1
|
Bisht A, Avinash D, Sahu KK, Patel P, Das Gupta G, Kurmi BD. A comprehensive review on doxorubicin: mechanisms, toxicity, clinical trials, combination therapies and nanoformulations in breast cancer. Drug Deliv Transl Res 2025; 15:102-133. [PMID: 38884850 DOI: 10.1007/s13346-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Doxorubicin is a key treatment for breast cancer, but its effectiveness often comes with significant side effects. Its actions include DNA intercalation, topoisomerase II inhibition, and reactive oxygen species generation, leading to DNA damage and cell death. However, it can also cause heart problems and low blood cell counts. Current trials aim to improve doxorubicin therapy by adjusting doses, using different administration methods, and combining it with targeted treatments or immunotherapy. Nanoformulations show promise in enhancing doxorubicin's effectiveness by improving drug delivery, reducing side effects, and overcoming drug resistance. This review summarizes recent progress and difficulties in using doxorubicin for breast cancer, highlighting its mechanisms, side effects, ongoing trials, and the potential impact of nanoformulations. Understanding these different aspects is crucial in optimizing doxorubicin's use and improving outcomes for breast cancer patients. This review examines the toxicity of doxorubicin, a drug used in breast cancer treatment, and discusses strategies to mitigate adverse effects, such as cardioprotective agents and liposomal formulations. It also discusses clinical trials evaluating doxorubicin-based regimens, the evolving landscape of combination therapies, and the potential of nanoformulations to optimize delivery and reduce systemic toxicity. The review also discusses the potential of liposomes, nanoparticles, and polymeric micelles to enhance drug accumulation within tumor tissues while sparing healthy organs.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Dubey Avinash
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Chaumuhan, Mathura, 281406, UP, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
3
|
Abdulal ZA, Altahhan MY, Qindil AF, Al-Juhani AM, Alatawi MA, Hassan HM, Al-Gayyar MM. Ferulic acid inhibits tumor proliferation and attenuates inflammation of hepatic tissues in experimentally induced HCC in rats. J Investig Med 2024; 72:900-910. [PMID: 39091053 DOI: 10.1177/10815589241270489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of primary liver cancer with a 5-year survival rate of just 18%. Ferulic acid, a natural compound found in fruits and vegetables such as sweet corn, rice bran, and dong quai, is an encouraging drug known for its diverse positive effects on the body, including anti-inflammatory, anti-apoptotic, and neuroprotective properties. Our study aimed to investigate the potential antitumor effects of ferulic acid to inhibit tumor growth and inflammation of HCC in rats. HCC was induced in rats by administering thioacetamide. Additionally, some rats were given 50 mg/kg of ferulic acid three times a week for 16 weeks. Liver function was assessed by measuring serum alpha-fetoprotein (AFP) and examining hepatic tissue sections stained with hematoxylin/eosin or anti-hypoxia induced factor-1α (HIF-1α). The hepatic mRNA and protein levels of HIF-1α, nuclear factor κB (NFκB), tumor necrosis factor-α (TNF-α), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), cMyc, and cyclin D1 were examined. The results showed that ferulic acid increased the rats' survival rate by reducing serum AFP levels and suppressing hepatic nodules. Furthermore, ferulic acid ameliorated the appearance of vacuolated cytoplasm induced by HCC, reduced apoptotic nuclei, and necrotic nodules. Finally, ferulic acid decreased the expression of HIF-1α, NFκB, TNF-α, mTOR, STAT3, cMyc, and cyclin D1. In conclusion, ferulic acid is believed to possess antitumor properties by inhibiting HCC-induced hypoxia through the suppression of HIF-1α expression. Additionally, it helps in reducing the expression of mTOR, STAT3, cMyc, and cyclin D1, thereby slowing down tumor growth. Lastly, ferulic acid reduced hepatic tissue inflammation by downregulating NFκB and TNF-α.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Mohammed Mh Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
4
|
