1
|
Kalisz G, Budzynska B, Sroka-Bartnicka A. The optimization of sample preparation on zebrafish larvae in vibrational spectroscopy imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125288. [PMID: 39437695 DOI: 10.1016/j.saa.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The zebrafish (Danio rerio) larvae are widely used in biomedical, pharmaceutical, and ecotoxicological studies. Their transparency and translational potential make them particularly valuable for fluorescence imaging. In addition to fluorescence imaging, microspectroscopy, which combines vibrational spectroscopy: Raman or Fourier transform infrared (FT-IR) with microscopy, allows the collection of spatially resolved, label-free information. According to available literature, it was the first application of FT-IR imaging in zebrafish larvae. This study aims to compare different fixation methods for 10-day post-fertilization (dpf) zebrafish larvae using vibrational spectroscopy imaging. Paraformaldehyde (PFA), glutaraldehyde (GA), low temperature, and embedding in gelatin and agarose were investigated. Amides, lipids, and phosphates distribution were more informative in embedded samples but with challenging handling of the sample due to stiffness at -20 °C. FT-IR and Raman mapping revealed that frozen samples had better-preserved tissue structure than chemical fixation. PFA showed uniform amide distribution, while GA treatment exhibited tissue disruptions and denser protein networks in both. Handling of embedded samples is challenging for an operator, but provides more reliable results in developmental biology or disease modeling, compared to chemical treatment.
Collapse
Affiliation(s)
- Grzegorz Kalisz
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland.
| | - Barbara Budzynska
- Independent Unit of Behavioral Studies, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
2
|
Song F, Yi X, Zheng X, Zhang Z, Zhao L, Shen Y, Zhi Y, Liu T, Liu X, Xu T, Hu X, Zhang Y, Shou H, Huang P. Zebrafish patient-derived xenograft system for predicting carboplatin resistance and metastasis of ovarian cancer. Drug Resist Updat 2025; 78:101162. [PMID: 39571238 DOI: 10.1016/j.drup.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024]
Abstract
AIMS Ovarian cancer (OC) remains a significant challenge in oncology due to high rates of drug resistance and disease relapse following standard treatment with surgery and platinum-based chemotherapy. Despite the widespread use of these treatments, no effective biomarkers currently exist to identify which patients will respond favorably to therapy. This study introduces a zebrafish patient-derived xenograft (PDX) system, capable of replicating both the carboplatin response and metastatic behavior observed in OC patients, within a rapid 3-day assay period. METHODS Two OC cell lines: carboplatin-sensitive (A2780) and resistant (OVCAR8) were used to assess differential responses to treatment in murine and zebrafish xenograft models. Tumor tissues from 16 OC patients were implanted into zebrafish embryos to test carboplatin responses and predict metastasis. Additionally, eight clinical OC samples were directly implanted into zebrafish embryos as part of a proof-of-concept demonstration. RESULTS The zebrafish xenografts accurately reflected the carboplatin sensitivity and resistance patterns seen in in vitro and murine models. The zebrafish PDX model demonstrated a 67 % success rate for implantation and a 100 % success rate for engraftment. Notably, the model effectively distinguished between metastatic and non-metastatic disease, with an area under the ROC curve (AUC) of 0.818. Furthermore, the zebrafish PDX model showed a high concordance with patient-specific responses to carboplatin. CONCLUSIONS This zebrafish PDX model offers a fast, accurate, and clinically relevant platform for evaluating carboplatin response and predicting metastasis in OC patients. It holds significant potential for advancing personalized medicine, allowing for more precise therapeutic outcome predictions and individualized treatment strategies.
