1
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Liu Q, Wang D, Cui M, Li M, Zhang XE. A genetically encoded fluorescent protein sensor for mitochondrial membrane damage detection. Biochem Biophys Res Commun 2024; 709:149836. [PMID: 38564937 DOI: 10.1016/j.bbrc.2024.149836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.
Collapse
Affiliation(s)
- Qian Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Pourhajibagher M, Alaeddini M, Etemad-Moghadam S, Parker S, Bahador A. Effects of Kojic Acid-mediated Sonodynamic Therapy as a Matrix Metalloprotease-9 Inhibitor against Oral Squamous Cell Carcinoma: A Bioinformatics Screening and In Vitro Analysis. Curr Drug Discov Technol 2024; 21:e011223224137. [PMID: 38073102 DOI: 10.2174/0115701638266082231124055825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 08/30/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a type of cancer that is responsible for a significant amount of morbidity and mortality worldwide. Researchers are searching for promising therapeutic methods to manage this cancer. In this study, an in silico approach was used to evaluate the activity of sonodynamic therapy (SDT) based on the use of Kojic acid as a sonosensitizer to inhibit matrix metalloprotease-9 (MMP-9) in OSCC. MATERIALS AND METHODS The three-dimensional structure of MMP-9 was predicted and validated by computational approaches. The possible functional role of MMP-9 was determined in terms of Gene Ontology (GO) enrichment analysis. In silico, molecular docking was then performed to evaluate the binding energies of Kojic acid with MMP-9, and ADME parameters and toxicity risks were predicted. The pharmacokinetics and drug-likeness properties of Kojic acid were assessed. Moreover, after the determination of the cytotoxicity effect of Kojic acid-mediated SDT, the change of mmp-9 gene expression was assessed on OSCC cells. RESULTS The results of the study showed that Kojic acid could efficiently interact with MMP-9 protein with a strong binding affinity. Kojic acid obeyed Lipinski's rule of five without violation and exhibited drug-likeness. The cytotoxic effects of Kojic acid and ultrasound waves on the OSCC cells were dose-dependent, and the lowest expression level of the mmp-9 gene was observed in SDT. CONCLUSIONS Overall, Kojic acid-mediated SDT as an MMP-9 inhibitor can be a promising adjuvant treatment for OSCC. The study highlights the potential of In silico approaches to evaluate therapeutic methods for cancer treatment.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
4
|
Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Phenotypic Characterization of 2D and 3D Prostate Cancer Cell Systems Using Electrical Impedance Spectroscopy. BIOSENSORS 2023; 13:1036. [PMID: 38131796 PMCID: PMC10742279 DOI: 10.3390/bios13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Prostate cancer is the second leading cause of death in men. A challenge in treating prostate cancer is overcoming cell plasticity, which links cell phenotype changes and chemoresistance. In this work, a microfluidic device coupled with electrical impedance spectroscopy (EIS), an electrode-based cell characterization technique, was used to study the electrical characteristics of phenotype changes for (1) prostate cancer cell lines (PC3, DU145, and LNCaP cells), (2) cells grown in 2D monolayer and 3D suspension cell culture conditions, and (3) cells in the presence (or absence) of the anti-cancer drug nigericin. To validate observations of phenotypic change, we measured the gene expression of two epithelial markers, E-cadherin (CDH1) and Tight Junction Protein 1 (ZO-1). Our results showed that PC3, DU145, and LNCaP cells were discernible with EIS. Secondly, moderate phenotype changes based on differences in cell culture conditions were detected with EIS and supported by the gene expression of CDH1. Lastly, we showed that EIS can detect chemoresistant-related cell phenotypes with nigericin drug treatment. EIS is a promising label-free tool for detecting cell phenotype changes associated with chemoresistance. Further development will enable the detection and characterization of many other types of cancer cells.
