1
|
Shen WC, Chen SC, Wang CH, Hung CM, Peng MT, Liu CT, Chang YS, Kuo WL, Chou HH, Yeh KY, Wu TH, Wu CF, Chang PH, Huang YM, Yu CC, Lee CH, Rau KM. Astragalus polysaccharides improve adjuvant chemotherapy-induced fatigue for patients with early breast cancer. Sci Rep 2024; 14:25690. [PMID: 39465324 PMCID: PMC11514294 DOI: 10.1038/s41598-024-76627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
This study aimed to evaluate the effect of Astragalus polysaccharides (PG2) on reducing chemotherapy-induced fatigue (CIF) and toxicity, thereby encouraging compliance to chemotherapy. This was a randomized, placebo-controlled, phase 2 study. Patients with stage II/III early breast cancer planning to undergo adjuvant anthracycline-based chemotherapy were randomly assigned to receive PG2 500 mg or placebo on days 1, 3, and 8 every 21 days. The fatigue global score (FGS) was assessed using the brief fatigue inventory (BFI)-Taiwan. The Breast Cancer-Specific Module of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaires-Core30 evaluated the health-related quality of life during the first four cycles of adjuvant chemotherapy. Overall, 66 eligible patients were equally randomized into the PG2 and placebo groups between March 01, 2018, and March 09, 2021. The mean change in the FGS and fatigue intensity did not significantly differ between both groups. However, the FGS and fatigue intensity were less aggravated in the first four cycles in the premenopausal-PG2 group than in the placebo group. Our study concluded PG2 combined with adjuvant chemotherapy can reduce CIF, insomnia, the negative effect on future perspectives, and improve global health status, especially for premenopausal patients with breast cancer. Trial registration number: NCT03314805 registered on 19/10/2017.
Collapse
Affiliation(s)
- Wen-Chi Shen
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shin-Cheh Chen
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taipei, Taipei City, Taiwan
| | - Cheng-Hsu Wang
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Cancer Hospital, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Meng-Ting Peng
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chien-Ting Liu
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Kaohsiung City, Taiwan
| | - Yueh-Shih Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Ling Kuo
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taipei, Taipei City, Taiwan
- Medical School, National Tsing Hua University, Hsin-Chu City, Taiwan
| | - Hsu-Huan Chou
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taipei, Taipei City, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Tsung-Han Wu
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Chun-Feng Wu
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Pei-Hung Chang
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Yen-Min Huang
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Chi-Chang Yu
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taipei, Taipei City, Taiwan
| | - Chun-Hui Lee
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Keelung, Keelung City, Taiwan
| | - Kun-Ming Rau
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan.
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|
2
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Lu Q, Ma J, Zhao Y, Ding G, Wang Y, Qiao X, Cheng X. Disruption of blood-brain barrier and endothelial-to-mesenchymal transition are attenuated by Astragalus polysaccharides mediated through upregulation of ETS1 expression in experimental autoimmune encephalomyelitis. Biomed Pharmacother 2024; 180:117521. [PMID: 39383730 DOI: 10.1016/j.biopha.2024.117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
Blood-brain barrier (BBB) breakdown, an early hallmark of multiple sclerosis (MS), remains crucial for MS progression. Our previous works have confirmed that Astragalus polysaccharides (APS) can significantly ameliorate demyelination and disease progression in experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS protects BBB and the potential mechanism. In this study, we found that APS effectively reduced BBB leakage in EAE mice, which was accompanied by a decreased level of endothelial-to-mesenchymal transition (EndoMT) in the central nervous system (CNS). We further induced EndoMT in the mouse brain endothelial cells (bEnd.3) by interleukin-1β (IL-1β) in vitro. The results showed that APS treatment could inhibit IL-1β-induced EndoMT and endothelial cell dysfunction. In addition, the transcription factor ETS1 is a central regulator of EndoMT related to the compromise of BBB. We tested the regulation of APS on ETS1 and identified the expression of ETS1 was upregulated in both EAE mice and bEnd.3 cells by APS. ETS1 knockdown facilitated EndoMT and endothelial cell dysfunction, which completely abolished the regulatory effect of APS. Collectively, APS treatment could protect BBB integrity by inhibiting EndoMT, which might be associated with upregulating ETS1 expression. Our findings indicated that APS has potential value in the prevention of MS.
Collapse
Affiliation(s)
- Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
4
|
Mo RL, Li Z, Zhang P, Sheng MH, Han GC, Sun DQ. Matrine inhibits invasion and migration of gallbladder cancer via regulating the PI3K/AKT signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8129-8143. [PMID: 38789637 DOI: 10.1007/s00210-024-03162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Gallbladder cancer (GBC) is a common malignant cancer in the biliary system, which poses a serious threat to human health. It is urgent to explore ideal drugs for the treatment of GBC. Matrine is the main active ingredient of Sophora flavescentis, with a wide range of biological activities encompassing anti-inflammatory, antiviral, immunomodulatory, and anti-tumor. However, the underlying mechanism by which Matrine treats GBC is still unclear. The purpose of this study is to investigate the anti-tumor effects of Matrine on GBC in vivo and in vitro and to clarify the potential regulatory mechanisms. Here, we found that Matrine had a significant killing effect on GBC through CCK8 and flow cytometry, including arrest of cell cycle, inhibition of GBC cell, and induction of apoptosis. Further in vivo studies confirmed the inhibitory effect of Matrine on tumor growth in NOZ xenografted nude mouse. At the same time, Matrine also significantly suppressed the migration and invasion of GBC cells through scratch and Transwell experiments. In addition, by detecting the mRNA and protein levels of epithelial-mesenchymal transition (EMT) and matrix metalloproteinases, Matrine furtherly substantiated the inhibitory role on invasion and migration of GBC. From a mechanistic perspective, network pharmacology analysis suggests that the potential targets of Matrine in the treatment of GBC are enriched in the PI3K/AKT signaling pathway. Subsequently, Matrine effectively decreased the abundance of p-PI3K and p-AKT protein in vivo and in vitro. More importantly, PI3K activator (740 Y-P) antagonized the anti-tumor effect of Matrine, while PI3K inhibitor (LY294002) increased the sensitivity of Matrine for GBC. Based on the above findings, we conclude that Matrine inhibits the invasion and migration of GBC by regulating PI3K/AKT signaling pathway. Our results indicate the crucial role and regulatory mechanism of Matrine in suppressing the growth of GBC, which provides a theoretical basis for Matrine to be a candidate drug for the treatment and research of GBC.
Collapse
Affiliation(s)
- Rong-Liang Mo
- Anhui Medical University, School of Basic Medical Sciences, Hefei, 230032, China
| | - Zhuang Li
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei, 230041, China
| | - Peng Zhang
- Graduate School, Anhui University of Chinese Medicine, Hefei, 230022, China
| | - Ming-Hui Sheng
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei, 230041, China.
| | - Gen-Cheng Han
- Anhui Medical University, School of Basic Medical Sciences, Hefei, 230032, China.