Collapse
Affiliation(s)
- Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaowei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Zhentao Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Linqian Zhao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yan Shen
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Ye Zhi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou 310014, China.
| |
Collapse
|
3
|
Sun S, Shi F, Zhao G, Zhang H. Multi-faceted potential of sophoridine compound's anti-arrhythmic and antioxidant effects through ROS/CaMKII pathway. Heliyon 2024; 10:e37542. [PMID: 39347430 PMCID: PMC11437953 DOI: 10.1016/j.heliyon.2024.e37542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Cardiac arrhythmias remain a significant cause of mortality and morbidity, for novel antiarrhythmic therapies. This study states that the first report of sophoridine (SPN), a quinolizidine alkaloid derived from traditional Chinese herbs, shows promise as a potential candidate due to its anti-arrhythmic and antioxidant properties. The study found that cell viability in H9C2 rat cardiomyocytes remained stable even when treated with SPN at a higher dosage of 100 μg/ml. This phenomenon was accompanied by increases in mitochondria-derived reactive oxygen species (ROS) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling, at 50 and 100 μg/ml. Glucose fluctuations regulate ventricular arrhythmias caused by SPN by activating the ROS/CaMKII pathway. Experimental models using zebrafish provided additional evidence supporting the regulatory effects of SPN on heart rate. In addition, the administration of SPN resulted in substantial deregulation of crucial genes involved in heart development (nppa, nppb, tnnt2a) at the transcriptional level in zebrafish. These findings provide insight into the various pharmacological properties of SPN and this opens up new possibilities for anti-arrhythmic treatment strategies.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Fangdi Shi
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Gang Zhao
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Hong Zhang
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| |
Collapse
|
4
|
Machikhin A, Guryleva A, Chakraborty A, Khokhlov D, Selyukov A, Shuman L, Bukova V, Efremova E, Rudenko E, Burlakov A. Microscopic photoplethysmography-based evaluation of cardiotoxicity in whitefish larvae induced by acute exposure to cadmium and phenol. JOURNAL OF BIOPHOTONICS 2024:e202400111. [PMID: 39031962 DOI: 10.1002/jbio.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Toxic environmental pollutants pose a health risk for both humans and animals. Accumulation of industrial contaminants in freshwater fish may become a significant threat to biodiversity. Comprehensive monitoring of the impact of environmental stressors on fish functional systems is important and use of non-invasive tools that can detect the presence of these toxicants in vivo is desirable. The blood circulatory system, by virtue of its sensitivity to the external stimuli, could be an informative indicator of chemical exposure. In this study, microscopic photoplethysmography-based approach was used to investigate the cardiac activity in broad whitefish larvae (Coregonus nasus) under acute exposure to cadmium and phenol. We identified contamination-induced abnormalities in the rhythms of the ventricle and atrium. Our results allow introducing additional endpoints to evaluate the cardiac dysfunction in fish larvae and contribute to the non-invasive evaluation of the toxic effects of industrial pollutants on bioaccumulation and aquatic life.
Collapse
Affiliation(s)
- Alexander Machikhin
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Guryleva
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Anirban Chakraborty
- Department of Molecular Genetics & Cancer, Nitte University Centre for Science Education & Research, Nitte (Deemed to be University), Mangalore, India
| | - Demid Khokhlov
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | | | - Leonid Shuman
- Tyumen State University, Laboratory AquaBioSafe, Tyumen, Russia
| | - Valeriya Bukova
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | | | | | - Alexander Burlakov
- Scientific and Technological Center of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Li J, Hu C, Zhao B, Li J, Chen L. Proteomic and cardiac dysregulation by representative perfluoroalkyl acids of different chemical speciation during early embryogenesis of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172000. [PMID: 38552965 DOI: 10.1016/j.scitotenv.2024.172000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Perfluoroalkyl acids (PFAAs) of different chemical speciation were previously found to cause diverse toxicity. However, the toxicological mechanisms depending on chemical speciation are still largely unknown. In this follow-up study, zebrafish embryos were acutely exposed to only one concentration at 4.67 μM of the acid and salt of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS), till 96 h post-fertilization (hpf), aiming to gain more mechanistic insights. High-throughput proteomics found that PFAA acid and salt exerted discriminative effects on protein expression pattern. Bioinformatic analyses based on differentially expressed proteins underlined the developmental cardiotoxicity of PFOA acid with regard to cardiac muscle contraction, vascular smooth muscle contraction, adrenergic signaling in cardiomyocytes, and multiple terms related to myocardial contraction. PFOA salt and PFBS acid merely disrupted the cardiac muscle contraction pathway, while cardiac muscle cell differentiation was significantly enriched in PFBA acid-exposed zebrafish larvae. Consistently, under PFAA exposure, especially PFOA and PFBS acid forms, transcriptional levels of key genes for cardiogenesis