1
|
Hu S, Cassim Bawa FN, Zhu Y, Pan X, Wang H, Gopoju R, Xu Y, Zhang Y. Loss of adipose ATF3 promotes adipose tissue lipolysis and the development of MASH. Commun Biol 2024; 7:1300. [PMID: 39390075 PMCID: PMC11467330 DOI: 10.1038/s42003-024-06915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The crosstalk between adipose tissue and the liver is finely controlled to maintain metabolic health. Yet, how adipose tissue controls toxic free fatty acid overflow into the liver remains incompletely understood. Here, we show that adipocyte activating transcription factor 3 (ATF3) was induced in human or mouse obesity. Adipocyte Atf3-/- (Atf3Adi-/-) mice developed obesity, glucose intolerance, and metabolic dysfunction-associated steatohepatitis (MASH) in chow diet, high-fat diet, or Western diet-fed mice. Blocking fatty acid flux by inhibiting hepatocyte CD36, but not the restoration of hepatic AMPK signaling, prevented the aggravation of MASH in Atf3Adi-/- mice. Further studies show that the loss of adipocyte ATF3 increased lipolysis via inducing adipose triglyceride lipase, which in turn induced lipogenesis and inflammation in hepatocytes. Moreover, Atf3Adi-/- mice had reduced energy expenditure and increased adipose lipogenesis and inflammation. Our data demonstrate that adipocyte ATF3 is a gatekeeper in counteracting MASH development under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Fathima N Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- School of Biomedical Sciences, Kent State University Kent, Kent, OH, 44240, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Hui Wang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- School of Biomedical Sciences, Kent State University Kent, Kent, OH, 44240, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
2
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
3
|
Tang L, Li T, Xie J, Huo Y. Diversity and heterogeneity in human breast cancer adipose tissue revealed at single-nucleus resolution. Front Immunol 2023; 14:1158027. [PMID: 37153595 PMCID: PMC10160491 DOI: 10.3389/fimmu.2023.1158027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is increasing awareness of the role of adipose tissue in breast cancer occurrence and development, but no comparison of adipose adjacent to breast cancer tissues and adipose adjacent to normal breast tissues has been reported. Methods Single-nucleus RNA sequencing (snRNA-seq) was used to analyze cancer-adjacent and normal adipose tissues from the same breast cancer patient to characterize heterogeneity. SnRNA-seq was performed on 54513 cells from six samples of normal breast adipose tissue (N) distant from the tumor and tumor-adjacent adipose tissue (T) from the three patients (all surgically resected). Results and discussion Significant diversity was detected in cell subgroups, differentiation status and, gene expression profiles. Breast cancer induces inflammatory gene profiles in most adipose cell types, such as macrophages, endothelial cells, and adipocytes. Furthermore, breast cancer decreased lipid uptake and the lipolytic phenotype and caused a switch to lipid biosynthesis and an inflammatory state in adipocytes. The in vivo trajectory of adipogenesis revealed distinct transcriptional stages. Breast cancer induced reprogramming across many cell types in breast cancer adipose tissues. Cellular remodeling was investigated by alterations in cell proportions, transcriptional profiles and cell-cell interactions. Breast cancer biology and novel biomarkers and therapy targets may be exposed.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, China
| | - Jing Xie
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| |
Collapse
|
4
|
Proteasome dysfunction disrupts adipogenesis and induces inflammation via ATF3. Mol Metab 2022; 62:101518. [PMID: 35636710 PMCID: PMC9194453 DOI: 10.1016/j.molmet.2022.101518] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
|
5
|
Wu YL, Lin H, Li HF, Don MJ, King PC, Chen HH. Salvia miltiorrhiza Extract and Individual Synthesized Component Derivatives Induce Activating-Transcription-Factor-3-Mediated Anti-Obesity Effects and Attenuate Obesity-Induced Metabolic Disorder by Suppressing C/EBPα in High-Fat-Induced Obese Mice. Cells 2022; 11:cells11061022. [PMID: 35326476 PMCID: PMC8947163 DOI: 10.3390/cells11061022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological studies indicate that Salvia miltiorrhiza extract (SME) can improve cardiac and blood vessel function. However, there is limited knowledge regarding the effects (exerted through epigenetic regulation) of SME and newly derived single compounds, with the exception of tanshinone IIA and IB, on obesity-induced metabolic disorders. In this study, we administered SME or dimethyl sulfoxide (DMSO) as controls to male C57BL/J6 mice after they were fed a high-fat diet (HFD) for 4 weeks. SME treatment significantly reduced body weight, fasting plasma glucose, triglyceride levels, insulin resistance, and adipogenesis/lipogenesis gene expression in treated mice compared with controls. Transcriptome array analysis revealed that the expression of numerous transcriptional factors, including activating transcription factor 3 (ATF3) and C/EBPα homologous protein (CHOP), was significantly higher in the SME group. ST32db, a novel synthetic derivative similar in structure to compounds from S. miltiorrhiza extract, ameliorates obesity and obesity-induced metabolic syndrome in HFD-fed wild-type mice but not ATF3−/− mice. ST32db treatment of 3T3-L1 adipocytes suppresses lipogenesis/adipogenesis through the ATF3 pathway to directly inhibit C/EBPα expression and indirectly inhibit the CHOP pathway. Overall, ST32db, a single compound modified from S. miltiorrhiza extract, has anti-obesity effects through ATF3-mediated C/EBPα downregulation and the CHOP pathway. Thus, SME and ST32db may reduce obesity and diabetes in mice, indicating the potential of both SME and ST32db as therapeutic drugs for the treatment of obesity-induced metabolic syndrome.
Collapse
Affiliation(s)
- Yueh-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli 350, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Heng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei 112, Taiwan;
| | - Pei-Chih King
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-27372181-3903; Fax: 886-2-5558-9890
| |
Collapse
|