1
|
Hu W, Cao W, Liu J. LncRNA-NEAT1 facilitates autophagy to boost pemetrexed resistance in lung adenocarcinoma via the mir-379-3p/HIF1A pathway. Hum Exp Toxicol 2024; 43:9603271241292169. [PMID: 39397480 DOI: 10.1177/09603271241292169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND As a primary chemotherapeutic agent for lung adenocarcinoma (LUAD), pemetrexed (PEM) faces the challenge of resistance development in cancer cells due to its chronic use, which compromises its therapeutic benefits. LncRNA-NEAT1, implicated in the promotion of cancer, is a key player in LUAD. The objective of this study is to explore the contribution of lncRNA-NEAT1 to PEM resistance in LUAD and to dissect the molecular mechanisms involved. METHOD The expression levels of lncRNA-NEAT1 in LUAD tissues and cells were deciphered using the TCGA database and qRT-PCR. To delve into the functional implications of lncRNA-NEAT1, we engineered plasmids to modulate its expression levels in PEM-resistant A549 cells. PEM resistance in the modified cells was then quantitatively assessed via a panel of assays including cell counting kit-8 (CCK-8), and colony formation, and flow cytometry. To predict the interaction sites between lncRNA-NEAT1 and miR-379-3p, along with the miR-379-3p and hypoxia-inducible factor (HIF1A), we referred to the StarBase and TargetScan databases. The interplay between these RNA molecules was further characterized by RNA immunoprecipitation (RIP) and dual-luciferase reporter assays, while the expression of autophagy-related proteins LC3I, LC3II, and Beclin1 was profiled using western blot (WB). RESULTS Abundant lncRNA-NEAT1 expression was observed in LUAD tissues and cell lines. Its depletion resulted in impeded growth of A549/PEM cells, enhanced apoptotic rates, and a lowered threshold for PEM to exert a half-maximal inhibitory effect. The interplay between lncRNA-NEAT1 and miR-379-3p, as evidenced by dual-luciferase reporter assays, RIP, and qRT-PCR, led to the upregulation of HIF1A. WB and CCK-8 outcomes illustrated that the autophagy and PEM resistance were compromised when HIF1A expression was curtailed by miR-379-3p mimics in A549/PEM cells. The restoration of these effects was observed upon lncRNA-NEAT1-mediated downregulation of miR-379-3p. CONCLUSION Our study illuminates the role of lncRNA-NEAT1 in LUAD, where it mediates resistance to PEM through the activation of autophagy via the miR-379-3p/HIF1A axis. This work paves the way for new therapeutic strategies for managing PEM resistance in LUAD patients.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hematology & Oncology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, China
| | - Wenjun Cao
- Department of Hematology & Oncology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, China
| | - Jiheng Liu
- Department of Hematology & Oncology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, China
| |
Collapse
|
2
|
Cassidy JR, Voss G, Underbjerg KR, Persson M, Ceder Y. Expression of microRNA-379 reduces metastatic spread of prostate cancer. Front Oncol 2023; 13:1252915. [PMID: 37781173 PMCID: PMC10539900 DOI: 10.3389/fonc.2023.1252915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Prostate cancer (PCa) is the most common type of cancer in males, and the metastatic form is a leading cause of death worldwide. There are currently no curative treatments for this subset of patients. To decrease the mortality of this disease, greater focus must be placed on developing therapeutics to reduce metastatic spread. We focus on dissemination to the bone since this is both the most common site of metastatic spread and associated with extreme pain and discomfort for patients. Our strategy is to exploit microRNAs (miRNAs) to disrupt the spread of primary PCa to the bone. Methods PCa cell lines were transduced to overexpress microRNA-379 (miR-379). These transduced PCa cells were assessed using cell growth, migration, colony formation and adhesion assays. We also performed in vivo intracardiac injections to look at metastatic spread in NSG mice. A cytokine array was also performed to identify targets of miR-379 that may drive metastatic spread. Results PCa cells with increased levels of miR-379 showed a significant decrease in proliferation, migration, colony formation, and adhesion to bone cells in vitro. In vivo miR-379 overexpression in PC3 cells significantly decreased metastatic spread to bone and reduced levels of miR-379 were seen in patients with metastases. We identified GDF-15 to be secreted from osteoblasts when grown in conditioned media from PCa cells with reduced miR-379 levels. Discussion Taken together, our in vitro and in vivo functional assays support a role for miR-379 as a tumour suppressor. A potential mechanism is unravelled whereby miR-379 deregulation in PCa cells affects the secretion of GDF-15 from osteoblasts which in turn facilitates the metastatic establishment in bone. Our findings support the potential role of miR-379 as a therapeutic solution for prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Chhabra R, Guergues J, Wohlfahrt J, Rockfield S, Espinoza Gonzalez P, Rego S, Park MA, Berglund AE, Stevens SM, Nanjundan M. Deregulated expression of the 14q32 miRNA cluster in clear cell renal cancer cells. Front Oncol 2023; 13:1048419. [PMID: 37139155 PMCID: PMC10150008 DOI: 10.3389/fonc.2023.1048419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jessica Wohlfahrt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Pamela Espinoza Gonzalez
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Shanon Rego
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Margaret A. Park
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Khalilian S, Hosseini Imani SZ, Ghafouri-Fard S. Emerging roles and mechanisms of miR-206 in human disorders: a comprehensive review. Cancer Cell Int 2022; 22:412. [PMID: 36528620 PMCID: PMC9758816 DOI: 10.1186/s12935-022-02833-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
As a member of the miR-1 family, miR-206 is located between IL-17 and PKHD1 genes in human. This miRNA has been shown to be involved in the pathogenic processes in a variety of human disorders including cancers, amyotrophic lateral sclerosis, Alzheimer's disease, atherosclerosis, bronchopulmonary dysplasia, coronary artery disease, chronic obstructive pulmonary disease, epilepsy, nonalcoholic fatty liver disease, Hirschsprung disease, muscular dystrophies, pulmonary arterial hypertension, sepsis and ulcerative colitis. In the current review, we summarize the role of miR-206 in both malignant and non-malignant situations and explain its possible therapeutic implications.