and the concentrations of troponin and epinephrine associated with myocardial contraction were significantly dysregulated. Moreover, a transgenic line Tg (my17: GFP) expressing green fluorescent protein in myocardial cells was employed to visualize the histopathology of developing heart. PFOA acid concurrently caused multiple deficits in heart morphogenesis and function, which were characterized by the significant increase in sinus venosus and bulbus arteriosus distance (SV-BA distance), the induction of pericardial edema, and the decrease in heart rate, further confirming the stronger toxicity of PFOA acid than the salt counterpart on heart development. Overall, this study highlighted the developmental cardiotoxicity of PFAAs, with potency ranking PFOA > PFBS > PFBA. The acid forms of PFAAs induced stronger cardiac toxicity than their salt counterparts, providing an additional insight into the structure-toxicity relationship.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Bin Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Ramli AH, Swain P, Mohd Fahmi MSA, Abas F, Leong SW, Tejo BA, Shaari K, Ali AH, Agustar HK, Awang R, Ng YL, Lau YL, Md Razali MA, Mastuki SN, Mohmad Misnan N, Mohd Faudzi SM, Kim CH. Preliminary insight on diarylpentanoids as potential antimalarials: In silico, in vitro pLDH and in vivo zebrafish toxicity assessment. Heliyon 2024; 10:e27462. [PMID: 38495201 PMCID: PMC10943399 DOI: 10.1016/j.heliyon.2024.e27462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Malaria remains a major public health problem worldwide, including in Southeast Asia. Chemotherapeutic agents such as chloroquine (CQ) are effective, but problems with drug resistance and toxicity have necessitated a continuous search for new effective antimalarial agents. Here we report on a virtual screening of ∼300 diarylpentanoids and derivatives, in search of potential Plasmodium falciparum lactate dehydrogenase (PfLDH) inhibitors with acceptable drug-like properties. Several molecules with binding affinities comparable to CQ were chosen for in vitro validation of antimalarial efficacy. Among them, MS33A, MS33C and MS34C are the most promising against CQ-sensitive (3D7) with EC50 values of 1.6, 2.5 and 3.1 μM, respectively. Meanwhile, MS87 (EC50 of 1.85 μM) shown the most active against the CQ-resistant Gombak A strain, and MS33A and MS33C the most effective P. knowlesi inhibitors (EC50 of 3.6 and 5.1 μM, respectively). The in vitro cytotoxicity of selected diarylpentanoids (MS33A, MS33C, MS34C and MS87) was tested on Vero mammalian cells to evaluate parasite selectivity (SI), showing moderate to low cytotoxicity (CC50 > 82 μM). In addition, MS87 exhibited a high SI and the lowest resistance index (RI), suggesting that MS87 may exert effective parasite inhibition with low resistance potential in the CQ-resistant P. falciparum strain. Furthermore, the in vivo toxicity of the molecules on early embryonic development, the cardiovascular system, heart rate, motor activity and apoptosis were assessed in a zebrafish animal model. The overall results indicate the preliminary potential of diarylpentanoids, which need further investigation for their development as new antimalarial agents.
Collapse
Affiliation(s)
- Amirah Hani Ramli
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Puspanjali Swain
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Muhammad Syafiq Akmal Mohd Fahmi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Faridah Abas
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sze Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Rusdam Awang
- UPM - MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yee Ling Ng
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Siti Nurulhuda Mastuki
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, 40170, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
8
|
Salgado-Almario J, Molina Y, Vicente M, Martínez-Sielva A, Rodríguez-García R, Vincent P, Domingo B, Llopis J. ERG potassium channels and T-type calcium channels contribute to the pacemaker and atrioventricular conduction in zebrafish larvae. Acta Physiol (Oxf) 2024; 240:e14075. [PMID: 38071417 DOI: 10.1111/apha.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIM Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current IKr in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease. Here, we investigate the contribution of ERG channels and TTCCs to the pacemaker and atrioventricular conduction in zebrafish larvae and determine the mechanisms causing atrioventricular block. METHODS Zebrafish larvae expressing ratiometric fluorescent Ca2+ biosensors in the heart were used to measure Ca2+ levels and rhythm in beating hearts in vivo, concurrently with contraction and hemodynamics. The atrioventricular delay (the time between the start of atrial and ventricular Ca2+ transients) was used to measure impulse conduction velocity and distinguished between slow conduction and prolonged refractoriness as the cause of the conduction block. RESULTS ERG blockers caused bradycardia and atrioventricular block by prolonging the refractory period in the atrioventricular canal and in working ventricular myocytes. In contrast, inhibition of TTCCs caused bradycardia and second-degree block (Mobitz type I) by slowing atrioventricular conduction. TTCC block did not affect ventricular contractility, despite being highly expressed in cardiomyocytes. Concomitant measurement of Ca2+ levels and ventricular size showed mechano-mechanical coupling: increased preload resulted in a stronger heart contraction in vivo. CONCLUSION ERG channels and TTCCs influence the heart rate and atrioventricular conduction in zebrafish larvae. The zebrafish lines expressing Ca2+ biosensors in the heart allow us to investigate physiological feedback mechanisms and complex arrhythmias.