Abouelezz HM, El-Kashef DH, Abdеlaziz RR, Nader MA. Tiron enhances the anti-cancer activity of doxorubicin in DMBA-induced breast cancer: Role of Notch signaling/apoptosis/autophagy/oxidative stress. Food Chem Toxicol 2024; 193:114968. [PMID: 39214269 DOI: 10.1016/j.fct.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Existing work intended to investigate the outcomes of the localized mitochondrial antioxidant tiron (TR) alone or in combination with doxorubicin (DOX) in 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in rats and the mechanistic pathways behind these effects. Also, to examine the preventive role of TR against DOX-related cardiotoxicity. 64 female Sprague-Dawley rats were randomly assigned into 8 groups: CTRL, DOX, TR, DMBA, DMBA + DOX, DMBA + TR100, DMBA + TR200, and DMBA + DOX + TR200. Rats received TR (100 and 200 mg/kg), DOX (2mg/kg), and DMBA (7.5 mg/kg) for four consecutive weeks. TR alone or combined with DOX not only inhibited oxidative status-related parameters and Notch pathway proteins but also attenuated proliferation markers, and enhanced apoptosis, and autophagy-related genes. Consistently, the histopathological analysis showed better scores in mammary tissues isolated from groups treated with TR only or combined with DOX. Additionally, TR dramatically decreased relative heart weight, myocardial injury biomarkers, and heart oxidative stress parameters while maintaining the myocardial histological integrity. Here we provided evidence that TR acts via modulating Notch signaling/apoptosis/autophagy/oxidative stress to elicit anti-tumor activity and combination with DOX revealed a higher efficacy as a novel anticancer strategy. Moreover, TR could be a potential cardio-protective candidate during DOX-chemotherapy, possibly via its antioxidant activity.
Collapse
Affiliation(s)
- Hadeer M Abouelezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdеlaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Nehal N, Rohilla A, Sartaj A, Baboota S, Ali J. Folic acid modified precision nanocarriers: charting new frontiers in breast cancer management beyond conventional therapies. J Drug Target 2024; 32:855-873. [PMID: 38748872 DOI: 10.1080/1061186x.2024.2356735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Aashish Rohilla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Gollapalli P, Ashok AK, G TS. System-level protein interaction network analysis and molecular dynamics study reveal interaction of ferulic acid with PTGS2 as a natural radioprotector. J Biomol Struct Dyn 2024; 42:2765-2781. [PMID: 37144749 DOI: 10.1080/07391102.2023.2208224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Ferulic acid is a crucial bioactive component of broccoli, wheat, and rice bran and is also an essential natural product that has undergone significant research. Ferulic acid's precise mode of action and effect on system-level protein networks have not been thoroughly investigated. An interactome was built using the STRING database and Cytoscape tools, utilizing 788 key proteins collected from PubMed literature to identify the ferulic acid-governed regulatory action on protein interaction network (PIN). The scale-free biological network of ferulic acid-rewired PIN is highly interconnected. We discovered 15 sub-modules using the MCODE tool for sub-modulization analysis and 153 enriched signaling pathways. Further, functional enrichment of top bottleneck proteins revealed the FoxO signaling pathway involved in enhancing cellular defense against oxidative stress. The selection of the critical regulatory proteins of the ferulic acid-rewired PIN was completed by performing analyses of topological characteristics such as GO term/pathways analysis, degree, bottleneck, molecular docking, and dynamics investigations. The current research derives a precise molecular mechanism for ferulic acid's action on the body. This in-depth in silico model would aid in understanding how ferulic acid origins its antioxidant and scavenging properties in the human body.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Avinash Karkada Ashok
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Tamizh Selvan G
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
7
|
Mahmoud MH, El-Gogary RI, Soliman ME, Kamel AO. Novel green-based polyglycerol polymeric nanoparticles loaded with ferulic acid: A promising approach for hepatoprotection. Int J Biol Macromol 2024; 264:130698. [PMID: 38458296 DOI: 10.1016/j.ijbiomac.2024.130698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.