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Deng-Qun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei, 230041, China.
| |
Collapse
|
5
|
Wei J, Dai Y, Zhang N, Wang Z, Tian X, Yan T, Jin X, Jiang S. Natural plant-derived polysaccharides targeting macrophage polarization: a promising strategy for cancer immunotherapy. Front Immunol 2024; 15:1408377. [PMID: 39351237 PMCID: PMC11439661 DOI: 10.3389/fimmu.2024.1408377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.
Collapse
Affiliation(s)
- Jingyang Wei
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanpeng Dai
- Institute of Chinese Medicine Processing, Shandong Academy of Chinese Medicine, Jinan, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| | - Shulong Jiang
- Second college of clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining, China
| |
Collapse
|
6
|
Shi Y, Ma P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front Pharmacol 2024; 15:1449101. [PMID: 39156112 PMCID: PMC11327089 DOI: 10.3389/fphar.2024.1449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aβ accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ping Ma
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Huang X, Chen X, Xian Y, Jiang F. Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs. Carbohydr Res 2024; 542:109205. [PMID: 38981321 DOI: 10.1016/j.carres.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Xingyin Chen
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Yuanhua Xian
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Faming Jiang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China.
| |
Collapse
|
8
|
Sadeghi Z, Alizadeh Z, Moridi Farimani M. Recent reports in the biggest herbal genus, Astragalus, in Iran; with a special viewpoint on tragacanth gum production. Nat Prod Res 2024; 38:2877-2895. [PMID: 37462408 DOI: 10.1080/14786419.2023.2232079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2024]
Abstract
This comprehensive review was carried out to integrate all the data published in the electronic databases (Scopus, etc.) over the past two decades about the distribution, phytochemistry, ethnopharmacology, and pharmacology of Astragalus L. Although Astragalus is one of the largest genera of flowering plants in Iran, limited phytochemical screening of this genus has been reported. Cycloartane triterpene glycosides, labdane diterpenoids, flavonoids, and polysaccharides are the major identified compounds. Pharmacological studies revealed significant properties such as anti-inflammatory, anticancer, antidiabetic, etc. Moreover, ethnopharmacological studies of Astragalus sp. showed that this genus is used for gastrointestinal, fractures, joint pains, and skin problems in different localities of Iran. Tragacanth gum, as the main product of some Astragalus sp. with economic value, shows proper biological activities and uses as an emulsifier in food industries. This review might be helpful for researchers to find new chemical entities responsible for its claimed traditional uses and food supplements.
Collapse
Affiliation(s)
- Zahra Sadeghi
- Department of Production and Utilization of Medicinal Plants, Faculty of Agricultural and Natural Resources, Higher Education Complex of Saravan, Saravan, Sistan and Baluchestan, Iran
| | - Zahra Alizadeh
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Evin, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Evin, Tehran, Iran
| |
Collapse
|
9
|
Li Z, Liu J, Cui H, Qi W, Tong Y, Wang T. Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:909-919. [PMID: 39081698 PMCID: PMC11287463 DOI: 10.2147/cmar.s466633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
The rising global morbidity and mortality rates of non-small cell lung cancer (NSCLC) underscore the urgent need for more effective treatments. Current therapeutic modalities-including surgery, radiotherapy, chemotherapy, and targeted therapy-face several limitations. Recently, Astragalus membranaceus, a traditional Chinese medicine (TCM), has captured significant attention due to its broad pharmacological properties, such as immune regulation, anti-inflammatory effects, and the modulation of reactive oxygen species (ROS) and enzyme activities. This review delivers a comprehensive summary of the most recent advancements and ongoing applications of Astragalus membranaceus in NSCLC treatment, underlining its potential for integration into existing treatment protocols. It also highlights essential areas for future research, including the elucidation of its molecular mechanisms, optimization of dosage and administration, and evaluation of its efficacy and safety alongside standard therapies, all of which could potentially improve therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Zhenyu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Jimin Liu
- Department of Respiratory, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Haishan Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130117, People’s Republic of China
| | - Wenlong Qi
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Yangyang Tong
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Tan Wang
- Department of Respiratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, People’s Republic of China
| |
Collapse
|
10
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
11
|
Wang H, Zhu W, Hong Y, Wei W, Zheng N, He X, Bao Y, Gao X, Huang W, Sheng L, Li M, Li H. Astragalus polysaccharides attenuate chemotherapy-induced immune injury by modulating gut microbiota and polyunsaturated fatty acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155492. [PMID: 38479258 DOI: 10.1016/j.phymed.2024.155492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weize Zhu
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjing Wei
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofang He
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingxiao Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
13
|
Yao J, Peng T, Shao C, Liu Y, Lin H, Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024; 29:1691. [PMID: 38675511 PMCID: PMC11052376 DOI: 10.3390/molecules29081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.
Collapse
Affiliation(s)
- Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Ting Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Changxin Shao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yuanyuan Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| | - Huanhuan Lin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China; (T.P.); (C.S.); (H.L.)
| | - Yongqi Liu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730013, China;
| |
Collapse
|
14
|
Li N, Zhang Y, Han M, Liu T, Wu J, Xiong Y, Fan Y, Ye F, Jin B, Zhang Y, Sun G, Sun X, Dong Z. Self-adjuvant Astragalus polysaccharide-based nanovaccines for enhanced tumor immunotherapy: a novel delivery system candidate for tumor vaccines. SCIENCE CHINA. LIFE SCIENCES 2024; 67:680-697. [PMID: 38206438 DOI: 10.1007/s11427-023-2465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
The study of tumor nanovaccines (NVs) has gained interest because they specifically recognize and eliminate tumor cells. However, the poor recognition and internalization by dendritic cells (DCs) and insufficient immunogenicity restricted the vaccine efficacy. Herein, we extracted two molecular-weight Astragalus polysaccharides (APS, 12.19 kD; APSHMw, 135.67 kD) from Radix Astragali and made them self-assemble with OVA257-264 directly forming OVA/APS integrated nanocomplexes through the microfluidic method. The nanocomplexes were wrapped with a sheddable calcium phosphate layer to improve stability. APS in the formed nanocomplexes served as drug carriers and immune adjuvants for potent tumor immunotherapy. The optimal APS-NVs were approximately 160 nm with uniform size distribution and could remain stable in physiological saline solution. The FITC-OVA in APS-NVs could be effectively taken up by DCs, and APS-NVs could stimulate the maturation of DCs, improving the antigen cross-presentation efficiency in vitro. The possible mechanism was that APS can induce DC activation via multiple receptors such as dectin-1 and Toll-like receptors 2 and 4. Enhanced accumulation of APS-NVs both in draining and distal lymph nodes were observed following s.c. injection. Smaller APS-NVs could easily access the lymph nodes. Furthermore, APS-NVs could markedly promote antigen delivery efficiency to DCs and activate cytotoxic T cells. In addition, APS-NVs achieve a better antitumor effect in established B16-OVA melanoma tumors compared with the OVA+Alum treatment group. The antitumor mechanism correlated with the increase in cytotoxic T cells in the tumor region. Subsequently, the poor tumor inhibitory effect of APS-NVs on the nude mouse model of melanoma also confirmed the participation of antitumor adaptive immune response induced by NVs. Therefore, this study developed a promising APS-based tumor NV that is an efficient tumor immunotherapy without systemic side effects.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Yun Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
- Jilin Academy of Chinese Medicine Sciences, Changchun, 130012, China
| | - Miaomiao Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Tian Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Jinjia Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yingxia Xiong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yikai Fan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Fan Ye
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Bing Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150036, China
| | - Yinghua Zhang
- Jilin Academy of Chinese Medicine Sciences, Changchun, 130012, China
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China
| | - Xiaobo Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China.