Collapse
Affiliation(s)
- Jussep Salgado-Almario
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Yillcer Molina
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Manuel Vicente
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Antonio Martínez-Sielva
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Raúl Rodríguez-García
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pierre Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Beatriz Domingo
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Llopis
- Physiology and Cell Dynamics, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
9
|
Wang H, Pan F, Liu J, Zhang J, Fuli Zhang, Wang Y. Huayuwendan decoction ameliorates inflammation via IL-17/NF-κB signaling pathway in diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117328. [PMID: 37865275 DOI: 10.1016/j.jep.2023.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huayuwendan decoction (HYWD) is a broad used traditional Chinese medicine and therapeutic effects against type 2 diabetes mellitus (T2DM). The mechanism of HYWD on the treatment of T2DM is still unclear. AIM OF THE STUDY For this reason, this study was performed to uncover the effects and mechanism of action of HYWD on T2DM. MATERIALS AND METHODS Male Wistar rats were chosen to set up the T2DM model. This study was randomly divided into six groups: CON (control), MOD (model), HYWDL (Huayuwendan decoction Low Dose), HYWDM (Huayuwendan decoction Middle Dose), HYWDH (Huayuwendan decoction High Dose), and MET (Metformin). Body weight gains were estimated. Using H&E staining, pathological alterations was explored. The serums of fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2 h PG) were detected by Roche blood glucose meter. LDL-C and HDL-C were analyzed by automatic biochemical analyzer. Network pharmacology analyzed the active ingredients, drug targets, and key pathways of HYWD in T2DM treatment. The islet function and inflammation related factors were determined by ELISA. NF-κB signaling pathway or IL-17 signaling pathway related proteins were analyzed by Western blotting. IL-17RA were determined by immunohistochemistry analyze. RESULTS HYWD inhibited weight gain in T2DM rats. Histopathological results showed that HYWD inhibits liver injury. HYWD suppressed LDL-C and enhanced HDL-C in serum of T2DM rats. HYWD reduce FPG and 2 h PG, inhibit Fins, GSP and IRI, but enhance IAI in serum of T2DM rats. In addition, the network pharmacology results identified 292 chemical compounds in HYWD. 279 candidate targets were recognized, including IL-17A, IL-1β, NFкB, stats, mmp3, and cxcl2. The pathways revealed that the possible target of HYWD related with the regulation of IL-17 signaling pathway and NF-κB pathway. Then in vivo study, HYWD reduced the levels of IL-6, TNF-α, IL-17 and IL-1β in serum and inhibit the protein expression involved in IL-17/NF-κB signaling pathway. CONCLUSIONS The study demonstrates that HYWD may improve T2DM by repressing with the IL-17/NF-κB signaling pathway, which offer encouraging support for using alternative medicine of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hongyang Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Fuzhen Pan
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Jie Liu
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Juncheng Zhang
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Fuli Zhang
- Heilongjiang Univ Tradit Chinese Med, Harbin, Heilongjiang, 150000, China
| | - Yu Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, China; Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
| |
Collapse
|
10
|
Dos Santos JC, Alves JEF, de Azevedo RDS, de Lima ML, de Oliveira Silva MR, da Silva JG, da Silva JM, de Carvalho Correia AC, do Carmo Alves de Lima M, de Oliveira JF, de Moura RO, de Almeida SMV. Study of nitrogen heterocycles as DNA/HSA binder, topoisomerase inhibitors and toxicological safety. Int J Biol Macromol 2024; 254:127651. [PMID: 37949265 DOI: 10.1016/j.ijbiomac.2023.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 μM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.