Collapse
Affiliation(s)
- Mariam H Mahmoud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt; Egypt Japan University of Science and Technology, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
9
|
AbouAitah K, Abdelaziz AM, Higazy IM, Swiderska-Sroda A, Hassan AME, Shaker OG, Szałaj U, Stobinski L, Malolepszy A, Lojkowski W. Functionalized Carbon Nanotubes for Delivery of Ferulic Acid and Diosgenin Anticancer Natural Agents. ACS APPLIED BIO MATERIALS 2024; 7:791-811. [PMID: 38253026 PMCID: PMC10880110 DOI: 10.1021/acsabm.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
It was investigated whether loading multi-wall carbon nanotubes (CNTs) with two natural anticancer agents: ferulic acid (FUA) and diosgenin (DGN), may enhance the anticancer effect of these drugs. The CNTs were functionalized with carboxylic acid (CNTCOOH) or amine (CNTNH2), loaded with the above pro-drugs, as well as both combined and coated with chitosan or chitosan-stearic acid. Following physicochemical characterization, the drug-loading properties and kinetics of the drug's release were investigated. Their effects on normal human skin fibroblasts and MCF-7 breast carcinoma cells, HepG2 hepatocellular carcinoma cells, and A549 non-small-cell lung cancer cells were evaluated in vitro. Their actions at the molecular level were evaluated by assessing the expression of lncRNAs (HULC, HOTAIR, CCAT-2, H19, and HOTTIP), microRNAs (mir-21, mir-92, mir-145, and mir-181a), and proteins (TGF-β and E-cadherin) in HepG2 cells. The release of both pro-drugs depended on the glutathione concentration, coating, and functionalization. Release occurred in two stages: a no-burst/zero-order release followed by a sustained release best fitted to Korsmeyer-Peppas kinetics. The combined nanoformulation cancer inhibition effect on HepG2 cancer cells was more pronounced than for A549 and MCF7 cells. The combined nanoformulations had an additive impact followed by a synergistic effect, with antagonism demonstrated at high concentrations. The nanoformulation coated with chitosan and stearic acid was particularly successful in targeting HepG2 cells and inducing apoptosis. The CNT functionalized with carboxylic acid (CNTCOOH), loaded with both FUA and DGN, and coated with chitosan-stearic acid inhibited the expression of lncRNAs and modulated both microRNAs and proteins. Thus, nanoformulations composed of functionalized CNTs dual-loaded with FUA and DGN and coated with chitosan-stearic acid are a promising drug delivery system that enhances the activity of natural pro-drugs.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal
and Aromatic Plants Research Department, Pharmaceutical and Drug Industries
Research Institute, National Research Centre
(NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Ahmed M. Abdelaziz
- Supplementary
General Sciences, Future University, End of 90th Street, Fifth Settlement, New Cairo 11835, Egypt
| | - Imane M. Higazy
- Department
of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research
Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Institute
of High Pressure Physics, Polish Academy
of Sciences, Sokolowska
29/37, 01-142 Warsaw, Poland
| | - Abeer M. E. Hassan
- Analytical
Chemistry Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Olfat G. Shaker
- Medical
Biochemistry
and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11511, Egypt
| | - Urszula Szałaj
- Institute
of High Pressure Physics, Polish Academy
of Sciences, Sokolowska
29/37, 01-142 Warsaw, Poland
- Faculty
of Materials Engineering, Warsaw University
of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Leszek Stobinski
- NANOMATPL
Ltd., 14/38 Wyszogrodzka
Street, Warsaw 03-337, Poland
- Faculty
of Chemical and Process Engineering, Warsaw
University of Technology, 1 Warynskiego Street, 00-645 Warsaw, Poland
| | - Artur Malolepszy
