1
|
Zhang Z, Wu G, Yang J, Liu X, Chen Z, Liu D, Huang Y, Yang F, Luo W. Integrated network pharmacology, transcriptomics and metabolomics to explore the material basis and mechanism of Danggui-Baishao herb pair for treating hepatic fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118834. [PMID: 39299362 DOI: 10.1016/j.jep.2024.118834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Danggui-Baishao herb pair (DB) is commonly used as Chinese herbal formulas for treating hepatic fibrosis (HF). However, there are few research on the combined application of the two drugs in treating HF, and the precise mechanisms and fundamental components of DB in addressing HF are still unclear. AIM OF THE STUDY The intention of this research is to identify the molecular foundation and functional targets of DB to elucidate the mechanisms for treating HF. METHODS The ingredients absorbed from DB in rat plasma were analyzed using UPLC-QE-MS. Therapeutic efficacy of DB in a rat model of CCl4-induced HF assessed using biochemical indices, pathological tissue observations, immunohistochemical and western blotting. An integrated strategy of transcriptomics, metabolomics, and network pharmacology was then utilized to explain the possible material basis and mechanisms of DB for treating HF. Western blotting was carried out to verify the critical mechanism. RESULTS DB reduced the level of liver function and inflammation related indicators in CCl4-induced HF (P < 0.05 or P < 0.01), as well as ameliorated pathological histological changes, and reduced the expressions of collagen type I (Col-I) and α-smooth muscle actin (α-SMA). Nineteen ingredients absorbed from DB were identified. Comprehensive investigations of transcriptomics, metabolomics, and network pharmacology revealed that DB modulated the PI3K/Akt/NF-κB signaling pathway to ameliorate fibrosis induced by CCl4 in HF rats. According to the molecular docking results, core tagets were highly favored by kaempferol, benzoylpaeoniflorin, albiflorin, paeoniflorin, and levistilide A. CONCLUSIONS The possible mechanisms for DB treatment of HF include decreasing the activity of hepatic stellate cells (HSCs), decreasing collagen synthesis and deposition, attenuating the hepatic inflammatory response, inhibiting hepatocyte apoptosis, and increasing the level of niacinamide (NAM), thus exerting its anti-HF effect.
Collapse
Affiliation(s)
- Zhihong Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730101, China; Gansu Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Guotai Wu
- Gansu Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine, Lanzhou, 730000, China; Long Yao Industry Innovation Research Institute, Lanzhou, 730000, China
| | - Jie Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuxia Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730101, China
| | - Zhengjun Chen
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730101, China
| | - Dongling Liu
- Long Yao Industry Innovation Research Institute, Lanzhou, 730000, China
| | - Yan Huang
- Department of Pharmacy, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Fude Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730101, China.
| | - Wenrong Luo
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China.
| |
Collapse
|
2
|
Ma N, Tan J, Chen Y, Yang L, Li M, He Y. MicroRNAs in metabolic dysfunction-associated diseases: Pathogenesis and therapeutic opportunities. FASEB J 2024; 38:e70038. [PMID: 39250169 DOI: 10.1096/fj.202401464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.