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, 100193, China.
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS), Institute of Medicinal Plant Development (IMPLAD), Beijing, 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, CAMS, IMPLAD, Beijing, 100193, China.
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, 100193, China.
| |
Collapse
|
15
|
Wang Y, Yuan C, Zhao J, Liu Y, Tian C, Qian J, Nan T, Kang L, Liu Y, Zhan Z, Huang L. An evaluation of Astragali Radix with different growth patterns and years, based on a new multidimensional comparison method. FRONTIERS IN PLANT SCIENCE 2024; 15:1368135. [PMID: 38486854 PMCID: PMC10937430 DOI: 10.3389/fpls.2024.1368135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Introduction With the depletion of wild Astragali Radix (WA) resources, imitated-wild Astragali Radix (IWA) and cultivated Astragali Radix (CA) have become the main products of Astragali Radix. However, the quality differences of three growth patterns (WA, IWA, CA) and different growth years of Astragali Radix have not been fully characterized, leading to a lack of necessary scientific evidence for their use as substitutes for WA. Methods We innovatively proposed a multidimensional evaluation method that encompassed traits, microstructure, cell wall components, saccharides, and pharmacodynamic compounds, to comprehensively explain the quality variances among different growth patterns and years of Astragali Radix. Results and discussion Our study showed that the quality of IWA and WA was comparatively similar, including evaluation indicators such as apparent color, sectional structure and odor, thickness of phellem, diameter and number of vessels, morphology of phloem and xylem, and the levels and ratios of cellulose, hemicellulose, lignin, sucrose, starch, water-soluble polysaccharides, total-saponins. However, the content of sucrose, starch and sorbose in CA was significantly higher than WA, and the diameter and number of vessels, total-flavonoids content were lower than WA, indicating significant quality differences between CA and WA. Hence, we suggest that IWA should be used as a substitute for WA instead of CA. As for the planting years of IWA, our results indicated that IWA aged 1-32 years could be divided into three stages according to their quality change: rapid growth period (1-5 years), stable growth period (6-20 years), and elderly growth period (25-32 years). Among these, 6-20 years old IWA exhibited consistent multidimensional comparative results, showcasing elevated levels of key active components such as water-soluble polysaccharides, flavonoids, and saponins. Considering both the quality and cultivation expenses of IWA, we recommend a cultivation duration of 6-8 years for growers. In conclusion, we established a novel multidimensional evaluation method to systematically characterize the quality of Astragali Radix, and provided a new scientific perspective for the artificial cultivation and quality assurance of Astragali Radix.
Collapse
Affiliation(s)
- Yapeng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Changsheng Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Jiachen Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Yunxiang Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Chunfang Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Jinxiu Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Yanmeng Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Zhilai Zhan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medica Sciences, Beijing, China
| |
Collapse
|
16
|
Xu J, Yu Y, Chen K, Wang Y, Zhu Y, Zou X, Xu X, Jiang Y. Astragalus polysaccharides ameliorate osteoarthritis via inhibiting apoptosis by regulating ROS-mediated ASK1/p38 MAPK signaling pathway targeting on TXN. Int J Biol Macromol 2024; 258:129004. [PMID: 38151083 DOI: 10.1016/j.ijbiomac.2023.129004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
This research aims to explore the potential of astragalus polysaccharides (APS) in treating osteoarthritis. The primary component of APS extracted in this study was glucose, and noticeably it had a relatively high content of glucuronic acids. In vitro, APS reduced ROS levels, protected chondrocytes from apoptosis, and promoted collagen II expression by regulating ASK1 (apoptosis-signal-regulating kinase1)/p38 cell apoptosis pathway. Further co-immunoprecipitation and immunofluorescence localization experiments demonstrated that the thioredoxin (TXN) antioxidant system was responsible for its bioactivity. Moreover, TXN silencing remarkably blocked the protective effects of APS, indicating that APS inhibited chondrocyte apoptosis by targeting TXN. In vivo, APS effectively mitigated cartilage loss and chondrocyte apoptosis and decreased expressions of p-ASK1 and p-p38. Collectively, this research first demonstrated that APS could ameliorate osteoarthritis by ASK1/p38 signaling pathway through regulating thioredoxin. In conclusion, APS holds promise as a nutraceutical supplement for osteoarthritis in future drug development.
Collapse
Affiliation(s)
- Jintao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yishu Wang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangjie Zou
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xianghong Xu
- Department of Endocrinology, Nanjing First Hospital, Nanjing, China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Cao L, Zhao J, Wang M, Khan IA, Li XC. Rapid preparation and proton NMR fingerprinting of polysaccharides from Radix Astragali. Carbohydr Res 2024; 536:109053. [PMID: 38310807 DOI: 10.1016/j.carres.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The purity, content, and structure of the polysaccharides prepared from a specific medicinal plant are the fundamental basis to interpret the observed biological activities. An ultrafiltration-based method has been developed for rapid preparation of total and fractional polysaccharides from Radix Astragali in high yield and purity. This method involves extraction of plant material by hot water, treatment with Sevag reagent, and ultrafiltration using molecular weight cutoff concentrators. The prepared polysaccharides were assessed by 1H NMR spectroscopy, providing general purity, fingerprinting, and structural information. This method may be used to efficiently screen polysaccharides in plants.