Collapse
Affiliation(s)
- Jéssica Celerino Dos Santos
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | | | - Maksuelly Libanio de Lima
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | - Josefa Gerlane da Silva
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | - Jamire Muriel da Silva
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | | | - Maria do Carmo Alves de Lima
- Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
11
|
Wu T, Chen Y, Yang C, Lu M, Geng F, Guo J, Pi Y, Ling Y, Xu J, Cai T, Lu L, Zhou Y. Systematical Evaluation of the Structure-Cardiotoxicity Relationship of 7-Azaindazole-based PI3K Inhibitors Designed by Bioisosteric Approach. Cardiovasc Toxicol 2023; 23:364-376. [PMID: 37787964 DOI: 10.1007/s12012-023-09809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
A growing concern of cardiotoxicity induced by PI3K inhibitors has raised the requirements to evaluate the structure-cardiotoxicity relationship (SCR) in the development process of novel inhibitors. Based on three bioisosteric 7-azaindazole-based candidate inhibitors namely FD269, FD268 and FD274 that give same order of inhibitory concentration 50% (IC50) magnitude against PI3Ks, in this work, we proposed to systematically evaluate the SCR of 7-azaindazole-based PI3K inhibitors designed by bioisosteric approach. The 24-h lethal concentrations 50% (LC50) of FD269, FD268 and FD274 against zebrafish embryos were 0.35, 4.82 and above 50 μM (not detected), respectively. Determination of the heart rate, pericardial and yolk-sac areas and vascular malformation confirmed the remarkable reduction in the cardiotoxicity of from FD269 to FD268 and to FD274. The IC50s of all three compounds against the hERG channel were tested on the CHO cell line that constitutively expressing hERG channel, which were all higher than 20 μM. The transcriptomic analysis revealed that FD269 and FD268 induced the up-regulation of noxo1b, which encodes a subunit of an NADPH oxidase evoking the oxidative stress. Furthermore, immunohistochemistry tests confirmed the structure-dependent attenuation of the overproduction of ROS and cardiac apoptosis. Our results verified the feasibility of bioisosteric replacement to attenuate the cardiotoxicity of 7-azaindazole-based PI3K inhibitors, suggesting that the screening for PI3K inhibitors with both high potency and low cardiotoxicity from bioisosteres would be a beneficial trial.
Collapse
Affiliation(s)
- Tianze Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yi Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chengbin Yang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Guo
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Pi
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jun Xu
- ABA Chemicals Co., Ltd, Taicang, 215400, Jiangsu, China
| | - Tong Cai
- ABA Chemicals Co., Ltd, Taicang, 215400, Jiangsu, China
| | - Lei Lu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Ernst A, Piragyte I, Mp AM, Le ND, Grandgirard D, Leib SL, Oates A, Mercader N. Identification of side effects of COVID-19 drug candidates on embryogenesis using an integrated zebrafish screening platform. Sci Rep 2023; 13:17037. [PMID: 37813860 PMCID: PMC10562458 DOI: 10.1038/s41598-023-43911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Drug repurposing is an important strategy in COVID-19 treatment, but many clinically approved compounds have not been extensively studied in the context of embryogenesis, thus limiting their administration during pregnancy. Here we used the zebrafish embryo model organism to test the effects of 162 marketed drugs on cardiovascular development. Among the compounds used in the clinic for COVD-19 treatment, we found that Remdesivir led to reduced body size and heart functionality at clinically relevant doses. Ritonavir and Baricitinib showed reduced heart functionality and Molnupiravir and Baricitinib showed effects on embryo activity. Sabizabulin was highly toxic at concentrations only 5 times higher than Cmax and led to a mean mortality of 20% at Cmax. Furthermore, we tested if zebrafish could be used as a model to study inflammatory response in response to spike protein treatment and found that Remdesivir, Ritonavir, Molnupiravir, Baricitinib as well as Sabizabulin counteracted the inflammatory response related gene expression upon SARS-CoV-2 spike protein treatment. Our results show that the zebrafish allows to study immune-modulating properties of COVID-19 compounds and highlights the need to rule out secondary defects of compound treatment on embryogenesis. All results are available on a user friendly web-interface https://share.streamlit.io/alernst/covasc_dataapp/main/CoVasc_DataApp.py that provides a comprehensive overview of all observed phenotypic effects and allows personalized search on specific compounds or group of compounds. Furthermore, the presented platform can be expanded for rapid detection of developmental side effects of new compounds for treatment of COVID-19 and further viral infectious diseases.