Collapse
Affiliation(s)
- Lexi L. Crowell
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA;
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA;
| | - Brian Aufderheide
- Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA;
| | - Tayloria N. G. Adams
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA;
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
6
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
7
|
Wu L, Bai S, Huang J, Cui G, Li Q, Wang J, Du X, Fu W, Li C, Wei W, Lin H, Luo ML. Nigericin Boosts Anti-Tumor Immune Response via Inducing Pyroptosis in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:3221. [PMID: 37370831 DOI: 10.3390/cancers15123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Although immune checkpoint inhibitors improved the clinical outcomes of advanced triple negative breast cancer (TBNC) patients, the response rate remains relatively low. Nigericin is an antibiotic derived from Streptomyces hydrophobicus. We found that nigericin caused cell death in TNBC cell lines MDA-MB-231 and 4T1 by inducing concurrent pyroptosis and apoptosis. As nigericin facilitated cellular potassium efflux, we discovered that it caused mitochondrial dysfunction, leading to mitochondrial ROS production, as well as activation of Caspase-1/GSDMD-mediated pyroptosis and Caspase-3-mediated apoptosis in TNBC cells. Notably, nigericin-induced pyroptosis could amplify the anti-tumor immune response by enhancing the infiltration and anti-tumor effect of CD4+ and CD8+ T cells. Moreover, nigericin showed a synergistic therapeutic effect when combined with anti-PD-1 antibody in TNBC treatment. Our study reveals that nigericin may be a promising anti-tumor agent, especially in combination with immune checkpoint inhibitors for advanced TNBC treatment.
Collapse
Affiliation(s)
- Lisha Wu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shoumin Bai
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing Huang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guohui Cui
- South China National Bio-Safety Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510600, China
| | - Qingjian Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jingshu Wang
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xin Du
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chuping Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huan Lin
- Department of Breast Oncology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
8
|
Coulet M, Lachkar S, Leduc M, Trombe M, Gouveia Z, Perez F, Kepp O, Kroemer G, Basmaciogullari S. Identification of Small Molecules Affecting the Secretion of Therapeutic Antibodies with the Retention Using Selective Hook (RUSH) System. Cells 2023; 12:1642. [PMID: 37371112 DOI: 10.3390/cells12121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Unlocking cell secretion capacity is of paramount interest for the pharmaceutical industry focused on biologics. Here, we leveraged retention using a selective hook (RUSH) system for the identification of human osteosarcoma U2OS cell secretion modulators, through automated, high-throughput screening of small compound libraries. We created a U2OS cell line which co-expresses a variant of streptavidin addressed to the lumen-facing membrane of the endoplasmic reticulum (ER) and a recombinant anti-PD-L1 antibody. The heavy chain of the antibody was modified at its C-terminus, to which a furin cleavage site, a green fluorescent protein (GFP), and a streptavidin binding peptide (SBP) were added. We show that the U2OS cell line stably expresses the streptavidin hook and the recombinant antibody bait, which is retained in the ER through the streptavidin-SBP interaction. We further document that the addition of biotin to the culture medium triggers the antibody release from the ER, its trafficking through the Golgi where the GFP-SBP moiety is clipped off, and eventually its release in the extra cellular space, with specific antigen-binding properties. The use of this clone in screening campaigns led to the identification of lycorine as a secretion enhancer, and nigericin and tyrphostin AG-879 as secretion inhibitors. Altogether, our data support the utility of this approach for the identification of agents that could be used to improve recombinant production yields and also for a better understanding of the regulatory mechanism at work in the conventional secretion pathway.
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Sylvie Lachkar
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Marion Leduc
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | | | - Zelia Gouveia
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | | |
Collapse
|
9
|
Sousa ESA, Queiroz LAD, Guimarães JPT, Pantoja KC, Barros RS, Epiphanio S, Martins JO. The influence of high glucose conditions on macrophages and its effect on the autophagy pathway. Front Immunol 2023; 14:1130662. [PMID: 37122742 PMCID: PMC10130370 DOI: 10.3389/fimmu.2023.1130662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Macrophages are central cells in mediating the inflammatory response. Objective and Methods We evaluated the effect of high glucose conditions on the inflammatory profile and the autophagy pathway in Bone-Marrow Derived Macrophages (BMDM) from diabetic (D-BMDM) (alloxan: 60mg/kg, i.v.) and non-diabetic (ND-BMDM) C57BL/6 mice. BMDM were cultured in medium with normal glucose (5.5 mM), or high glucose (25 mM) concentration and were primed with Nigericin (20µM) stimulated with LPS (100 ng/mL) at times of 30 minutes; 2; 4; 6 and 24 hours, with the measurement of IL-6, IL-1β and TNF-α cytokines. Results We have further identified changes in the secretion of pro-inflammatory cytokines IL-6, IL-1β and TNF-α, where BMDM showed increased secretion of these cytokines after LPS + Nigericin stimulation. In addition, changes were observed in the autophagy pathway, where the increase in the autophagic protein LC3b and Beclin-1 occurred by macrophages of non-diabetic animals in hyperglycemic medium, without LPS stimulation. D-BMDM showed a reduction on the expression of LC3b and Beclin-1, suggesting an impaired autophagic process in these cells. Conclusion The results suggest that hyperglycemia alters the inflammatory pathways in macrophages stimulated by LPS, playing an important role in the inflammatory response of diabetic individuals.