- Faculty
of Chemical and Process Engineering, Warsaw
University of Technology, 1 Warynskiego Street, 00-645 Warsaw, Poland
| | - Witold Lojkowski
- Institute
of High Pressure Physics, Polish Academy
of Sciences, Sokolowska
29/37, 01-142 Warsaw, Poland
| |
Collapse
|
10
|
Li Y, Pu R. Ozone Therapy for Breast Cancer: An Integrative Literature Review. Integr Cancer Ther 2024; 23:15347354241226667. [PMID: 38258533 PMCID: PMC10807353 DOI: 10.1177/15347354241226667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer in women. Despite significant advances in conventional treatment, additional safer complementary treatment options are needed. Recently, ozone therapy has been considered as a type of medical adjunctive treatment that could inhibit cancer cell survival and reduce chemoresistance. However, only a few studies have been conducted on its use in breast cancer, and the optimal dosage and time of administration are unknown. Currently, preclinical studies suggest that ozone alone or in combination with chemotherapy is an effective method for inhibiting breast cancer cell growth. However, rather than investigating the effects of ozone as an antitumor therapy, current clinical trials have generally assessed its effect as an adjunctive therapy for reducing chemotherapy-induced side effects, increasing oxygen tension, normalizing blood flow, restoring blood lymphocytes more rapidly, and reducing fatigue symptoms. In this article, the use of ozone as a medical adjunctive treatment for breast cancer and its role in integrative therapy are summarized and discussed.
Collapse
Affiliation(s)
- Yanchu Li
- West China Hospital of Sichuan University, Chengdu, China
| | - Rong Pu
- Chengdu Fuxing Hospital, Chengdu, China
| |
Collapse
|
11
|
Zeyada MS, Eraky SM, El-Shishtawy MM. Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation. Life Sci 2024; 336:122272. [PMID: 37981228 DOI: 10.1016/j.lfs.2023.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
AIMS Pulmonary fibrosis (PF) is a chronic interstitial lung disease with an increasing incidence following the COVID-19 outbreak. Pirfenidone (Pirf), an FDA-approved pulmonary anti-fibrotic drug, is poorly tolerated and exhibits limited efficacy. Trigonelline (Trig) is a natural plant alkaloid with diverse pharmacological actions. We investigated the underlying prophylactic and therapeutic mechanisms of Trig in ameliorating bleomycin (BLM)-induced PF and the possible synergistic antifibrotic activity of Pirf via its combination with Trig. MATERIALS AND METHODS A single dose of BLM was administered intratracheally to male Sprague-Dawley rats for PF induction. In the prophylactic study, Trig was given orally 3 days before BLM and then for 28 days. In the therapeutic study, Trig and/or Pirf were given orally from day 8 after BLM until the 28th day. Biochemical assay, histopathology, qRT-PCR, ELISA, and immunohistochemistry were performed on lung tissues. KEY FINDINGS Trig prophylactically and therapeutically mitigated the inflammatory process via targeting NF-κB/NLRP3/IL-1β signaling. Trig activated the autophagy process which in turn attenuated alveolar epithelial cells apoptosis and senescence. Remarkably, Trig attenuated lung SPHK1/S1P axis and its downstream Hippo targets, YAP-1, and TAZ, with a parallel decrease in YAP/TAZ profibrotic genes. Interestingly, Trig upregulated lung miR-375 and miR-27a expression. Consequently, epithelial-mesenchymal transition in lung tissues was reversed upon Trig administration. These results were simultaneously associated with profound improvement in lung histological alterations. SIGNIFICANCE The current study verifies Trig's prophylactic and antifibrotic effects against BLM-induced PF via targeting multiple signaling. Trig and Pirf combination may be a promising approach to synergize Pirf antifibrotic effect.
