1
|
Mangoura SA, Ahmed MA, Hamad N, Zaka AZ, Khalaf KA. Hepatoprotective effects of vildagliptin mitigates lung biochemical and histopathological changes in experimental hepatopulmonary syndrome model in rat. Int Immunopharmacol 2024; 143:113254. [PMID: 39353392 DOI: 10.1016/j.intimp.2024.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a liver disease-induced pulmonary complication manifested with arterial hypoxemia. Hepatic cholestasis, encountered in several clinical situations, leads to biliary cirrhosis and HPS, both of which are best reproduced by rat common bile duct ligation (CBDL). Experience from liver transplantation suggests hepatoprotective-based therapy would be most effective in HPS treatment Dipeptidyl peptidase-4 (DPP-4) enzyme is involved in different pathogenic mechanisms of liver diseases. Vildagliptin (Vild) is a DPP-4 inhibitor which possesses favorable anti-inflammatory, anti-oxidant and anti-fibrotic effects. The present work explored hepatoprotective mechanisms of Vild and their participation in its prophylactic effectiveness in HPS induced by CBDL in rats. Male Wistar rats weighing 220-280 g were allocated into 4 groups: normal control, sham, CBDL and CBDL + Vild groups. i.p. saline was administered to the first 3 groups and i.p. Vild (10 mg/kg/day) was given to the fourth group for 6 weeks starting 2 week before CBDL. CBDL produced liver fibrosis, arterial hypoxemia and decreased survivability of rats. It altered liver functions and induced oxidative stress, pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)], vasodilatory molecules [endothelin-1 (ET-1), and inducible and endothelial nitric oxide synthases] and angiogenesis-associated protein [vascular endothelial growth factor-A (VEGF-A)] in liver and lung. Vild ameliorated liver fibrosis, and improved hypoxemia and survivability of CBDL rats and reversed these biochemical alterations. Prophylactic Vild administration attenuated CBDL-induced HPS in rats via direct hepatoprotective effects in the form of anti-oxidant, anti-inflammatory, anti-angiogenic and anti-fibrotic effects beside inhibition of pathological intrahepatic vasodilatation.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt.
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Khaled A Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
2
|
Dai ZQ, Guo ZQ, Zhang T, Chu YF, Yan Y, Gao F, Li SL, Gu YH, Jiao JY, Lin YX, Zhao SW, Xu B, Lei HM. Integrating network pharmacology and transcriptomics to study the potential mechanism of Jingzhi Niuhuang Jiedu tablet in rats with accumulation of heat in the lungs and stomach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118890. [PMID: 39366495 DOI: 10.1016/j.jep.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Accumulation of heat in the lungs and stomach (AHLS) is an important syndrome within the realm of traditional Chinese medicine (TCM). It is the fundamental reason behind numerous illnesses, including mouth ulcers, dermatological conditions, acne, and pharyngitis. Jingzhi Niuhuang Jiedu tablet (JN) serves as the representative prescription for treatment of AHLS clinically. However, the effective components and mechanism of JN's impact on AHLS remain unexplored. AIM OF THE STUDY The objective of this research was to analyze the effective components of JN and investigate the therapeutic effect and potential mechanism of JN on AHLS. MATERIALS AND METHODS The effective compounds of JN extract were analyzed and identified using UHPLC-Q-Exactive/HRMS. Utilizing network pharmacology to investigate JN's multi-target, multi-pathway process in treating AHLS. Subsequently, anti-inflammatory activities of JN extract were evaluated in the RAW264.7 cells stimulated by lipopolysaccharide (LPS). In addition, a rat AHLS model induced by LPS and dried ginger was established. Pathological changes in rat lung and stomach tissues observed by HE staining and Masson's trichrome staining. Additionally, the expression of TNF-α, IL-6, and IL-1β in bronchoalveolar lavage fluid (BALF) was identified through the ELISA assay. For a deeper understanding of how JN might affect AHLS, transcriptomics was utilized to examine differential genes and their underlying mechanisms. Concurrently, techniques like quantitative polymerase chain reaction (q-PCR), immunofluorescence, and western blotting (WB) were employed to confirm various mRNA and protein expression, including Il17ra, Il17re, IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1. RESULTS We identified 178 potential effective components in the JN extract. Network pharmacology analysis showed that the 144 components in JN act on 200 key targets for the treatment of AHLS by suppressing inflammation, regulating energy metabolism, and gastric function. In addition, JN suppressed the LPS-stimulated generation of NO, TNF-α, IL-1β, and IL-6 in RAW264.7 cells. And JN treatment effectively alleviated lung and stomach injury and reduced inflammation in rats. Analysis of RNA-seq from lung