Collapse
Affiliation(s)
- Liang Cao
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, PR China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Xing-Cong Li
- National Center for Natural Products Research, School of Pharmacy, The University of Miscsissippi, University, Mississippi, 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
18
|
Wan Q, Huang J, Xiao Q, Zhang Z, Zhang Z, Huang L, Deng Y, Deng B, Zhao H, Zhong Y, Liu D. Astragalus Polysaccharide Alleviates Ulcerative Colitis by Regulating the Balance of mTh17/mTreg Cells through TIGIT/CD155 Signaling. Molecules 2024; 29:241. [PMID: 38202824 PMCID: PMC10780736 DOI: 10.3390/molecules29010241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The balance between memory Th17 cells (mTh17) and memory Treg cells (mTreg) plays a key role in the pathogenesis of ulcerative colitis (UC), and TIGIT signaling is involved in the differentiation of mTh17/mTreg cells. Astragalus polysaccharide (APS) has good immunomodulatory and anti-inflammatory effects. Here, the regulatory effects and potential mechanisms of APS on mTh17/mTreg cells in UC are explored. A UC model was induced with dextran sulfate sodium (DSS) and treated simultaneously with APS (200 mg/kg/day) for 10 days. After APS treatment, the mice showed a significant increase in colonic length and a significant decrease in colonic weight, colonic weight index and colonic weight/colonic length, and more intact mucosa and lighter inflammatory cell infiltration. Notably, APS significantly down-regulated the percentages of Th17 (CD4+CCR6+), cmTh17 (CD4+CCR7+CCR6+) and emTh17 (CD4+CCR7-CCR6+) cells and significantly up-regulated the percentages of cmTreg (CD4+CCR7+Foxp3+) and emTreg (CD4+CCR7-Foxp3+) cells in the mesenteric lymph nodes of the colitis mice. Importantly, APS reversed the expression changes in the TIGIT molecule on mTh17/mTreg cells in the colitis mice with fewer CD4+CCR6+TIGIT+, CD4+CCR7-CCR6+TIGIT+ and CD4+CCR7-CCR6+TIGIT+ cells and more CD4+Foxp3+TIGIT+, CD4+CCR7-Foxp3+TIGIT+ and CD4+CCR7-Foxp3+TIGIT+ cells. Meanwhile, APS significantly inhibited the protein expression of the TIGIT ligands CD155, CD113 and CD112 and downstream proteins PI3K and AKT in the colon tissues of the colitis mice. In conclusion, APS effectively alleviated DSS-induced UC in mice by regulating the balance between mTh17/mTreg cells, which was mainly achieved through regulation of the TIGIT/CD155 signaling pathway.
Collapse
Affiliation(s)
- Qi Wan
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Zeyun Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Zheyan Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Li Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Yifei Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Bailing Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
19
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
20
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
21
|
Luo G, Gebeyew K, Zhou C, Tan Z, Yang W, Niu D, Ran T, Liu Y. The ileal microbiome and mucosal immune profiles in response to dietary supplementation of ultra-grinded Astragalus membranaceus in weaned goats. Front Microbiol 2023; 14:1309520. [PMID: 38179443 PMCID: PMC10764543 DOI: 10.3389/fmicb.2023.1309520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Weaning goats are susceptible to diarrhea and have weakened immune functions due to physiological, dietary and environmental stresses. Astragalus membranaceus (A. membranaceus), a traditional Chinese medicinal herb, has been shown to improve growth performance and immunity in weaned ruminants. However, the influence mechanism of A. membranaceus on intestinal microbiota and mucosal immunity in weaned goats is still unknown. This study investigated the effects of ultra-grinded A. membranaceus (UGAM) on the immune function and microbial community in the ileum of weaned goats. Eighteen healthy weaned Xiangdong black goats (BW, 5.30 ± 1.388 kg) were used in a study of completely randomized block design with 28 days long. The animals were randomly assigned to either a basal diet supplemented with 10 g/d of milk replacer (CON, n = 9) or the CON diet supplemented with 10 g/head UGAM (UGAM, n = 9). Supplementation of UGAM increased (p < 0.05) the plasma concentrations of total protein and albumin. Meanwhile, the addition of UGAM reduced (p < 0.05) the relative mRNA expression of the IL-6 gene (a marker of inflammation), indicating the potential immunomodulatory effect of UGAM. Moreover, the relative abundances of Verrucomicrobiota and Mycoplasma were lower (p < 0.05) in the ileum of goats supplemented with UGAM than CON. These findings suggest that dietary supplementation of UGAM may have enhanced the ileum health of weaned goats by reducing inflammation factor expression and reducing the relative abundance of pathogenic microbes. The observed beneficial effects of ultra-grinded A. membranaceus on ileal mucosal immune and the community of ileal microbiota indicate its potential to be used as a viable option for promoting the well-being of weaned goats under weaning stress.
Collapse
Affiliation(s)
- Guowang Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Kono H, Hara H, Iijima K, Fujita S, Kondo N, Hirabayashi K, Isono T, Ogata M. Preparation and characterization of carboxymethylated Aureobasidium pullulans β-(1 → 3, 1 → 6)-glucan and its in vitro antioxidant activity. Carbohydr Polym 2023; 322:121357. [PMID: 37839833 DOI: 10.1016/j.carbpol.2023.121357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Aureobasidium pullulans β-(1 → 3, 1 → 6)-glucan (APG) has a high degree of β-(1 → 6)-glucosyl branching and a regular triple helical structure similar to that of schizophyllan. In this study, APG was carboxymethylated to different degrees of substitution (DS = 0.51, 1.0, and 2.0, denoted CMAPG 1-3, respectively) using a heterogeneous reaction. With increasing DS, the triple-helix structure drastically decreased and converted to a random coil structure in CMAPG 3. Further, aqueous solutions of CMAPG changed from pseudoplastic fluids to perfect Newtonian liquids with increasing DS, indicating that the intra- and intermolecular hydrogen bonds had been cleaved by the substituents to form a random coil structure. In addition, APG and CMAPG solutions exhibited scavenging ability against hydroxyl, organic, and sulfate radicals. It was also found that the carboxymethylation of APG drastically enhanced the organic radical scavenging ability. On the basis of the relationship between the DS and radical scavenging ability of the CMAPG samples, we believe hydroxyl and organic radicals were preferably scavenged by the donation of hydrogen atoms from the glucose rings and the methylene moieties of the carboxymethyl groups, respectively. Considering the obtained results, CMAPG and APG are expected to have applications in pharmaceuticals, functional foods, and cosmetics as antioxidant polysaccharides.
Collapse
Affiliation(s)
- Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan.