Collapse
Affiliation(s)
- Menna S Zeyada
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
12
|
Cai J, Qiao Y, Chen L, Lu Y, Zheng D. Regulation of the Notch signaling pathway by natural products for cancer therapy. J Nutr Biochem 2024; 123:109483. [PMID: 37848105 DOI: 10.1016/j.jnutbio.2023.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved pathway that modulates normal biological processes involved in cellular differentiation, apoptosis, and stem cell self-renewal in a context-dependent fashion. Attributed to its pleiotropic physiological roles, both overexpression and silencing of the pathway are associated with the emergence, progression, and poorer prognosis in various types of cancer. To decrease disease incidence and promote survival, targeting Notch may have chemopreventive and anti-cancer effects. Natural products with profound historical origins have distinguished themselves from other therapies due to their easy access, high biological compatibility, low toxicity, and reliable effects at specific physiological sites in vivo. This review describes the Notch signaling pathway, particularly its normal activation process, and some main illnesses related to Notch signaling pathway dysregulation. Emphasis is placed on the effects and mechanisms of natural products targeting the Notch signaling pathway in diverse cancer types, including curcumin, ellagic acid (EA), resveratrol, genistein, epigallocatechin-3-gallate (EGCG), quercetin, and xanthohumol and so on. Existing evidence indicates that natural products are feasible solution to fight against cancer by targeting Notch signaling, either alone or in combination with current therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Cai
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Yajie Qiao
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Lingbin Chen
- School of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
13
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
14
|
Sonam Dongsar T, Tsering Dongsar T, Molugulu N, Annadurai S, Wahab S, Gupta N, Kesharwani P. Targeted therapy of breast tumor by PLGA-based nanostructures: The versatile function in doxorubicin delivery. ENVIRONMENTAL RESEARCH 2023; 233:116455. [PMID: 37356522 DOI: 10.1016/j.envres.2023.116455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Breast carcinoma is a molecularly diverse illness, and it is among the most prominent and often reported malignancies in female across the globe. Surgical intervention, chemotherapy, immunotherapy, gene therapy, and endocrine treatment are among the currently viable treatment options for the carcinoma of breast. Chemotherapy is among the most prevalent cancer management strategy. Doxorubicin (DOX) widely employed as a cytostatic medication for the treatment of a variety of malignancies. Despite its widespread acceptance and excellent efficacy against an extensive line up of neoplasia, it has a variety of shortcomings that limit its therapeutic potential in the previously mentioned indications. Employment of nanoparticulate systems has come up as a unique chemo medication delivery strategy and are being considerably explored for the amelioration of breast carcinoma. Polylactic-co-glycolic acid (PLGA)-based nano systems are being utilized in a number of areas within the medical research and medication delivery constitutes one of the primary functions for PLGA given their inherent physiochemical attributes, including their aqueous solubility, biocompatibility, biodegradability, versatility in formulation, and limited toxicity. Herein along with the different application of PLGA-based nano formulations in cancer therapy, the present review intends to describe the various research investigations that have been conducted to enumerate the effectiveness of DOX-encapsulated PLGA nanoparticles (DOX-PLGA NPs) as a feasible treatment option for breast cancer.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
15
|