tissues revealed JN's substantial control over crucial genes in the IL-17 signaling pathway, including Il1b and Il17ra. Likewise, RNA sequencing of stomach tissues revealed that JN markedly decreased crucial genes in the Thermogenesis pathway, including Ppargc1a and Ppara. Additional experimental findings confirmed that treatment with JN significantly reduced the expression levels of mRNA (Il17ra, Il17re, Il1b, Ppargc1a and Ucp1), and the expression levels of protein (IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1). CONCLUSION This study not only analyzes the effective components of JN but also reveals that JN could effectively ameliorate AHLS by inhibiting IL-17 signaling pathway and Thermogenesis pathway, which provides evidence for subsequent clinical studies and drug development.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ya-Fen Chu
- Tongrentang eji Fazhan Gufen Co., Ltd, Beijing, 100102, China
| | - Ying Yan
- Tongrentang eji Fazhan Gufen Co., Ltd, Beijing, 100102, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shan-Lan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jing-Yi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yi-Xuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shu-Wu Zhao
- Tongrentang eji Fazhan Gufen Co., Ltd, Beijing, 100102, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
3
|
Yang C, Sun M, Yang Y, Han Y, Wu X, Wu X, Cao H, Chen L, Lei Y, Hu X, Chen Y, Zeng Z, Li J, Shu X, Yang Z, Lu K, Li Y, Wang X, Yi B. Elevated circulating BMP9 aggravates pulmonary angiogenesis in hepatopulmonary syndrome rats through ALK1-Endoglin-Smad1/5/9 signalling. Eur J Clin Invest 2024; 54:e14212. [PMID: 38591651 DOI: 10.1111/eci.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.
Collapse
Affiliation(s)
- Chunyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mei Sun
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yihui Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Han
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiulin Wu
- Institute of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huilin Cao
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuhao Lei
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ziyang Zeng
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhong Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Shu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaobo Wang
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
Mangoura SA, Ahmed MA, Hamad N, Zaka AZ, Khalaf KA, Mahdy MA. Vildagliptin ameliorates intrapulmonary vasodilatation and angiogenesis in chronic common bile duct ligation-induced hepatopulmonary syndrome in rat. Clin Res Hepatol Gastroenterol 2024; 48:102408. [PMID: 38925324 DOI: 10.1016/j.clinre.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Experimental hepatopulmonary syndrome (HPS) is best reproduced in the rat common bile duct ligation (CBDL) model. Vildagliptin (Vild) is an anti-hyperglycemic drug that exerts beneficial anti-inflammatory, anti-oxidant and anti-fibrotic effects. Therefore, the present search aimed to explore the possible effectiveness of Vild in CBDL-induced HPS model. METHODS Four groups of male Wistar rats which weigh 220-270 g were used, including the normal control group, the sham control group, the CBDL group and CBDL+Vild group. The first three groups received i.p. saline, while the last group was treated with i.p. Vild (10 mg/kg/day) from the 15th to 28th day of the experiment. RESULTS CBDL decreased the survivability and body weight of rats, increased diameter of the pulmonary vessels, and altered the arterial blood gases and the liver function parameters. Additionally, it increased the pulmonary expressions of endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α) mRNA as well as endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor-A (VEGF-A) proteins. The CBDL rats also exhibited elevation of the pulmonary interleukin-6 (IL-6), dipeptidyl peptidase-4 (DPP-4) and nitric oxide (NO) levels along with reduction of the pulmonary total anti-oxidant capacity and glucagon-like peptide-1 (GLP-1) levels. Vild mitigated these alterations and improved the histopathological abnormalities caused by CBDL. CONCLUSION Vild effectively attenuated CBDL-induced HPS through its anti-oxidant and anti-inflammatory effects along with its modulatory effects on ET-1/NOS/NO and TNF-α/IL-6/VEGF-A signaling implicated in the regulation of intrapulmonary vasodilatation and angiogenesis, respectively.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Hamad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Khaled A Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | |
Collapse
|
5
|