| | - Hideyuki Hara
- Bruker Japan K. K., Moriya-cho 3-9, Kanagawa-ku, Yokohama, Kanagawa 221 0022, Japan
| | - Kokoro Iijima
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Sayaka Fujita
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059 1275, Japan
| | - Nobuhiro Kondo
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan; WELLNEO SUGAR Co., Ltd., 14-1 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103 8536, Japan
| | - Katsuki Hirabayashi
- Itochu Sugar Co. Ltd, Tamatsuura 3, Hekinan, Aichi 447 8506, Japan; WELLNEO SUGAR Co., Ltd., 14-1 Nihonbashi-Koamicho, Chuo-ku, Tokyo 103 8536, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, Hokkaido 060 8628, Japan
| | - Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960 1296, Japan
| |
Collapse
|
23
|
Chen Z, Liang H, Yan X, Liang Q, Bai Z, Xie T, Dai J, Zhao X, Xiao Y. Astragalus polysaccharide promotes autophagy and alleviates diabetic nephropathy by targeting the lncRNA Gm41268/PRLR pathway. Ren Fail 2023; 45:2284211. [PMID: 37994436 PMCID: PMC11001349 DOI: 10.1080/0886022x.2023.2284211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Astragalus polysaccharide (APS) is a major bioactive component of the Chinese herb astragalus, with well-established protective effects on the kidney. However, the effect of APS on diabetic nephropathy (DN) is unclear. METHODS Long non-coding RNA (lncRNA) expression profiles in kidney samples from control, db/db, and APS-treated db/db mice were evaluated using RNA high-throughput sequencing techniques. Additionally, rat renal tubular epithelial (NRK-52E) cells were cultured in high glucose (HG) media. We inhibited the expression of Gm41268 and prolactin receptor (PRLR) by transfecting NRK-52E cells with Gm41268-targeting antisense oligonucleotides and PRLR siRNA. RESULTS We found that APS treatment reduced 24-h urinary protein levels and fasting blood glucose and improved glucose intolerance and pathological renal damage in db/db mice. Furthermore, APS treatment enhanced autophagy and alleviated fibrosis in the db/db mice. We identified a novel lncRNA, Gm41268, which was differentially expressed in the three groups, and the cis-regulatory target gene PRLR. APS treatment induced autophagy by reducing p62 and p-mammalian target of rapamycin (mTOR) protein levels and increasing the LC3 II/I ratio. Furthermore, APS alleviated fibrosis by downregulating fibronectin (FN), transforming growth factor-β (TGF-β), and collagen IV levels. In addition, APS reversed the HG-induced overexpression of Gm41268 and PRLR. Reduction of Gm41268 decreased PRLR expression, restored autophagy, and ameliorated renal fibrosis in vitro. Inhibition of PRLR could enhance the protective effect of APS. CONCLUSIONS In summary, we demonstrated that the therapeutic effect of APS on DN is mediated via the Gm41268/PRLR pathway. This information contributes to the exploration of bioactive constituents in Chinese herbs as potential treatments for DN.
Collapse
Affiliation(s)
- Zedong Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huiyu Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qiuer Liang
- Affiliated Dongguan People’s Hospital, Southern Medical University (Dongguan People’s Hospital), Guangzhou, China
| | - Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ting Xie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaojiao Dai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Guo Y, Wang B, Gu L, Yin G, Wang S, Li M, Wang L, Yu XA, Wang T. Discrimination of Radix Astragali from Different Growth Patterns, Origins, Species, and Growth Years by an H 1-NMR Spectrogram of Polysaccharide Analysis Combined with Chemical Pattern Recognition and Determination of Its Polysaccharide Content and Immunological Activity. Molecules 2023; 28:6063. [PMID: 37630314 PMCID: PMC10458787 DOI: 10.3390/molecules28166063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The fraud phenomenon is currently widespread in the traditional Chinese medicine Radix Astragali (RA) market, especially where high-quality RA is substituted with low-quality RA. In this case, focused on polysaccharides from RA, the classification models were established for discrimination of RA from different growth patterns, origins, species, and growth years. 1H Nuclear Magnetic Resonance (H1-NMR) was used to establish the spectroscopy of polysaccharides from RA, which were used to distinguish RA via chemical pattern recognition methods. Specifically, orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were used to successfully establish the classification models for RA from different growth patterns, origins, species, and growth years. The satisfactory parameters and high accuracy of internal and external verification of each model exhibited the reliable and good prediction ability of the developed models. In addition, the polysaccharide content and immunological activity were also tested, which was evaluated by the phagocytic activity of RAW 264.7. And the result showed that growth patterns and origins significantly affected the quality of RA. However, there was no significant difference in the aspects of origins and growth years. Accordingly, the developed strategy combined with chemical information, biological activity, and multivariate statistical method can provide new insight for the quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yali Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Guo Yin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Lijun Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| |
Collapse
|
25
|
Geng X, Wang Z, Feng L, Gu Y, Wang R, Yao Q, Xu Y, Wu J, Jiang Z, Chen K, Hu W, Tang D, Huo J, Li L, Bu Q, Zhao S, Zhang B, Cheng H. Efficacy and safety of Xian-Lian-Jie-Du optimization decoction as an adjuvant treatment for prevention of recurrence in patients with stage IIIB/IIIC colon cancer: study protocol for a multicentre, randomized controlled trial. BMC Complement Med Ther 2023; 23:239. [PMID: 37461034 PMCID: PMC10351122 DOI: 10.1186/s12906-023-04052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Colon cancer remains one of the most prevalent cancers worldwide. Unfortunately, there are no recognized and effective therapeutic strategies to prevent tumor recurrence after radical resection and chemotherapy, and the disease-free survival (DFS) in patients with stage IIIB or IIIC disease remains unsatisfactory. Xian-Lian-Jie-Du optimization decoction (XLJDOD) is a Chinese herbal medicine (CHM) empirical prescription, which has been validated experimentally and clinically that could inhibit the progression of colorectal cancer and ameliorate the symptoms. The purpose of this study is to evaluate the efficacy and safety of XLJDOD in prevention of recurrence of colon cancer. METHODS This study is a multi-center, double-blind, randomized, placebo-controlled trial conducted at 13 hospitals of China. Following the completion of surgery and adjuvant 5- fluorouracil-based chemotherapy, a total of 730 subjects with stage IIIB or IIIC colon cancer will be randomized in a 1:1 ratio to an intervention group (n = 365; XLJDOD compound granule) and a control group (n = 365; Placebo). Patients will receive 6-month treatments and be followed up with 3 monthly assessments for 2 years. The primary outcome is 2-year DFS rate and the secondary outcomes are 1, 2-year relapse rate (RR), overall survival (OS) and quality of life (QoL). Safety outcomes such as adverse events will be also assessed. A small number of subgroup analysis will be carried out to explore the heterogeneity of effects of XLJDOD. DISCUSSION The outcomes from this randomized controlled trial will provide objective evidences to evaluate XLJDOD's role as an adjuvant treatment in colon cancer. TRIAL REGISTRATION www. CLINICALTRIALS gov , identifier: NCT05709249. Registered on 31 Jan 2023.
Collapse
Affiliation(s)
- Xuechen Geng
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqiang Wang
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Feng
- Traditional Chinese Medicine Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yanhong Gu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qinghua Yao
- Department of Integrated Chinese and Western Medicine, Institute of Basic Medicine and Cancer (IBMC), The Cancer HospitalUniversity of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Chinese Academy of Sciences, Hangzhou, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianyu Wu
- No. 2 Surgery Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, China
| | - Zhiwei Jiang
- Department of General Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dongxin Tang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Sichuan Center of Technology Innovation for Real World Data, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Bu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuoqi Zhao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bei Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
- Department of TCM, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Haibo Cheng
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
26
|
Yan X, Miao J, Zhang B, Liu H, Ma H, Sun Y, Liu P, Zhang X, Wang R, Kan J, Yang F, Wu Q. Study on semi-bionic extraction of Astragalus polysaccharide and its anti-aging activity in vivo. Front Nutr 2023; 10:1201919. [PMID: 37528992 PMCID: PMC10389262 DOI: 10.3389/fnut.2023.1201919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Abstract
Astragalus membranaceus (A. membranaceus) is a homologous plant with high medicinal and edible value. Therefore, the extraction methods of Astragalus polysaccharide (APS) have attracted the attention of many research groups, but the yield of the active components is still not high. The aim of this study was to extract APS by a semi-bionic extraction method, optimize the extraction process, and evaluate the anti-aging activities of APS in vivo. The results showed that the APS yield was 18.23% when extracted by the semi-bionic extraction method. Anti-aging evaluation in rats showed that APS extracted by this method significantly decreased the malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity to cope with D-galactose-induced aging. Serum metabolomic analysis indicated that a total of 48 potential biomarkers showed significant differences, mainly involving 5 metabolic pathways. These altered metabolic pathways were mainly related to energy metabolism, amino acid metabolism, and lipid metabolism. These results indicated that the semi-bionic extraction method can effectively improve the yield of APS, and the extracted APS exhibited anti-aging activity in rats. Our study provided a novel and effective method to extract APS and indicated that APS can be used as functional food and natural medicine to delay aging and prevent its complications.
