1
|
Mulim HA, Hernandez RO, Vanderhout R, Bai X, Willems O, Regmi P, Erasmus MA, Brito LF. Genetic background of walking ability and its relationship with leg defects, mortality, and performance traits in turkeys (Meleagris gallopavo). Poult Sci 2024; 103:103779. [PMID: 38788487 PMCID: PMC11145530 DOI: 10.1016/j.psj.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to explore the genetic basis of walking ability and potentially related performance traits in turkey purebred populations. Phenotypic, pedigree, and genomic datasets from 2 turkey lines hatched between 2010 and 2023 were included in the study. Walking ability data, defined based on a scoring system ranging from 1 (worst) to 6 (best), were collected on 192,019 animals of a female line and 235,461 animals of a male line. Genomic information was obtained for 46,427 turkeys (22,302 from a female line and 24,125 from a male line) using a 65K single nucleotide polymorphism (SNP) panel. Variance components and heritability for walking ability were estimated. Furthermore, genetic and phenotypic correlations among walking ability, mortality and disorders, and performance traits were calculated. A genome-wide association study (GWAS) was also conducted to identify SNPs associated with walking ability. Walking ability is moderately heritable (0.23 ± 0.01) in both turkey lines. The genetic correlations between walking ability and the other evaluated traits ranged from -0.02 to -0.78, with leg defects exhibiting the strongest negative correlation with walking ability. In the female line, 31 SNPs were associated with walking ability and overlapped with 116 genes. These positional genes are linked to 6 gene ontology (GO) terms. Notably, genes such as CSRP2, DDX1, RHBDL1, SEZ6L, and CTSK are involved in growth, development, locomotion, and bone disorders. GO terms, including fibronectin binding (GO:0001968), peptide cross-linking (GO:0018149), and catabolic process (GO:0009057), are directly linked with mobility. In the male line, 66 markers associated with walking ability were identified and overlapped with 281 genes. These genes are linked to 12 GO terms. Genes such as RB1CC1, TNNI1, MSTN, FN1, SIK3, PADI2, ERBB4, B3GNT2, and BACE1 are associated with cell growth, myostatin development, and disorders. GO terms in the male line are predominantly related to lipid metabolism. In conclusion, walking ability is moderately heritable in both populations. Furthermore, walking ability can be enhanced through targeted genetic selection, emphasizing its relevance to both animal welfare and productivity.
Collapse
Affiliation(s)
- Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Rick O Hernandez
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Xuechun Bai
- Hendrix Genetics Limited, Kitchener, ON, Canada
| | | | - Prafulla Regmi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Marisa A Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Liu L, Hong Y, Ma C, Zhang F, Li Q, Li B, He H, Zhu J, Wang H, Chen L. Circular RNA Gtdc1 Protects Against Offspring Osteoarthritis Induced by Prenatal Prednisone Exposure by Regulating SRSF1-Fn1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307442. [PMID: 38520084 PMCID: PMC11132075 DOI: 10.1002/advs.202307442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Chondrodysplasia is closely associated with low birth weight and increased susceptibility to osteoarthritis in adulthood. Prenatal prednisone exposure (PPE) can cause low birth weight; however, its effect on offspring cartilage development remains unexplored. Herein, rats are administered clinical doses of prednisone intragastrically on gestational days (GDs) 0-20 and underwent long-distance running during postnatal weeks (PWs) 24-28. Knee cartilage is assayed for quality and related index changes on GD20, PW12, and PW28. In vitro experiments are performed to elucidate the mechanism. PPE decreased cartilage proliferation and matrix synthesis, causing offspring chondrodysplasia. Following long-distance running, the PPE group exhibited more typical osteoarthritis-like changes. Molecular analysis revealed that PPE caused cartilage circRNomics imbalance in which circGtdc1 decreased most significantly and persisted postnatally. Mechanistically, prednisolone reduced circGtdc1 expression and binding with Srsf1 to promote degradation of Srsf1 via K48-linked polyubiquitination. This further inhibited the formation of EDA/B+Fn1 and activation of PI3K/AKT and TGFβ pathways, reducing chondrocyte proliferation and matrix synthesis. Finally, intra-articular injection of offspring with AAV-circGtdc1 ameliorated PPE-induced chondrodysplasia, but this effect is reversed by Srsf1 knockout. Altogether, this study confirms that PPE causes chondrodysplasia and susceptibility to osteoarthritis by altering the circGtdc1-Srsf1-Fn1 axis; in vivo, overexpression of circGtdc1 can represent an effective intervention target for ameliorating PPE-induced chondrodysplasia.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuntian Hong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Chi Ma
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Fan Zhang
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qingxian Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bin Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hangyuan He
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiayong Zhu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacologyWuhan University School of Basic Medical SciencesWuhan430071China
| | - Liaobin Chen
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
3
|
Wang L, Li F, Wang L, Wu B, Du M, Xing H, Pan S. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Rheumatoid Arthritis Symptoms via Shuttling Proteins. J Proteome Res 2024; 23:1298-1312. [PMID: 38500415 DOI: 10.1021/acs.jproteome.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.