Collapse
Affiliation(s)
| | - Indre Piragyte
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
| | - Ayisha Marwa Mp
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
| | - Ngoc Dung Le
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrew Oates
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland.
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland.
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain.
| |
Collapse
|
13
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
14
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
15
|
Maciag M, Plazinski W, Pulawski W, Kolinski M, Jozwiak K, Plazinska A. A comprehensive pharmacological analysis of fenoterol and its derivatives to unravel the role of β 2-adrenergic receptor in zebrafish. Biomed Pharmacother 2023; 160:114355. [PMID: 36739761 DOI: 10.1016/j.biopha.2023.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
β-adrenergic receptors (βARs) belong to a key molecular targets that regulate the most important processes occurring in the human organism. Although over the last decades a zebrafish model has been developed as a model complementary to rodents in biomedical research, the role of β2AR in regulation of pathological and toxicological effects remains to elucidate. Therefore, the study aimed to clarify the role of β2AR with a particular emphasis on the distinct role of subtypes A and B of zebrafish β2AR. As model compounds selective β2AR agonists - (R,R)-fenoterol ((R,R)-Fen) and its new derivatives: (R,R)-4'-methoxyfenoterol ((R,R)-MFen) and (R,R)-4'-methoxy-1-naphtylfenoterol ((R,R)-MNFen) - were tested. We described dose-dependent changes observed after fenoterols exposure in terms of general toxicity, cardiotoxicity and neurobehavioural responses. Subsequently, to better characterise the role of β2-adrenergic stimulation in zebrafish, we have performed a series of molecular docking simulations. Our results indicate that (R,R)-Fen displays the highest affinity for subtype A of zebrafish β2AR and β2AAR might be involved in pigment depletion. (R,R)-MFen shows the lowest affinity for zebrafish β2ARs out of the tested fenoterols and this might be associated with its cardiotoxic and anxiogenic effects. (R,R)-MNFen displays the highest affinity for subtype B of zebrafish β2AR and modulation of this receptor might be associated with the development of malformations, increases locomotor activity and induces a negative chronotropic effect. Taken together, the presented data offer insights into the functional responses of the zebrafish β2ARs confirming their intraspecies conservation, and support the translation of the zebrafish model in pharmacological and toxicological research.
Collapse
Affiliation(s)
- Monika Maciag
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland.
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland; Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Street, 30-239 Cracow, Poland
| | - Wojciech Pulawski
- Bioinformatics Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, e Pawinskiego Street, 02-106 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, e Pawinskiego Street, 02-106 Warsaw, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Anita Plazinska
- Department of Biopharmacy, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland.