Collapse
Affiliation(s)
- Xinlei Yan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Miao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Huan Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Huifang Ma
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yufei Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Pufang Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- The Institute of Biotechnology, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feiyun Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| |
Collapse
|
27
|
Wang A, Liu Y, Zeng S, Liu Y, Li W, Wu D, Wu X, Zou L, Chen H. Dietary Plant Polysaccharides for Cancer Prevention: Role of Immune Cells and Gut Microbiota, Challenges and Perspectives. Nutrients 2023; 15:3019. [PMID: 37447345 DOI: 10.3390/nu15133019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary plant polysaccharides, one of the main sources of natural polysaccharides, possess significant cancer prevention activity and potential development value in the food and medicine fields. The anti-tumor mechanisms of plant polysaccharides are mainly elaborated from three perspectives: enhancing immunoregulation, inhibiting tumor cell growth and inhibiting tumor cell invasion and metastasis. The immune system plays a key role in cancer progression, and immunomodulation is considered a significant pathway for cancer prevention or treatment. Although much progress has been made in revealing the relationship between the cancer prevention activity of polysaccharides and immunoregulation, huge challenges are still met in the research and development of polysaccharides. Results suggest that certain polysaccharide types and glycosidic linkage forms significantly affect the biological activity of polysaccharides in immunoregulation. At present, the in vitro anti-tumor effects and immunoregulation of dietary polysaccharides are widely reported in articles; however, the anti-tumor effects and in vivo immunoregulation of dietary polysaccharides are still deserving of further investigation. In this paper, aspects of the mechanisms behind dietary polysaccharides' cancer prevention activity achieved through immunoregulation, the role of immune cells in cancer progression, the role of the mediatory relationship between the gut microbiota and dietary polysaccharides in immunoregulation and cancer prevention are systematically summarized, with the aim of encouraging future research on the use of dietary polysaccharides for cancer prevention.
Collapse
Affiliation(s)
- Anqi Wang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ying Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Shan Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yuanyuan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huijuan Chen
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China
| |
Collapse
|
28
|
Dai G, Wang J, Zheng J, Xia C, Wang Y, Duan B. Bioactive polysaccharides from lotus as potent food supplements: a review of their preparation, structures, biological features and application prospects. Front Nutr 2023; 10:1171004. [PMID: 37448668 PMCID: PMC10338014 DOI: 10.3389/fnut.2023.1171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lotus is a famous plant of the food and medicine continuum for millennia, which possesses unique nutritional and medicinal values. Polysaccharides are the main bioactive component of lotus and have been widely used as health nutritional supplements and therapeutic agents. However, the industrial production and application of lotus polysaccharides (LPs) are hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of LPs. This review comprehensively comments on the extraction and purification methods and structural characteristics of LPs. The SARs, bioactivities, and mechanisms involved are further evaluated. The potential application and safety issues of LPs are discussed. This review provides valuable updated information and inspires deeper insights for the large scale development and application of LPs.
Collapse
Affiliation(s)
- Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
29
|
Li Y, Dong X, Zhang Y, Xiao T, Zhao Y, Wang H. Astragalus polysaccharide improves the growth, meat quality, antioxidant capacity and bacterial resistance of Furong crucian carp (Furong carp♀ × red crucian carp♂). Int J Biol Macromol 2023:124999. [PMID: 37244344 DOI: 10.1016/j.ijbiomac.2023.124999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
To evaluate the functional effects of APS (Astragalus polysaccharide) on Furong crucian carp, APS-supplemented diets (0.00 %, 0.05 %, 0.10 % and 0.15 %) were prepared and utilized in feeding experiment. The results showed that the 0.05 % APS group has the highest weight gain rate and specific growth rate, and the lowest feed coefficient rate. In addition, 0.05 % APS supplement could improve muscle elasticity, adhesiveness and chewiness. Moreover, the 0.15 % APS group had the highest spleen-somatic index and the 0.05 % group had the maximum intestinal villus length. 0.05 % and 0.10 % APS addition significantly increased T-AOC and CAT activities while MDA contents decreased in all APS groups. The plasma TNF-α levels in all APS groups significantly increased (P<0.05), and the 0.05 % group showed the highest TNF-α level in spleen. In APS addition groups, the tlr8, lgp2 and mda5 gene expressions were significantly elevated, while xbp1, caspase-2 and caspase-9 expressions decreased in uninfected and A. hydrophila-infected fish. Finally, higher survival rate and slower disease outbreak rate were observed in APS-supplemented groups after being infected by A. hydrophila. In conclusion, Furong crucian carp fed by APS-supplemented diets possesses elevated weight gain rate and specific growth rate, and improved meat quality, immunity and disease resistance.