Bhuia MS, Rokonuzzman M, Hossain MI, Ansari SA, Ansari IA, Islam T, Al Hasan MS, Mubarak MS, Islam MT. Anxiolytic- like Effects by trans-Ferulic Acid Possibly Occur through GABAergic Interaction Pathways. Pharmaceuticals (Basel) 2023; 16:1271. [PMID: 37765079 PMCID: PMC10535412 DOI: 10.3390/ph16091271] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Numerous previous studies reported that ferulic acid exerts anxiolytic activity. However, the mechanisms have yet to be elucidated. The current study aimed to investigate the anxiolytic effect of trans-ferulic acid (TFA), a stereoisomer of ferulic acid, and evaluated its underlying mechanism using in vivo and computational studies. For this, different experimental doses of TFA (25, 50, and 75 mg/kg) were administered orally to Swiss albino mice, and various behavioral methods of open field, hole board, swing box, and light-dark tests were carried out. Diazepam (DZP), a positive allosteric modulator of the GABAA receptor, was employed as a positive control at a dose of 2 mg/kg, and distilled water served as a vehicle. Additionally, molecular docking was performed to estimate the binding affinities of the TFA and DZP toward the GABAA receptor subunits of α2 and α3, which are associated with the anxiolytic effect; visualizations of the ligand-receptor interaction were carried out using various computational tools. Our findings indicate that TFA dose-dependently reduces the locomotor activity of the animals in comparison with the controls, calming their behaviors. In addition, TFA exerted the highest binding affinity (-5.8 kcal/mol) to the α2 subunit of the GABAA receptor by forming several hydrogen and hydrophobic bonds. Taken together, our findings suggest that TFA exerts a similar effect to DZP, and the compound exerts moderate anxiolytic activity through the GABAergic interaction pathway. We suggest further clinical studies to develop TFA as a reliable anxiolytic agent.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Imran Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| |
Collapse
|
16
|
Dai XS, Wei QH, Guo X, Ding Y, Yang XQ, Zhang YX, Xu XY, Li C, Chen Y. Ferulic acid, ligustrazine, and tetrahydropalmatine display the anti-proliferative effect in endometriosis through regulating Notch pathway. Life Sci 2023; 328:121921. [PMID: 37429417 DOI: 10.1016/j.lfs.2023.121921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
AIMS With an ambiguous anti-proliferative mechanism, the combination of ferulic acid, ligustrazine, and tetrahydropalmatine (FLT) shows good anti-endometriosis (EMS) activity. In EMS, the expression of Notch pathway and its role in proliferation are not yet unclear. In this study, we sought to uncover the role of Notch pathway's effect and FLT's anti-proliferative mechanism on EMS proliferation. MAIN METHODS In autograft and allograft EMS models, the proliferating markers (Ki67, PCNA), Notch pathway, and the effect of FLT on them were detected. Then, the anti-proliferative influence of FLT was measured in vitro. The proliferating ability of endometrial cells was investigated with a Notch pathway activator (Jagged 1 or VPA) or inhibitor (DAPT) alone, or in combination with FLT separately. KEY FINDINGS FLT presented the inhibitory effect on ectopic lesions in 2 EMS models. The proliferating markers and Notch pathway were promoted in ectopic endometrium, but FLT showed the counteraction. Meantime, FLT restrained the endometrial cell growth and clone formation along with a reduction in Ki67 and PCNA. Jagged 1 and VPA stimulated the proliferation. On the contrary, DAPT displayed the anti-proliferating effect. Furthermore, FLT exhibited an antagonistic effect on Jagged 1 and VPA by downregulating Notch pathway and restraining proliferation. FLT also displayed a synergistic effect on DAPT. SIGNIFICANCE This study indicated that the overexpressing Notch pathway induced EMS proliferation. FLT attenuated the proliferation by inhibiting Notch pathway.
Collapse
Affiliation(s)
- Xue-Shan Dai
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Qing-Hua Wei
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Xin Guo
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Yi Ding
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Xiao-Qian Yang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Yu-Xin Zhang
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Xiao-Yu Xu
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China
| | - Cong Li
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Chen
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China; Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Chongqing, China; Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China; National Demonstration Center for Experimental Pharmacy Education, Southwest University, Chongqing, China.