| |
Collapse
|
16
|
Hasegawa EH, Farr GH, Maves L. Comparison of Pronase versus Manual Dechorionation of Zebrafish Embryos for Small Molecule Treatments. J Dev Biol 2023; 11:16. [PMID: 37092478 PMCID: PMC10123619 DOI: 10.3390/jdb11020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Zebrafish are a powerful animal model for small molecule screening. Small molecule treatments of zebrafish embryos usually require that the chorion, an acellular envelope enclosing the embryo, is removed in order for chemical compounds to access the embryo from the bath medium. For large-scale studies requiring hundreds of embryos, manual dechorionation, using forceps, can be a time-consuming and limiting process. Pronase is a non-specific protease that is widely used as an enzymatic alternative for dechorionating zebrafish embryos. However, whether pronase treatments alter the effects of subsequent small molecule treatments has not been addressed. Here, we provide a detailed protocol for large-scale pronase dechorionation of zebrafish embryos. We tested whether pronase treatment can influence the efficacy of drug treatments in zebrafish embryos. We used a zebrafish model for Duchenne muscular dystrophy (DMD) to investigate whether the efficacies of trichostatin-A (TSA) or salermide + oxamflatin, small molecule inhibitors known to ameliorate the zebrafish dmd muscle degeneration phenotype, are significantly altered when embryos are treated with pronase versus manual dechorionation. We also tested the effects of pronase on the ability of the anthracycline cancer drug doxorubicin to induce cardiotoxicity in zebrafish embryos. When comparing pronase- versus forceps-dechorionated embryos used in these small molecule treatments, we found no appreciable effects of pronase on animal survival or on the effects of the small molecules. The significant difference that was detected was a small improvement in the ability of salermide + oxamflatin to ameliorate the dmd phenotype in pronase-treated embryos when compared with manual dechorionation. Our study supports the use of pronase treatment as a dechorionation method for zebrafish drug screening experiments.
Collapse
Affiliation(s)
- Eva H. Hasegawa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Gist H. Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Førde JL, Reiten IN, Fladmark KE, Kittang AO, Herfindal L. A new software tool for computer assisted in vivo high-content analysis of transplanted fluorescent cells in intact zebrafish larvae. Biol Open 2022; 11:281291. [PMID: 36355409 PMCID: PMC9770244 DOI: 10.1242/bio.059530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Acute myeloid leukemia and myelodysplastic syndromes are cancers of the bone marrow with poor prognosis in frail and older patients. To investigate cancer pathophysiology and therapies, confocal imaging of fluorescent cancer cells and their response to treatments in zebrafish larvae yields valuable information. While zebrafish larvae are well suited for confocal imaging, the lack of efficient processing of large datasets remains a severe bottleneck. To alleviate this problem, we present a software tool that segments cells from confocal images and track characteristics such as volume, location in the larva and fluorescent intensity on a single-cell basis. Using this software tool, we were able to characterise the responses of the cancer cell lines Molm-13 and MDS-L to established treatments. By utilizing the computer-assisted processing of confocal images as presented here, more information can be obtained while being less time-consuming and reducing the demand of manual data handling, when compared to a manual approach, thereby accelerating the pursuit of novel anti-cancer treatments. The presented software tool is available as an ImageJ java-plugin at https://zenodo.org/10.5281/zenodo.7383160 and the source code at https://github.com/Jfo004/ConfocalCellSegmentation.
Collapse
Affiliation(s)
- Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Department of Internal Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ingeborg Nerbø Reiten
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | | | - Astrid Olsnes Kittang
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway,Author for correspondence ()
| |
Collapse
|
18
|
Optical transparency and label-free vessel imaging of zebrafish larvae in shortwave infrared range as a tool for prolonged studying of cardiovascular system development. Sci Rep 2022; 12:20884. [PMID: 36463350 PMCID: PMC9719527 DOI: 10.1038/s41598-022-25386-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Optical techniques are utilized for the non-invasive analysis of the zebrafish cardiovascular system at early developmental stages. Being based mainly on conventional optical microscopy components and image sensors, the wavelength range of the collected and analyzed light is not out of the scope of 400-900 nm. In this paper, we compared the non-invasive optical approaches utilizing visible and near infrared range (VISNIR) 400-1000 and the shortwave infrared range (SWIR) 900-1700 nm. The transmittance spectra of zebrafish tissues were measured in these wavelength ranges, then vessel maps, heart rates, and blood flow velocities were calculated from data in VISNIR and SWIR. An increased pigment pattern transparency was registered in SWIR, while the heart and vessel detection quality in this range is not inferior to VISNIR. Obtained results indicate an increased efficiency of SWIR imaging for monitoring heart function and hemodynamic analysis of zebrafish embryos and larvae and suggest a prolonged registration period in this range compared to other optical techniques that are limited by pigment pattern development.
Collapse
|
19
|
A Liposomal Formulation of Simvastatin and Doxorubicin for Improved Cardioprotective and Anti-Cancer Effect. Int J Pharm 2022; 629:122379. [DOI: 10.1016/j.ijpharm.2022.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|