Collapse
Affiliation(s)
- Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liting Wang
- Department of Rehabilitation, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Bingxing Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman ,Washington 99163, United States
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
4
|
Gu Y, Hu Y, Zhang H, Wang S, Xu K, Su J. Single-cell RNA sequencing in osteoarthritis. Cell Prolif 2023; 56:e13517. [PMID: 37317049 PMCID: PMC10693192 DOI: 10.1111/cpr.13517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Osteoarthritis is a progressive and heterogeneous joint disease with complex pathogenesis. The various phenotypes associated with each patient suggest that better subgrouping of tissues associated with genotypes in different phases of osteoarthritis may provide new insights into the onset and progression of the disease. Recently, single-cell RNA sequencing was used to describe osteoarthritis pathogenesis on a high-resolution view surpassing traditional technologies. Herein, this review summarizes the microstructural changes in articular cartilage, meniscus, synovium and subchondral bone that are mainly due to crosstalk amongst chondrocytes, osteoblasts, fibroblasts and endothelial cells during osteoarthritis progression. Next, we focus on the promising targets discovered by single-cell RNA sequencing and its potential applications in target drugs and tissue engineering. Additionally, the limited amount of research on the evaluation of bone-related biomaterials is reviewed. Based on the pre-clinical findings, we elaborate on the potential clinical values of single-cell RNA sequencing for the therapeutic strategies of osteoarthritis. Finally, a perspective on the future development of patient-centred medicine for osteoarthritis therapy combining other single-cell multi-omics technologies is discussed. This review will provide new insights into osteoarthritis pathogenesis on a cellular level and the field of applications of single-cell RNA sequencing in personalized therapeutics for osteoarthritis in the future.
Collapse
Affiliation(s)
- Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Yan Hu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Hao Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Sicheng Wang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| |
Collapse
|
5
|
Jiang P, Liang D, Wang H, Zhou R, Che X, Cong L, Li P, Wang C, Li W, Wei X, Li P. TMT quantitative proteomics reveals key proteins relevant to microRNA-1-mediated regulation in osteoarthritis. Proteome Sci 2023; 21:21. [PMID: 37993861 PMCID: PMC10664301 DOI: 10.1186/s12953-023-00223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA.
Collapse
Affiliation(s)
- Pinpin Jiang
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dan Liang
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Raorao Zhou
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xianda Che
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Linlin Cong
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Penghua Li
- Department of Laboratory Medicine, Fenyang Hospital Affiliated to Shanxi Medical University, Fenyang, China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, China
| | - Wenjin Li
- Department of Stomatology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Andalib KMS, Ahmed A, Habib A. Omics data analysis reveals common molecular basis of small cell lung cancer and COVID-19. J Biomol Struct Dyn 2023; 42:10577-10592. [PMID: 37708006 DOI: 10.1080/07391102.2023.2257803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The impact of COVID-19 infection on individuals with small cell lung cancer (SCLC) poses a serious threat. Unfortunately, the molecular basis of this severe comorbidity has yet to be elucidated. The present study addresses this gap utilizing publicly available omics data of COVID-19 and SCLC to explore the key molecules and associated pathways involved in the convergence of these diseases. Findings revealed 402 genes, that exhibited differential expression patterns in SCLC patients and also play a pivotal role in COVID-19 pathogenesis. Subsequent functional enrichment analyses identified relevant ontologies and pathways that are significantly associated with these genes, revealing important insights into their potential biological, molecular and cellular functions. The protein-protein interaction network, constructed under four combinatorial topological assessments, highlighted SMAD3, CAV1, PIK3R1, and FN1 as the primary components to this comorbidity. Our results suggest that these components significantly regulate this cross-talk triggering the PI3K-AKT and TGF-β signaling pathways. Lastly, this study made a multi-step computational attempt and identified corylifol A and ginkgetin from natural sources that can potentially inhibit these components. Therefore, the outcomes of this study offer novel perspectives on the common molecular mechanisms underlying SCLC and COVID-19 and present future opportunities for drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
7
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|