| |
Collapse
|
17
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Abouelezz HM, El-Kashef DH, Abdеlaziz RR, Nader MA. Tenofovir alone or combined with doxorubicin abrogates DMBA-induced mammary cell carcinoma: An insight into its modulatory impact on oxidative/Notch/apoptotic signaling. Life Sci 2023:121798. [PMID: 37236603 DOI: 10.1016/j.lfs.2023.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
AIMS Breast cancer incidence keeps on growing and emerging as one of the major global challenges, therefore, the introduction of new approaches is of great demand. Drug repurposing is crucial to faster and cheaper discovery of anti-cancer drugs. The antiviral tenofovir disproxil fumarate (TF) was reported to decrease hepatocellular carcinoma risk by interfering with cell cycle and proliferation. This study aimed to scrutinize the role of TF alone or combined with doxorubicin (DOX) in 7,12-dimethylbenz (a) anthracene (DMBA)-induced breast carcinoma rat model. MATERIALS AND METHODS Breast carcinoma was induced by DMBA (7.5 mg/kg, twice/week, SC into mammary gland) for 4 successive weeks. TF (25 and 50 mg/kg/day) was given orally and DOX (2 mg/kg) was injected once/week by tail vein starting from day 1. KEY FINDINGS The anti-cancerous effect of TF was mediated by suppression of oxidative stress markers and Notch signaling proteins (Notch1, JAG1, and HES1), attenuation of tumor proliferation markers (cyclin-D1 and Ki67), and boosting of apoptosis (P53 and Caspase3) and autophagy biomarkers (Beclin1 and LC3). In parallel, histopathological assessment displayed that mammary glands from animals treated with TF alone or combined with DOX showed better histopathological scores. Interestingly, TF and DOX co-treatment markedly decreased myocardial injury markers (AST, LDH, and CK-MB), restored the balance between GSH and ROS, prohibited lipid peroxidation, and preserved microscopic myocardial architecture. SIGNIFICANCE TF elicited antitumor activity via multiple molecular mechanisms. Moreover, combining TF with DOX might be a potential novel strategy to enhance DOX-anticancer activity and decrease its cardiac side effects.
Collapse
Affiliation(s)
- Hadeer M Abouelezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdеlaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
20
|
Ou Z, Li X, You Y, Liu D, Wang J. Interpreting the Therapeutic Efficiency of Multifunctional Hybrid Nanostructure against Glioblastoma. ACS OMEGA 2023; 8:12259-12267. [PMID: 37033822 PMCID: PMC10077551 DOI: 10.1021/acsomega.2c08265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma is considered the most fatal malignant brain tumor that starts from the central nervous system (CNS), where the blood-brain barrier (BBB) remains the biggest challenge for active targeting of drugs in malignant brain tumor. Thereby, we have designed a paclitaxel PTX@ANG/FA-NPs hybrid novel nanodrug delivery system that can overcome the clinical BBB. The structural and morphological characterization of PTX@ANG/FA-NPs confirmed successful synthesis of nanomicelles with the size range of about 160 to 170 nm. The overall repressive effect of PTX@ANG/FA-NPs on human glioblastoma U251 cells was 1.2-times that of PTX alone. In vitro cellular uptake assay also demonstrated that the dual-targeted nanoparticles (NPs) were more easily taken up by glioblastoma U251 cells. Although the antiglioblastoma activity was confirmed by cell migration assay, apoptosis assay, and cellular uptake assay, the absorption was studied by in vivo fluorescence imaging and brain distribution. The synthesized PTX@ANG/FA-NPs probe significantly inhibited the migration of U251 within the cells and promoted the apoptosis process. Moreover, the RhB@ANG/FA-NPs and PTX@ANG/FA-NPs showed higher accumulating potential at sites of tumor BBB disruption. The novel nanodrug delivery system mediated enhanced distribution of drugs at the targeted site for therapeutics efficacies against glioblastomas across the BBB.