Collapse
Affiliation(s)
- Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Tan
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Li
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Aghaei-Zarch SM. Crosstalk between MiRNAs/lncRNAs and PI3K/AKT signaling pathway in diabetes mellitus: Mechanistic and therapeutic perspectives. Noncoding RNA Res 2024; 9:486-507. [PMID: 38511053 PMCID: PMC10950585 DOI: 10.1016/j.ncrna.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetes as a fastest growing diseases worldwide is characterized by elevated blood glucose levels. There's an enormous financial burden associated with this endocrine disorder, with unequal access to health care between developed and developing countries. PI3Ks (phosphoinositide 3-kinases) have been demonstrated to be crucial for glucose homeostasis, and malfunctioning of these molecules can contribute to an increase in glucose serum levels, the main pathophysiological feature of diabetes. Additionally, recent evidence suggests that miRNAs and lncRNAs are reciprocally interacting with this signaling pathway. It is therefore evident that abnormal regulation of miRNAs/lncRNAs in the lncRNAs/miRNAs/PI3K/AKT axis is related to clinicopathological characteristics and plays a crucial role in the regulation of biological processes. It has therefore been attempted in this review to describe the interaction between PI3K/AKT signaling pathway and various miRNAs/lncRNAs and their importance in DM biology. We also presented the clinical applications of PI3K/AKT-related ncRNAs/herbal medicine in patients with DM.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L, Haining F. The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1389329. [PMID: 38590313 PMCID: PMC10999701 DOI: 10.3389/fmed.2024.1389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) components within the liver leads to a pathological condition known as liver fibrosis. Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), autoimmune issues, and viral hepatitis cause chronic liver injury. Exploring potential therapeutic targets and understanding the molecular mechanisms involved in liver fibrosis are essential for the development of effective interventions. The goal of this comprehensive review is to explain how the PI3K/AKT signaling pathway contributes to the reduction of liver fibrosis. The potential of this pathway as a therapeutic target is investigated through a summary of results from in vivo and in vitro studies. Studies focusing on PI3K/AKT activation have shown a significant decrease in fibrosis markers and a significant improvement in liver function. The review emphasizes how this pathway may prevent ECM synthesis and hepatic stellate cell (HSC) activation, ultimately reducing the fibrotic response. The specific mechanisms and downstream effectors of the PI3K/AKT pathway in liver fibrosis constitute a rapidly developing field of study. In conclusion, the PI3K/AKT signaling pathway plays a significant role in attenuating liver fibrosis. Its complex role in regulating HSC activation and ECM production, demonstrated both in vitro and in vivo, underscores its potential as a effective therapeutic approach for managing liver fibrosis and slowing disease progression. A comprehensive review of this field provides valuable insights into its future developments and implications for clinical applications.
Collapse
Affiliation(s)
- Emad Shamsan
- College of Clinical Medicine, Qinghai University, Xining, China
- College of Medical Science, Taiz University, Taiz, Yemen
| | - Maged Almezgagi
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Mohammed Gamah
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Naveed Khan
- College of Clinical Medicine, Qinghai University, Xining, China
| | | | - Liu Chuanchuan
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Fan Haining
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
5
|
de Deus IJ, Martins-Silva AF, Fagundes MMDA, Paula-Gomes S, Silva FGDE, da Cruz LL, de Abreu ARR, de Queiroz KB. Role of NLRP3 inflammasome and oxidative stress in hepatic insulin resistance and the ameliorative effect of phytochemical intervention. Front Pharmacol 2023; 14:1188829. [PMID: 37456758 PMCID: PMC10347376 DOI: 10.3389/fphar.2023.1188829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
NLRP3 inflammasome has a key role in chronic low-grade metabolic inflammation, and its excessive activation may contribute to the beginning and progression of several diseases, including hepatic insulin resistance (hIR). Thus, this review aims to highlight the role of NLRP3 inflammasome and oxidative stress in the development of hIR and evidence related to phytochemical intervention in this context. In this review, we will address the hIR pathogenesis related to reactive oxygen species (ROS) production mechanisms, involving oxidized mitochondrial DNA (ox-mtDNA) and thioredoxin interacting protein (TXNIP) induction in the NLRP3 inflammasome activation. Moreover, we discuss the inhibitory effect of bioactive compounds on the insulin signaling pathway, and the role of microRNAs (miRNAs) in the phytochemical target mechanism in ameliorating hIR. Although most of the research in the field has been focused on evaluating the inhibitory effect of phytochemicals on the NLRP3 inflammasome pathway, further investigation and clinical studies are required to provide insights into the mechanisms of action, and, thus, encourage the use of these bioactive compounds as an additional therapeutic strategy to improve hIR and correlated conditions.