Collapse
Affiliation(s)
- Sheyda Khalilian
- grid.411600.2Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini Imani
- grid.411750.60000 0001 0454 365XDivision of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Esfahān, Iran
| | - Soudeh Ghafouri-Fard
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
6
|
Breast Cancer Therapy: The Potential Role of Mesenchymal Stem Cells in Translational Biomedical Research. Biomedicines 2022; 10:biomedicines10051179. [PMID: 35625915 PMCID: PMC9138371 DOI: 10.3390/biomedicines10051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
The potential role of mesenchymal stem cells (MSCs) in the treatment of metastatic cancers, including breast cancer, has been investigated for many years leading to encouraging results. The role of fat grafting and the related adipose-derived mesenchymal stem cells (AD-MSCs) has been detailed and described for breast reconstruction purposes confirming the safety of AD-MSCs. MSCs have great potential for delivering anticancer agents, suicide genes, and oncolytic viruses to tumors. Currently, many studies have focused on the products of MSCs, including extracellular vesicles (EVs), as a cell-free therapy. This work aimed to review and discuss the current knowledge on MSCs and their EVs in breast cancer therapy.
Collapse
|
7
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Jamal HH, Taheri M, Hajiesmaeili M. A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Front Oncol 2022; 12:870996. [PMID: 35586497 PMCID: PMC9108330 DOI: 10.3389/fonc.2022.870996] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
miR-15b-5p is encoded by MIR15B gene. This gene is located on cytogenetic band 3q25.33. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s and Parkinson’s diseases, cerebral ischemia reperfusion injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity. In malignant conditions, both oncogenic and tumor suppressor impacts have been described for miR-15b-5p. Dysregulation of miR-15b-5p in clinical samples has been associated with poor outcome in different kinds of cancers. In this review, we discuss the role of miR-15b-5p in malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Fellowship, Department of Anesthesiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| |
Collapse
|
8
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|
9
|
miR-206 Inhibits Laryngeal Carcinoma Cell Multiplication, Migration, and Invasion. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5614861. [PMID: 34868522 PMCID: PMC8642001 DOI: 10.1155/2021/5614861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Laryngeal carcinoma (LC) is one of the common human cancer types. MicroRNAs (miRNAs) were reported to be the essential regulators in cancer diagnosis, treatment, and prognosis. It was reported that miR-206 expression was reduced in various neoplastic diseases. However, the role and functional mechanism of miR-206 in LC progression remain unclear. In this research, miR-206 was found to be associated with tumor-node-metastasis (TNM) staging. In addition, the area under the curve (AUC) of miR-206 was 0.902 for diagnosis of LC and 0.854 for differential diagnosis of stage I-II and stage III-IV patients. Low expression of miR-206 was associated with poor prognosis of LC patients. miR-206 expression was an independent factor affecting the prognosis of LC patients, as revealed by the Cox regression analysis. In vitro experiments demonstrated that miR-206 overexpression reduced cell multiplication, invasion, and migration and increased cell apoptosis in LC cells. Moreover, SOX9 was a target of miR-206, and miR-206 negatively regulated SOX9 expression. Collectively, miR-206 might be a promising biomarker with diagnostic and prognostic value for LC, and the miR-206/SOX9 axis might be a candidate target for LC therapy.
Collapse
|
10
|
Comprehensive Analysis of RNA Expression Profile Identifies Hub miRNA-circRNA Interaction Networks in the Hypoxic Ischemic Encephalopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6015473. [PMID: 34603484 PMCID: PMC8481051 DOI: 10.1155/2021/6015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) is classified as a sort of serious nervous system syndrome that occurs in the early life period. Noncoding RNAs had been confirmed to have crucial roles in human diseases. So far, there were few systematical and comprehensive studies towards the expression profile of RNAs in the brain after hypoxia ischemia. In this study, 31 differentially expressed microRNAs (miRNAs) with upregulation were identified. In addition, 5512 differentially expressed mRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) were identified in HIE groups. Bioinformatics analysis showed these circRNAs and mRNAs were significantly enriched in regulation of leukocyte activation, response to virus, and neutrophil degranulation. Pathway and its related gene network analysis indicated that HLA - DPA1, HLA - DQA2, HLA - DQB1, and HLA - DRB4 have a more crucial role in HIE. Finally, miRNA-circRNA-mRNA interaction network analysis was also performed to identify hub miRNAs and circRNAs. We found that miR-592 potentially targeting 5 circRNAs, thus affecting 15 mRNA expressions in HIR. hsa_circ_0068397 and hsa_circ_0045698 were identified as hub circRNAs in HIE. Collectively, using RNA-seq, bioinformatics analysis, and circRNA/miRNA interaction prediction, we systematically investigated the differentially expressed RNAs in HIE, which could give a new hint of understanding the pathogenesis of HIE.
Collapse
|