Chooklin S, Chuklin S, Posivnych M, Krystopchuk S. Pathophysiological basis of hepatopulmonary syndrome. Gastroenterology 2024; 58:73-81. [DOI: 10.22141/2308-2097.58.1.2024.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Circulatory changes with increased blood flow and vasodilatation/vasoconstriction imbalance are an integral consequence of liver cirrhosis and portal hypertension and can affect the pulmonary circulation with the development of vascular disorders, with hepatopulmonary syndrome (HPS) being the most common. HPS is a serious pulmonary complication of progressive liver disease, resulting in a poor clinical prognosis. Vascular tone decrease, monocytic infiltration of pulmonary vessels, formation of intrapulmonary arteriovenous shunts, dysfunction of alveolar type II cells, destruction of the endothelial glycocalyx are important in the pathogenesis of HPS. Abnormalities of pulmonary capillaries lead to hypoxemia caused by a violation of the ventilation/perfusion ratio, diffusion disorders, and the development of arteriovenous anastomoses. Infiltration of the pulmonary vessels by monocytes is one of the key factors of HPS. This migration is facilitated by the intestinal microbiota translocation into the portal bloodstream with increased expression of proinflammatory cytokines (tumor necrosis factor α, interleukins 1, 6), leading to the activation of monocytes. Monocytes located in the pulmonary circulation promote the vasodilation through the activation of inducible nitric oxide (NO) synthase and thus NO production. This is also associated with endothelial dysfunction due to a decreased hepatic secretion of bone morphogenetic protein 9 and increased endothelin 1, endothelial overexpression of endothelin B receptors, and increased endothelial NO production. Proangiogenic factors such as vascular endothelial growth factor, platelet-derived growth factor, and placental growth factor play an important role in the proliferation of pulmonary capillaries. Circulation of tumor necrosis factor α, bile acids and monocyte infiltration in the pulmonary circulation lead to increased apoptosis of alveolar type II cells and decreased surfactant synthesis. Chronic inflammation in HPS disrupts the continuity of the endothelial glycocalyx layer. This article provides an overview of the current knowledge on the pathogenesis of HPS, summarizes many features of the disease based on the literature research in MEDLINE database on the PubMed platform.
Collapse
|
6
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
7
|
Wang L, Liang X, Chen H, Cao L, Liu L, Zhu F, Ding Y, Tang J, Xie Y. CDEMI: characterizing differences in microbial composition and function in microbiome data. Comput Struct Biotechnol J 2023; 21:2502-2513. [PMID: 37090432 PMCID: PMC10113763 DOI: 10.1016/j.csbj.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Microbial communities influence host phenotypes through microbiota-derived metabolites and interactions between exogenous active substances (EASs) and the microbiota. Owing to the high dynamics of microbial community composition and difficulty in microbial functional analysis, the identification of mechanistic links between individual microbes and host phenotypes is complex. Thus, it is important to characterize variations in microbial composition across various conditions (for example, topographical locations, times, physiological and pathological conditions, and populations of different ethnicities) in microbiome studies. However, no web server is currently available to facilitate such characterization. Moreover, accurately annotating the functions of microbes and investigating the possible factors that shape microbial function are critical for discovering links between microbes and host phenotypes. Herein, an online tool, CDEMI, is introduced to discover microbial composition variations across different conditions, and five types of microbe libraries are provided to comprehensively characterize the functionality of microbes from different perspectives. These collective microbe libraries include (1) microbial functional pathways, (2) disease associations with microbes, (3) EASs associations with microbes, (4) bioactive microbial metabolites, and (5) human body habitats. In summary, CDEMI is unique in that it can reveal microbial patterns in distributions/compositions across different conditions and facilitate biological interpretations based on diverse microbe libraries. CDEMI is accessible at http://rdblab.cn/cdemi/.
Collapse
Affiliation(s)
- Lidan Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Xiao Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hao Chen
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijie Cao
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lan Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubin Ding
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Corresponding authors.
| | - Jing Tang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproductive and Development, Department Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding author at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Youlong Xie
- Joint International Research Laboratory of Reproductive and Development, Department Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors.