Collapse
Affiliation(s)
- Isabela Jesus de Deus
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ana Flávia Martins-Silva
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Miliane Martins de Andrade Fagundes
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Sílvia Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Guimarães Drummond e Silva
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Aline Rezende Ribeiro de Abreu
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karina Barbosa de Queiroz
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
6
|
Shi Y, Shi L, Liu Q, Wang W, Liu Y. Molecular mechanism and research progress on pharmacology of ferulic acid in liver diseases. Front Pharmacol 2023; 14:1207999. [PMID: 37324465 PMCID: PMC10264600 DOI: 10.3389/fphar.2023.1207999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Ferulic acid (FA) is a natural polyphenol, a derivative of cinnamic acid, widely found in Angelica, Chuanxiong and other fruits, vegetables and traditional Chinese medicine. FA contains methoxy, 4-hydroxy and carboxylic acid functional groups that bind covalently to neighbouring adjacent unsaturated Cationic C and play a key role in many diseases related to oxidative stress. Numerous studies have shown that ferulic acid protects liver cells and inhibits liver injury, liver fibrosis, hepatotoxicity and hepatocyte apoptosis caused by various factors. FA has protective effects on liver injury induced by acetaminophen, methotrexate, antituberculosis drugs, diosbulbin B and tripterygium wilfordii, mainly through the signal pathways related to TLR4/NF-κB and Keap1/Nrf2. FA also has protective effects on carbon tetrachloride, concanavalin A and septic liver injury. FA pretreatment can protect hepatocytes from radiation damage, protects the liver from damage caused by fluoride, cadmium and aflatoxin b1. At the same time, FA can inhibit liver fibrosis, inhibit liver steatosis and reduce lipid toxicity, improve insulin resistance in the liver and exert the effect of anti-liver cancer. In addition, signalling pathways such as Akt/FoxO1, AMPK, PPAR γ, Smad2/3 and Caspase-3 have been shown to be vital molecular targets for FA involvement in improving various liver diseases. Recent advances in the pharmacological effects of ferulic acid and its derivatives on liver diseases were reviewed. The results will provide guidance for the clinical application of ferulic acid and its derivatives in the treatment of liver diseases.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Lu Shi
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Wenbo Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - YongJuan Liu
- Department of Central Laboratory, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
7
|
Cui X, Du M, Wei K, Dai C, Yang RYH, Zhou B, Luo Z, Yang X, Yu Y, Lin W, Wu Y, Liu Y. Study of Xuanhuang Pill in protecting against alcohol liver disease using ultra-performance liquid chromatography/time-of-flight mass spectrometry and network pharmacology. Front Endocrinol (Lausanne) 2023; 14:1175985. [PMID: 37082132 PMCID: PMC10111029 DOI: 10.3389/fendo.2023.1175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionXuanhuang Pill (XHP) is a traditional Chinese medicine oral formula composed of 10 herbs. This study aims to verify the hepatoprotective activity of XHP and explain its possible mechanism.MethodsThe hepatoprotective activity of XHP was evaluated by constructing a mouse model of alcoholic liver disease, and the mechanism of XHP was preliminarily explained by utilizing ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-QTOF/MS), proteomics and network pharmacology.ResultsThe current study demonstrated that treatment with XHP ameliorated acute alcohol-induced liver injury in mice by significantly reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and triglycerides (TGs) and malondialdehyde (MDA) content. Remarkably, treatment also increased superoxide dismutase (SOD) activity and glutathione (GSH) content. UPLC-QTOF/MS, 199 compounds were identified as within the make-up of the XHP. Network pharmacology analysis showed that 103 targets regulated by 163 chemical components may play an important role in the protective liver effect mediated by XHP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggest that the HIF-1, FoxO, PI3K-Akt, insulin, and thyroid hormone signaling pathways are key modulators of XHP’s effects. Finally, eight key targets including Mapk1, Mapk3, Akt1, Map2k1, Pik3ca, Pik3cg, Raf1, and Prkca were verified by molecular docking and proteomics analysis, which provide insight into the hepatoprotective effect observed with XHP treatment.ConclusionIn summary, these results improved upon knowledge of the chemical composition and the potential mechanisms of hepatoprotective action of oral XHP treatment, providing foundational support for this formulation as a viable therapeutic option for alcoholic liver disease.