Collapse
Affiliation(s)
- Emanuella S. A. Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz A. D. Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - João P. T. Guimarães
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Kamilla C. Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Rafael S. Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Laboratory of Malaria Cellular and Molecular Immunopathology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
- *Correspondence: Joilson O. Martins,
| |
Collapse
|
10
|
Deryabin PI, Shatrova AN, Borodkina AV. Targeting Multiple Homeostasis-Maintaining Systems by Ionophore Nigericin Is a Novel Approach for Senolysis. Int J Mol Sci 2022; 23:ijms232214251. [PMID: 36430735 PMCID: PMC9693507 DOI: 10.3390/ijms232214251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Within the present study we proposed a novel approach for senolysis based on the simultaneous disturbance of the several homeostasis-maintaining systems in senescent cells including intracellular ionic balance, energy production and intracellular utilization of damaged products. Of note, we could not induce senolysis by applying ouabain, amiloride, valinomycin or NH4Cl-compounds that modify each of these systems solely. However, we found that ionophore nigericin can disturb plasma membrane potential, intracellular pH, mitochondrial membrane potential and autophagy at once. By affecting all of the tested homeostasis-maintaining systems, nigericin induced senolytic action towards stromal and epithelial senescent cells of different origins. Moreover, the senolytic effect of nigericin was independent of the senescence-inducing stimuli. We uncovered that K+ efflux caused by nigericin initiated pyroptosis in senescent cells. According to our data, the higher sensitivity of senescent cells compared to the control ones towards nigericin-induced death was partially mediated by the lower intracellular K+ content in senescent cells and by their predisposition towards pyroptosis. Finally, we proposed an interval dosing strategy to minimize the negative effects of nigericin on the control cells and to achieve maximal senolytic effect. Hence, our data suggest ionophore nigericin as a new senotherapeutic compound for testing against age-related diseases.
Collapse
Affiliation(s)
- Pavel I. Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Alla N. Shatrova
- Laboratory of Intracellular Membranes Dynamic, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Aleksandra V. Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
12
|
Bailly C. A world tour in the name of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154080. [PMID: 35405614 DOI: 10.1016/j.phymed.2022.154080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Names of natural products (NP) are usually given depending on the species of origin, be it a plant, a marine organism or a microbial species. In some cases, names have been given with reference to people, animals, music, foods or places. Many NP refer to countries, cities or specific places such as mountains, deserts, seas and oceans. PURPOSE On the basis of NP names, a world tour has been imagined referring to more than one hundred NP with names evocative of over 50 countries and regions. RESULTS The world tour goes from UK (britannin) to Italy (vaticanol) in Europe, from Uganda (ugandoside) to Senegal (senegalene, senegalenines) in Africa, from Brazil (brasilin) to Chile (santiaguine) in South America, from Utah (utahin) to Florida (floridanolide) in the US. It includes Central America (mexicanin, panamine) and the Caribbean islands (jamaicin, bahamaolides). It also crosses Alaska (alaskene) and Canada (quebecol, canadaline). The tour continues throughout Asia, from Thailand (thailandine) to China (Chinaldine) and Pakistan (pakistanamine), to finally reaches Oceania with Australia (australigenin) and Vanuatu (vanuatine), among other countries. This virtual journey, without bordure or wall, brings us to the highest mountains (himalayamine), the deepest oceans (pacificins) and the largest deserts (desertomycin). CONCLUSION In the current period of COVID-19 pandemia, with restricted opportunities for international travels, this NP name-based virtual journey offers a world tour to learn more from nature and to inspire scientists to contribute to the field of NP discovery and drug design. There are also limitations associated with the use of trivial names for NP. NP names can be further exploited for teaching and learning.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal) 59290, France.