| |
Collapse
|
8
|
Depletion and Reversal of Hepatocellular Carcinoma Inducing CTL through ER Stress-Dependent PERK-CHOP Signaling Pathway. Can J Gastroenterol Hepatol 2022; 2022:6413783. [PMID: 36262827 PMCID: PMC9576428 DOI: 10.1155/2022/6413783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
AIMS In this report, it was investigated that hepatoma cells can cause downregulation of cytotoxic T lymphocyte (CTL) function and tea polyphenols (TPs) can reverse downregulation of CTL function. METHODS The expression of GRP78, PD-1, and TIM-3 was detected by western blotting in CTLL-2 cocultured with Hepa1-6 cells. Moreover, perforin (PRF1) and granzyme B (GzmB) protein levels and ER morphology were examined by ELISA and TEM, respectively. After 4-phenylbutyric acid (4-PBA) or tunicamycin (TM) treatment, programmed cell death protein 1 (PD-1), and mucin domain 3 (TIM-3), PRF1, and GzmB were measured by western blotting and ELISA. After sh-CHOP or GSK2656157 (PERK inhibitor) stimulation, the activation of the PERK-CHOP pathway was detected in CTLL-2 cells. Finally, changes in PD-1, TIM-3, PRF1, and GzmB levels were detected to verify the reversal of CTL depletion by TP. RESULTS The expression of GRP78, PD-1, and TIM-3 clearly increased, and swelling was observed for the endoplasmic reticulum (ER) in CTLL-2 cells cocultured with hepatoma cells. Concurrently, the levels of PRF1 and GzmB decreased. CTLL-2 depletion was induced after stimulation with TM and differed from 4-PBA stimulation. Treatment with sh-CHOP or GSK2656157 caused a decrease in PD-1 and TIM-3 expression, whereas the expression of PRF1 and GzmB clearly increased. After adding TP, the function of CTLs increased markedly. CONCLUSION Hepatoma cells induced the depletion of CTLs through the ER stress PERK-CHOP pathway, and TP reversed this depletion by downregulating ER stress.
Collapse
|
9
|
Shin DU, Eom JE, Song HJ, Jung SY, Nguyen TV, Lim KM, Chai OH, Kim HJ, Kim GD, Shin HS, Lee SY. Camellia sinensis L. Alleviates Pulmonary Inflammation Induced by Porcine Pancreas Elastase and Cigarette Smoke Extract. Antioxidants (Basel) 2022; 11:antiox11091683. [PMID: 36139757 PMCID: PMC9495585 DOI: 10.3390/antiox11091683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke (CS) is the major factor in the development of chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide. Furthermore, although Camellia sinensis (CN) has been known as an anti-inflammatory material, the effect of CN has not yet been known on pulmonary inflammation in COPD. Thus, we investigated the protective effects of Camellia sinensis L. extract (CLE) against pulmonary inflammation in porcine pancreas elastase (PPE) and a cigarette smoke extract (CSE)-induced COPD mouse model. Oral administration of CLE suppressed the symptoms such as infiltration of immune cells, cytokines/chemokines secretion, mucus hypersecretion, and injuries of the lung parenchyma. Increased inflammatory responses in COPD are mediated by various immune cells such as airway epithelial cells, neutrophils, and alveolar macrophages. Thus, we investigated the effect and mechanisms of CLE in H292, HL-60, and MH-S cells. The CLE inhibited the expression of IL-6, IL-8, MUC5AC and MUC5B on CSE/LPS-stimulated H292 cells and also suppressed the formation of neutrophil extracellular traps and secretion of neutrophil elastase by inhibiting reactive oxygen species in PMA-induced HL-60 cells. In particular, the CLE suppressed the release of cytokines and chemokines caused by activating the nuclear factor kappa-light-chain-enhancer of activated B via the activation of nuclear factor erythroid-2-related factor 2 and the heme oxygenase-1 pathway in CSE/LPS-stimulated MH-S cells. Therefore, we suggest that the CLE administration be the effective approach for treating or preventing chronic pulmonary diseases such as COPD induced by CS.
Collapse
Affiliation(s)
- Dong-Uk Shin
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
| | - Ji-Eun Eom
- Food Function Infrastructure Team, Korea Food Research Institute (KFRI), Wanju 55365, Korea
| | - Hyeon-Ji Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sun Young Jung
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
| | - Thi Van Nguyen
- Department of Anatomy, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Kyung Min Lim
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
| | - Ok Hee Chai
- Department of Anatomy, Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Korea
- EZmass. Co., Ltd., 501 Jinjudaero, Jinju 55365, Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
| | - Hee Soon Shin
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
- Correspondence: (H.S.S.); (S.-Y.L.); Tel.: +82-63-219-9296 (H.S.S.); +82-63-219-9348 (S.-Y.L.)
| | - So-Young Lee
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Korea
- Correspondence: (H.S.S.); (S.-Y.L.); Tel.: +82-63-219-9296 (H.S.S.); +82-63-219-9348 (S.-Y.L.)
| |
Collapse
|
10
|
Colares JR, Hartmann RM, Schemitt EG, Fonseca SRB, Brasil MS, Picada JN, Dias AS, Bueno AF, Marroni CA, Marroni NP. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J Gastroenterol 2022; 28:348-364. [PMID: 35110954 PMCID: PMC8771613 DOI: 10.3748/wjg.v28.i3.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cirrhosis is an important health problem characterized by a significant change in liver parenchyma. In animals, this can be reproduced by an experimental model of bile duct ligation (BDL). Melatonin (MLT) is a physiological hormone synthesized from serotonin that has been studied for its beneficial properties, including its antioxidant potential.