Collapse
Affiliation(s)
- Xuejie Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Maobo Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Bingxue Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhaojing Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Yu
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- *Correspondence: Yuhong Liu, ; Wei Lin, ; Yi Wu,
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yuhong Liu, ; Wei Lin, ; Yi Wu,
| | - Yuhong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yuhong Liu, ; Wei Lin, ; Yi Wu,
| |
Collapse
|
8
|
Wickramasinghe PB, Qian S, Langley LE, Liu C, Jia L. Hepatocyte Toll-Like Receptor 4 Mediates Alcohol-Induced Insulin Resistance in Mice. Biomolecules 2023; 13:454. [PMID: 36979389 PMCID: PMC10046504 DOI: 10.3390/biom13030454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Accumulating evidence has demonstrated the association between alcohol overconsumption and the development of insulin resistance. However, the underlying mechanisms are not completely understood. To investigate the requirement and sufficiency of hepatocyte toll-like receptor 4 (TLR4) in alcohol-induced insulin resistance, we used two mouse models (Tlr4fl/fl and Tlr4LoxTB) that allow ablation of TLR4 only in hepatocytes (Tlr4LKO) and restoration of endogenous TLR4 expression in hepatocytes on a TLR4-null background (Tlr4LoxTB × Alb-Cre), respectively. A Lieber-DeCarli feeding model was used to induce glucose intolerance and insulin resistance in mice. Glucose tolerance test, insulin tolerance test, and insulin signaling experiments were performed to examine systemic and tissue-specific insulin sensitivity. We found that alcohol-fed hepatocyte TLR4 deficient mice (Tlr4LKO) had lower blood glucose levels in response to intraperitoneal injection of insulin. Moreover, increased phosphorylation of glycogen synthase kinase-3β (GSK3β) was observed in the liver of Tlr4LKO mice after chronic alcohol intake. In contrast, when hepatic TLR4 was reactivated in mice (Tlr4LoxTB × Alb-Cre), alcohol feeding caused glucose intolerance in these mice compared with littermate controls (Tlr4LoxTB). In addition, AKT phosphorylation was dramatically reduced in the liver and epididymal white adipose tissue (eWAT) of alcohol-fed Tlr4LoxTB × Alb-Cre mice, which was similar to that of mice with whole-body TLR4 reactivation (Tlr4LoxTB × Zp3-Cre). Collectively, these findings suggest that hepatocyte TLR4 is both required and sufficient in the development of insulin resistance induced by alcohol overconsumption.
Collapse
Affiliation(s)
- Piumi B. Wickramasinghe
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shuwen Qian
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lyndsey E. Langley
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Chen Liu
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
9
|
Li Y, Sair AT, Zhao W, Li T, Liu RH. Ferulic Acid Mediates Metabolic Syndrome via the Regulation of Hepatic Glucose and Lipid Metabolisms and the Insulin/IGF-1 Receptor/PI3K/AKT Pathway in Palmitate-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14706-14717. [PMID: 36367981 DOI: 10.1021/acs.jafc.2c05676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferulic acid (FA) is one of the most abundant bound phenolics in whole grains, partly contributing to its preventive effects on metabolic syndrome (MetS). The study aims to investigate if FA mediates MetS through the regulation of hepatic metabolisms and the insulin receptor related pathways in the palmitate-treated HepG2 cells (MetS model). We found that FA (50, 100, and 200 μM) dramatically ameliorated the lipid accumulation in the MetS model. FA significantly decreased the activities of the gluconeogenic enzymes, G6Pase and PEPCK, downregulated the lipogenic enzyme FAS-1, and upregulated the lipolytic enzyme CPT-1 by regulating a series of transcriptional factors including HNF4α, FOXO-1, SREBP-1c, and PPAR-γ. Notably, we found that FA's ability to alleviate MetS is achieved by activating the insulin receptor/PI3K/AKT pathway. Our results validated the effects of FA on mediating the metabolic disorders of lipid and glucose pathways and unveiled its potential intracellular mechanisms for the prevention of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Ali Tahir Sair
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Weiyang Zhao
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Tong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Rui Hai Liu
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|