Collapse
Affiliation(s)
- Zemin Ou
- Institute
of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 10700, China
| | - Xinjian Li
- Institute
of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 10700, China
| | - Yun You
- Institute
of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 10700, China
| | - Dewen Liu
- Institute
of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 10700, China
| | - Jinyu Wang
- Institute
of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 10700, China
| |
Collapse
|
21
|
Bioactive Compounds in Plasma as a Function of Sex and Sweetener Resulting from a Maqui-Lemon Beverage Consumption Using Statistical and Machine Learning Techniques. Int J Mol Sci 2023; 24:ijms24032140. [PMID: 36768467 PMCID: PMC9917032 DOI: 10.3390/ijms24032140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The present study analyses the effect of a beverage composed of citrus and maqui (Aristotelia chilensis) with different sweeteners on male and female consumers. Beverages were designed and tested (140 volunteers) as a source of polyphenols, in a previous work. Plasma samples were taken before and after two months of daily intake. Samples were measured for bioactive-compound levels with metabolomics techniques, and the resulting data were analysed with advanced versions of ANOVA and clustering analysis, to describe the effects of sex and sweetener factors on bioactive compounds. To improve the results, machine learning techniques were applied to perform feature selection and data imputation. The results reflect a series of compounds which are more regulated for men, such as caffeic acid or 3,4-dihydroxyphenylacetic acid, and for women, trans ferulic acid (TFA) or naringenin glucuronide. Regulations are also observed with sweeteners, such as TFA with stevia in women, or vanillic acid with sucrose in men. These results show that there is a differential regulation of these two families of polyphenols by sex, and that this is influenced by sweeteners.
Collapse
|
22
|
Singh Tuli H, Kumar A, Ramniwas S, Coudhary R, Aggarwal D, Kumar M, Sharma U, Chaturvedi Parashar N, Haque S, Sak K. Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling. Molecules 2022; 27:molecules27217653. [PMID: 36364478 PMCID: PMC9654319 DOI: 10.3390/molecules27217653] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the immense therapeutic advances in the field of health sciences, cancer is still to be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural bioactive compounds isolated from various plant sources have been used for the treatment of several cancer types and have gained notable attention. Ferulic acid, a natural compound derived from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer, including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This review study presents a thorough overview of the molecular targets and cellular signaling pathways modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations to develop promising synergistic formulations are also discussed.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali 160071, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Renuka Coudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Katrin Sak
- NGO Praeventio, 50407 Tartu, Estonia
- Correspondence:
| |
Collapse
|
23
|
Dodda JM, Remiš T, Rotimi S, Yeh YC. Progress in the drug encapsulation of poly(lactic- co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic- co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B 2022; 10:4127-4141. [PMID: 35593381 DOI: 10.1039/d2tb00469k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Tomáš Remiš
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Sadiku Rotimi
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, 0183, Pretoria West Campus, South Africa
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Karagulle OO, Yurttas AG. Ozone combined with doxorubicin exerts cytotoxic and anticancer effects on Luminal-A subtype human breast cancer cell line. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:507-513. [DOI: 10.1590/1806-9282.20211193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
|
25
|
Stompor-Gorący M, Machaczka M. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Int J Mol Sci 2021; 22:ijms222312889. [PMID: 34884693 PMCID: PMC8657461 DOI: 10.3390/ijms222312889] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/18/2023] Open
Abstract
Trans-ferulic acid (FA) is a derivative of 4-hydroxycinnamic acid, which is found in many food products, fruits and beverages. It has scientifically proven antioxidant, anti-inflammatory and antibacterial properties. However, its low ability to permeate through biological barriers (e.g., the blood-brain barrier, BBB), its low bioavailability and its fast elimination from the gastrointestinal tract after oral administration limit its clinical use, e.g., for the treatment of neurodegenerative diseases, such as Alzheimer's disease. Therefore, new nanotechnological approaches are developed in order to regulate intracellular transport of ferulic acid. The objective of this review is to summarize the last decade's research on biological properties of ferulic acid and innovative ways of its delivery, supporting pharmacological therapy.
Collapse
Affiliation(s)
- Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Kopisto 2a, 35-959 Rzeszów, Poland;
- Correspondence:
| | - Maciej Machaczka
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszow, Kopisto 2a, 35-959 Rzeszów, Poland;
- Department of Clinical Science and Education, Division of Internal Medicine, Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden
| |
Collapse
|