengdu University of Information TechnologyChengduChina
| | - Hongmei Feng
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| |
Collapse
|
4
|
Negahdaripour M, Rahbar MR, Mosalanejad Z, Gholami A. Theta-Defensins to Counter COVID-19 as Furin Inhibitors: In Silico Efficiency Prediction and Novel Compound Design. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9735626. [PMID: 35154362 PMCID: PMC8829439 DOI: 10.1155/2022/9735626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/28/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health Organization (WHO) in Dec. 2019. SARS-CoV-2 binds to the cell membrane through spike proteins on its surface and infects the cell. Furin, a host-cell enzyme, possesses a binding site for the spike protein. Thus, molecules that block furin could potentially be a therapeutic solution. Defensins are antimicrobial peptides that can hypothetically inhibit furin because of their arginine-rich structure. Theta-defensins, a subclass of defensins, have attracted attention as drug candidates due to their small size, unique structure, and involvement in several defense mechanisms. Theta-defensins could be a potential treatment for COVID-19 through furin inhibition and an anti-inflammatory mechanism. Note that inflammatory events are a significant and deadly condition that could happen at the later stages of COVID-19 infection. Here, the potential of theta-defensins against SARS-CoV-2 infection was investigated through in silico approaches. Based on docking analysis results, theta-defensins can function as furin inhibitors. Additionally, a novel candidate peptide against COVID-19 with optimal properties regarding antigenicity, stability, electrostatic potential, and binding strength was proposed. Further in vitro/in vivo investigations could verify the efficiency of the designed novel peptide.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mosalanejad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Tripp RA, Stambas J. Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses 2021; 13:v13040625. [PMID: 33917411 PMCID: PMC8067509 DOI: 10.3390/v13040625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines and therapeutics targeting viral surface glycoproteins are a major component of disease prevention for respiratory viral diseases. Over the years, vaccines have proven to be the most successful intervention for preventing disease. Technological advances in vaccine platforms that focus on viral surface glycoproteins have provided solutions for current and emerging pathogens like SARS-CoV-2, and our understanding of the structural basis for antibody neutralization is guiding the selection of other vaccine targets for respiratory viruses like RSV. This review discusses the role of viral surface glycoproteins in disease intervention approaches.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30605, USA
- Correspondence:
| | - John Stambas
- School of Medicine, Geelong Waurn Ponds, Deakin University, Melbourne, VIC 3125, Australia;
| |
Collapse
|