| |
Collapse
|
13
|
Zhu J, Xie Y, Li Y, Yang Y, Li C, Huang D, Wu W, Xu Y, Xia W, Huang X, Zhou S. Complete genome sequence of Streptomyces malaysiensis HNM0561, a marine sponge-associated actinomycete producing malaymycin and mccrearamycin E. Mar Genomics 2022; 63:100947. [DOI: 10.1016/j.margen.2022.100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
14
|
Yang Z, Xie J, Fang J, Lv M, Yang M, Deng Z, Xie Y, Cai L. Nigericin exerts anticancer effects through inhibition of the SRC/STAT3/BCL-2 in osteosarcoma. Biochem Pharmacol 2022; 198:114938. [PMID: 35114189 DOI: 10.1016/j.bcp.2022.114938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
The treatment of osteosarcoma has reached a bottleneck period in recent 30 years, there is an urgent need to find new drugs and treatment methods. Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has exerted promising antitumoral effect in various tumors. The anticancer effect of Nigericin in human osteosarcoma has never been reported. In the present study, we explored the anticancer effects of Nigericin in osteosarcoma in vitro and in vivo. Our results showed that nigericin treatment significantly reduced tumor cell proliferation in dose-dependent and time-dependent in human osteosarcoma cells. Nigericin can inhibit cell growth of osteosarcoma cells, in addition to S-phase cycle arrest, the nigericin induces apoptosis. Furthermore, bioinformatics predicted that Nigericin exerts anticancer effects through inhibiting SRC/STAT3 signaling pathway in osteosarcoma. The direct binding between SRC and activator of transcription 3 (STAT3) was confirmed by Western blot. Nigericin can down regulate STAT3 and Bcl-2. In order to further elucidate the inhibitory effect of nigericin on SRC / STAT3 / Bcl-2 signal transduction mechanism, we established human osteosarcoma cancer cells stably expressing STAT3. Western blot confirmed that nigericin exerts anticancer effects on human osteosarcoma cancer cells by directly targeting STAT3. In addition, Nigericin can significantly inhibit tumor migration and invasion. Finally, Nigericin inhibits tumor growth in a mouse osteosarcoma model. The nigericin targeting the SRC/STAT3/BCL-2 signaling pathway may provide new insights into the molecular mechanism of nigericin on cancer cells and suggest its possible clinical application in osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Yang
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Jiangtao Xie
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Jiayu Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430000, China.
| | - Minchao Lv
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Min Yang
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Zhouming Deng
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Yuanlong Xie
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| | - Lin Cai
- The Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, People's Republic of China.
| |
Collapse
|
15
|
Organic acids and their salts potentiate the activity of selected antibiotics against Pseudomonas aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium. Antimicrob Agents Chemother 2021; 66:e0187521. [PMID: 34807756 DOI: 10.1128/aac.01875-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The failure of antibiotic therapy in respiratory tract infections in cystic fibrosis is partly due to the high tolerance observed in Pseudomonas aeruginosa biofilms. This tolerance is mediated by changes in bacterial metabolism linked to growth in biofilms, opening up potential avenues for novel treatment approaches based on modulating metabolism. The goal of the present study was to identify carbon sources that increase the inhibiting and/or eradicating activity of tobramycin, ciprofloxacin and ceftazidime against P. aeruginosa PAO1 biofilms grown in a synthetic cystic fibrosis sputum medium (SCFM2) and to elucidate their mode of action. After screening 69 carbon sources, several combinations of antibiotics + carbon sources that showed markedly higher anti-biofilm activity than antibiotics alone were identified. D,L-malic acid and sodium acetate could potentiate both biofilm inhibiting and eradicating activity of ciprofloxacin and ceftazidime, respectively, while citric acid could only potentiate biofilm inhibitory activity of tobramycin. The mechanisms underlying the increased biofilm eradicating activity of combinations ciprofloxacin/D,L-malic acid and ceftazidime/sodium acetate are similar but not identical. Potentiation of ceftazidime activity by sodium acetate was linked to increased metabolic activity, a functional TCA cycle, increased ROS production and high intracellular pH, whereas the latter was not required for D,L-malic acid potentiation of ciprofloxacin. Finally, our results indicate that the potentiation of antibiotic activity by carbon sources is strain dependent.
Collapse
|
16
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
17
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|