Collapse
Affiliation(s)
- Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Xiaohu Dong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yanling Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yurong Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
30
|
Li Y, Zheng J, Wang Y, Yang H, Cao L, Gan S, Ma J, Liu H. Immuno-stimulatory activity of Astragalus polysaccharides in cyclophosphamide-induced immunosuppressed mice by regulating gut microbiota. Int J Biol Macromol 2023; 242:124789. [PMID: 37164141 DOI: 10.1016/j.ijbiomac.2023.124789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Evidence has indicated the immune-stimulatory effect of Astragalus polysaccharides (APS), yet it remains unknown whether the potential mechanism is associated with gut microbiota. In this study, we aimed to investigate the role of gut microbiota in APS-initiated immune-enhancing activity in mice. BALB/c mice were injected with cyclophosphamide to establish a mouse immunosuppression model. We found that APS significantly ameliorated the immunosuppression in mice, indicative of the increased immune organ indices, the promoted proliferation of immune cells, and the up-regulated intestinal inflammation. Western blot analysis demonstrated that APS treatment significantly activated Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways in the intestine. By 16S rDNA sequencing, APS treatment reversed the gut microbiota dysbiosis in immunocompromised mice. At the genus level, APS increased the abundance of bacteria (like Lactobacillus, Bifidobacteria, Roseburia, and Desulfovibrio) and decreased the content of several bacteria (like Oscillibacter, Tyzzerella, and Lachnoclostridium). However, APS had no immune-enhancing effect on immunocompromised mice with gut microbiota depletion. In conclusion, APS can enhance immune responses in immunocompromised mice by modulating gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yao Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shuiyong Gan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
31
|
Chen G, Jiang N, Zheng J, Hu H, Yang H, Lin A, Hu B, Liu H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int J Biol Macromol 2023; 241:124386. [PMID: 37054858 DOI: 10.1016/j.ijbiomac.2023.124386] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
In this study, two homogeneous polysaccharides (APS-A1 and APS-B1) were isolated from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Their chemical structures were characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-A1 (2.62 × 106 Da) was a 1,4-α-D-Glcp backbone with a 1,4,6-α-D-Glcp branch every ten residues. APS-B1 (4.95 × 106 Da) was a heteropolysaccharide composed of glucose, galactose, and arabinose (75.24:17.27:19.35). Its backbone consisted of 1,4-α-D-Glcp, 1,4,6-α-D-Glcp, 1,5-α-L-Araf and the sidechains composed of 1,6-α-D-Galp and T-α/β-Glcp. Bioactivity assays showed that APS-A1 and APS-B1 had potential anti-inflammatory activity. They could inhibit the production of inflammatory factors (TNF-α, IL-6, and MCP-1) in LPS-stimulated RAW264.7 macrophages via NF-κB and MAPK (ERK, JNK) pathways. These results suggested that the two polysaccharides could be potential anti-inflammatory supplements.
Collapse
Affiliation(s)
- Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
32
|
Li Z, Qi J, Guo T, Li J. Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116086. [PMID: 36587879 DOI: 10.1016/j.jep.2022.116086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peritoneal metastasis is a manifestation of advanced cancer often associated with a poor prognosis and poor response to treatment. Astragalus membranaceus (Fisch.) Bunge is a commonly used medicinal material in traditional Chinese medicine with various biological activities. In patients with cancer, Astragalus membranaceus has demonstrated anti-tumor effects, immune regulation, postoperative recurrence and metastasis prevention, and survival prolongation. AIM OF THE STUDY Peritoneal metastasis results from tumor cell and peritoneal microenvironment co-evolution. We aimed to introduce and discuss the specific mechanism of action of Astragalus membranaceus in peritoneal metastasis treatment to provide a new perspective for treatment and further research. MATERIALS AND METHODS We consulted reports on the anti-peritoneal metastases effects of Astragalus membranaceus from PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases, as well as Google Scholar. Meanwhile, we also obtained data from published medical works and doctoral and master's theses. Then, we focused on the research progress of Astragalus membranaceus in peritoneal metastatic cancer treatment. Plant names are provided in accordance with "The Plant List" (www.theplantlist.org). RESULTS To date, more than 200 compounds have been isolated from Astragalus membranaceus. Among them, Astragalus polysaccharides, saponins, and flavonoids are the main bioactive components, and their effects on cancer have been extensively studied. In this review, we systematically summarize the effects of Astragalus membranaceus on the peritoneal metastasis microenvironment and related mechanisms, including maintaining the integrity of peritoneal mesothelial cells, restoring the peritoneal immune microenvironment, and inhibiting the formation of tumor blood vessels, matrix metalloproteinase, and dense tumor spheroids. CONCLUSIONS Our analysis demonstrates that Astragalus membranaceus could be a potential therapeutic for preventing the occurrence of peritoneal metastasis. However, it might be too early to recommend its use owing to the paucity of reliable in vivo experiment, clinical data, and evidence of clinical efficacy. In addition, previous studies of Astragalus membranaceus report inconsistent and contradictory findings. Therefore, detailed in vitro, in vivo, and clinical studies on the mechanism of Astragalus membranaceus in peritoneal metastatic cancer treatment are warranted.
Collapse
Affiliation(s)
- Zhiyuan Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinfeng Qi
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou, 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
33
|
Wang Z, Liu H, Fu R, Ou J, Wang B. Structural characterization and anti-inflammatory activity of a novel polysaccharide PKP2-1 from Polygonatum kingianum. Front Nutr 2023; 10:1156798. [PMID: 37051130 PMCID: PMC10083337 DOI: 10.3389/fnut.2023.1156798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionThis study aimed to investigate the structure characterization and antiinflammatory activity of a novel polysaccharide, PKP2-1, from the rhizomes of Polygonatum kingianum Coll. and Hemsl.MethodsWe isolated a novel polysaccharide, PKP2-1, from the rhizomes of Polygonatum kingianum Coll. and Hemsl. for the first time, which was then successively purified through hot-water extraction, 80% alcohol precipitation, anion exchange and gel permeation chromatography. The in vitro anti-inflammatory activity of PKP2-1 in MH7A cells was assessed using a CCK-8 kit assay.ResultsMonosaccharide composition assay revealed that PKP2-1 was mainly composed of glucose, galactose, mannose, and glucuronic acid at an approximate molar ratio of 6:2:2:1. It had a molecular weight of approximately 17.34 kDa. Structural investigation revealed that the backbone of PKP2-1 consisted of (→2, 3)-α-D-Galp(4→, →2)-α-D-Manp(3→, →2)-β-D-Glcp(4→) and α-D-Glcp(3→) residues with side chains (→2)-β-D-Glcp(4→, →1)-α-D-Galp(4→) and α-D-Glcp(3→) branches located at O-3 position of (→2, 3)-α-D-Galp(4→). The in vitro anti-inflammatory activity of PKP2-1 in MH7A cells revealed that PKP2-1 could reduce the expression of IL-11β and IL-6, increase the expression of IL-10 and induce apoptosis of synovial fibroblasts.ConclusionThe PKP2-1 could inhibit MH7A cell growth and potentially be exploited as an anti-inflammatory agent.
Collapse
|
34
|
Deng S, Cai K, Pei C, Zhang X, Xiao X, Chen Y, Chen Y, Liang R, Chen Y, Li P, Xie Z, Liao Q. 16S rRNA and Metagenomics Combined with UPLC-Q/TOF-MS Metabolomics Analysis Reveals the Potential Mechanism of Radix Astragali Against Hyperuricemia in Mice. Drug Des Devel Ther 2023; 17:1371-1386. [PMID: 37181826 PMCID: PMC10171225 DOI: 10.2147/dddt.s407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose This study aimed to investigate the underlying treatment mechanism of Radix Astragali (RA) in hyperuricemia from the perspective of microbiota and metabolomics. Methods We used potassium oxyazinate (PO) to induce hyperuricemia mice, and we determined serum alanine aminotransferase/aspartate aminotransferase (ALT/AST), xanthine oxidase (XOD), creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN) levels, liver XOD levels and assessed the kidney tissue histopathology. The therapeutic mechanism of RA in hyperuricemic mice was studied by 16S rRNA, metagenomic sequencing and metabolomics. Results Our research showed that RA has therapeutic effect in hyperuricemia mice, such as slow the weight loss, repair kidney damage, and downregulate serum UA, XOD, CRE, ALT/AST, BUN, and liver XOD levels. RA restored the disturbance structure of the microbiota in hyperuricemia mice by increasing the relative abundances of beneficial bacteria (Lactobacillaceae and Lactobacillus murine) but decreasing the relative abundances of pathogenic bacteria (Prevotellaceae, Rikenellaceae and Bacteroidaceae). Meanwhile, we found that RA directly regulated the metabolic pathway (such as linoleic acid metabolism and glycerophospholipid metabolism) and indirectly regulated bile acid metabolism by mediating microbiota to ameliorate metabolic disorders. Subsequently, there was a robust correlation between specific microbiota, metabolites and the disease index. Conclusion The ability of RA to protect mice against hyperuricemia is strongly linked to the microbiome-metabolite axis, which would provide evidence for RA as a medicine to prevent or treat hyperuricemia.