AIM To evaluate MLT’s effects on oxidative stress, the inflammatory process, and DNA damage in an experimental model of secondary biliary cirrhosis.
METHODS Male Wistar rats were divided into 4 groups: Control (CO), CO + MLT, BDL, and BDL + MLT. MLT was administered (20 mg/kg) daily beginning on day 15 after biliary obstruction. On day 29 the animals were killed. Blood samples, liver tissue, and bone marrow were collected for further analysis.
RESULTS BDL caused changes in biochemical and histological parameters and markers of inflammatory process. Thiobarbituric acid (0.46 ± 0.01) reactive substance levels, superoxide dismutase activity (2.30 ± 0.07) and nitric oxide levels (2.48 ± 0.36) were significantly lower (P < 0.001) n the groups that received MLT. DNA damage was also lower (P < 0.001) in MLT-treated groups (171.6 ± 32.9) than the BDL-only group (295.5 ± 34.8). Tissue damage and the expression of nuclear factor kappa B, interleukin-1β, Nrf2, NQO1 and Hsp70 were significantly lower in animals treated with MLT (P < 0.001).
CONCLUSION When administered to rats with BDL-induced secondary biliary cirrhosis, MLT effectively restored the evaluated parameters.
Collapse
Affiliation(s)
- Josieli R Colares
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Renata M Hartmann
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Elizângela G Schemitt
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Sandielly R B Fonseca
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Marilda S Brasil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Jaqueline N Picada
- Cellular and Molecular Biology Program, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil
| | - Alexandre S Dias
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Aline F Bueno
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Cláudio A Marroni
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Norma P Marroni
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| |
Collapse
|
11
|
Lu X, Ma W, Fan B, Li P, Gao J, Liu Q, Hu C, Li Y, Yao M, Ning H, Xing L. Integrating Network Pharmacology, Transcriptome and Artificial Intelligence for Investigating Into the Effect and Mechanism of Ning Fei Ping Xue Decoction Against the Acute Respiratory Distress Syndrome. Front Pharmacol 2021; 12:731377. [PMID: 34803679 PMCID: PMC8595141 DOI: 10.3389/fphar.2021.731377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a high-mortality disease and lacks effective pharmacotherapy. A traditional Chinese medicine (TCM) formula, Ning Fei Ping Xue (NFPX) decoction, was demonstrated to play a critical role in alleviating inflammatory responses of the lung. However, its therapeutic effectiveness in ARDS and active compounds, targets, and molecular mechanisms remain to be elucidated. The present study investigates the effects of NFPX decoction on ARDS mice induced by lipopolysaccharides (LPS). The results revealed that NFPX alleviated lung edema evaluated by lung ultrasound, decreased lung wet/Dry ratio, the total cell numbers of bronchoalveolar lavage fluid (BALF), and IL-1β, IL-6, and TNF-α levels in BALF and serum, and ameliorated lung pathology in a dose-dependent manner. Subsequently, UPLC-HRMS was performed to establish the compounds of NFPX. A total of 150 compounds in NFPX were characterized. Moreover, integrating network pharmacology approach and transcriptional profiling of lung tissues were performed to predict the underlying mechanism. 37 active components and 77 targets were screened out, and a herbs-compounds-targets network was constructed. Differentially expressed genes (DEGs) were identified from LPS-treated mice compared with LPS combined with NFPX mice. GO, KEGG, and artificial intelligence analysis indicated that NFPX might act on various drug targets. At last, potential targets, HRAS, SMAD4, and AMPK, were validated by qRT-PCR in ARDS murine model. In conclusion, we prove the efficacy of NFPX decoction in the treatment of ARDS. Furthermore, integrating network pharmacology, transcriptome, and artificial intelligence analysis contributes to illustrating the molecular mechanism of NFPX decoction on ARDS.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wentao Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baofeng Fan
- Air Force General Hospital PLA, Beijing, China
| | - Peng Li
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
| | - Jing Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuhong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunling Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengying Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Xing
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|