Collapse
Affiliation(s)
- Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Zhiyong Xie, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China, Tel/Fax +86 075523260207, Email
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Qiongfeng Liao, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China, Tel/Fax +86 02039358081, Email
| |
Collapse
|
35
|
Zhu Y, Chai Y, Xiao G, Liu Y, Xie X, Xiao W, Zhou P, Ma W, Zhang C, Li L. Astragalus and its formulas as a therapeutic option for fibrotic diseases: Pharmacology and mechanisms. Front Pharmacol 2022; 13:1040350. [PMID: 36408254 PMCID: PMC9669388 DOI: 10.3389/fphar.2022.1040350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, characterized by accumulation of collagen and other extracellular matrix components, which causes organ dysfunction and even death. Despite advances in understanding fibrosis pathology and clinical management, there is no treatment for fibrosis that can prevent or reverse it, existing treatment options may lead to diarrhea, nausea, bleeding, anorexia, and liver toxicity. Thus, effective drugs are needed for fibrotic diseases. Traditional Chinese medicine has played a vital role in fibrotic diseases, accumulating evidence has demonstrated that Astragalus (Astragalus mongholicus Bunge) can attenuate multiple fibrotic diseases, which include liver fibrosis, pulmonary fibrosis, peritoneal fibrosis, renal fibrosis, cardiac fibrosis, and so on, mechanisms may be related to inhibition of epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS), transforming growth factor beta 1 (TGF-β1)/Smads, apoptosis, inflammation pathways. The purpose of this review was to summarize the pharmacology and mechanisms of Astragalus in treating fibrotic diseases, the data reviewed demonstrates that Astragalus is a promising anti-fibrotic drug, its main anti-fibrotic components are Calycosin, Astragaloside IV, Astragalus polysaccharides and formononetin. We also review formulas that contain Astragalus with anti-fibrotic effects, in which Astragalus and Salvia miltiorrhiza Bunge, Astragalus and Angelica sinensis (Oliv.) Diels are the most commonly used combinations. We propose that combining active components into new formulations may be a promising way to develop new drugs for fibrosis. Besides, we expect Astragalus to be accepted as a clinically effective method of treating fibrosis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojin Xiao
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Xie
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Xiao
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ma
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Heart Disease of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
36
|
Extraction, Characterization, and Platelet Inhibitory Effects of Two Polysaccharides from the Cs-4 Fungus. Int J Mol Sci 2022; 23:ijms232012608. [PMID: 36293463 PMCID: PMC9604242 DOI: 10.3390/ijms232012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular diseases are associated with platelet hyperactivity, and downregulating platelet activation is one of the promising antithrombotic strategies. This study newly extracted two polysaccharides (purified exopolysaccharides, EPSp and purified intercellular exopolysaccharides, IPSp) from Cordyceps sinensis Cs-4 mycelial fermentation powder, and investigated the effects of the two polysaccharides and their gut bacterial metabolites on platelet functions and thrombus formation. EPSp and IPSp are majorly composed of galactose, mannose, glucose, and arabinose. Both EPSp and IPSp mainly contain 4-Galp and 4-Glcp glycosidic linkages. EPSp and IPSp significantly inhibited human platelet activation and aggregation with a dose-dependent manner, and attenuated thrombus formation in mice without increasing bleeding risk. Furthermore, the EPSp and IPSp after fecal fermentation showed enhanced platelet inhibitory effects. The results have demonstrated the potential value of Cs-4 polysaccharides as novel protective ingredients for cardiovascular diseases.
Collapse
|
37
|
Rao S, Lin Y, Lin R, Liu J, Wang H, Hu W, Chen B, Chen T. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J Nanobiotechnology 2022; 20:278. [PMID: 35701758 PMCID: PMC9195429 DOI: 10.1186/s12951-022-01490-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background As Traditional Chinese Medicine (TCM) drugs, Huangqi and Danshen are always applied in combination for spinal cord injury (SCI) treatment based on the compatibility theory of TCM. Astragalus Polysaccharidesis (APS) and Tanshinone IIA (TSIIA) are the main active ingredients of Huangqi and Danshen, and they both possess neuroprotective effects through antioxidant activities. However, low solubility and poor bioavailability have greatly limited their application. In recent years, selenium nanoparticles (SeNPs) have drawn enormous attention as potential delivery carrier for antioxidant drugs. Results In this study, TCM active ingredients-based SeNPs surface decorated with APS and loaded with TSIIA (TSIIA@SeNPs-APS) were successfully synthesized under the guidance of the compatibility theory of TCM. Such design improved the bioavailability of APS and TSIIA with the benefits of high stability, efficient delivery and highly therapeutic efficacy for SCI treatment illustrated by an improvement of the antioxidant protective effects of APS and TSIIA. The in vivo experiments indicated that TSIIA@SeNPs-APS displayed high efficiency of cellular uptake and long retention time in PC12 cells. Furthermore, TSIIA@SeNPs-APS had a satisfactory protective effect against oxidative stress-induced cytotoxicity in PC12 cells by inhibiting excessive reactive oxygen species (ROS) production, so as to alleviate mitochondrial dysfunction to reduce cell apoptosis and S phase cell cycle arrest, and finally promote cell survival. The in vivo experiments indicated that TSIIA@SeNPs-APS can protect spinal cord neurons of SCI rats by enhancing GSH-Px activity and decreasing MDA content, which was possibly via the metabolism of TSIIA@SeNPs-APS to SeCys2 and regulating antioxidant selenoproteins to resist oxidative stress-induced damage. Conclusions TSIIA@SeNPs-APS exhibited promising therapeutic effects in the anti-oxidation therapy of SCI, which paved the way for developing the synergistic effect of TCM active ingredients by nanotechnology to improve the efficacy as well as establishing novel treatments for oxidative stress-related diseases associated with Se metabolism and selenoproteins regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01490-x.
Collapse
Affiliation(s)
- Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yongpeng Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Lin
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jinggong Liu
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hongshen Wang
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Weixiong Hu
- Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Bolai Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,Division of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|