1
|
Zhao H, Liu Y, Cai N, Liao X, Tang L, Wang Y. Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs. Drug Des Devel Ther 2024; 18:2143-2167. [PMID: 38882045 PMCID: PMC11179644 DOI: 10.2147/dddt.s462785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Over the past decade, the idea of targeting the endocannabinoid system to treat anxiety disorders has received increasing attention. Previous studies focused more on developing cannabinoid receptor agonists or supplementing exogenous cannabinoids, which are prone to various adverse effects due to their strong pharmacological activity and poor receptor selectivity, limiting their application in clinical research. Endocannabinoid hydrolase inhibitors are considered to be the most promising development strategies for the treatment of anxiety disorders. More recent efforts have emphasized that inhibition of two major endogenous cannabinoid hydrolases, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), indirectly activates cannabinoid receptors by increasing endogenous cannabinoid levels in the synaptic gap, circumventing receptor desensitization resulting from direct enhancement of endogenous cannabinoid signaling. In this review, we comprehensively summarize the anxiolytic effects of MAGL and FAAH inhibitors and their potential pharmacological mechanisms, highlight reported novel inhibitors or natural products, and provide an outlook on future directions in this field.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Yang Liu
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Na Cai
- Outpatient Department, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xiaolin Liao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| | - Lin Tang
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Yuhong Wang
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Zhou MY, Yao CH, Yang YJ, Li X, Yang J, Liu JH, Yu BY, Dai WL. Based on spinal central sensitization creating analgesic screening approach to excavate anti-neuropathic pain ingredients of Corydalis yanhusuo W.T.Wang. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117084. [PMID: 37666376 DOI: 10.1016/j.jep.2023.117084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis Rhizome (RC) as a traditional analgesic Chinese medicine is the dried tuber of Corydalis yanhusuo W.T.Wang. Many efforts have revealed that RC could effectively alleviate neuropathic pain, while its active ingredients in neuropathic pain are still not clear. AIM OF THE STUDY Spinal central sensitization contributes greatly to neuropathic pain, and neuron, astrocyte and microglia play important roles in spinal central sensitization. The aim of the present study is to excavate active compounds in RC regulating spinal central sensitization to inhibit neuropathic pain. MATERIALS AND METHODS Immunofluorescence and western blotting were used to determine protein expression levels. Gene expression levels were detected by RT-PCR. PC12 neuronal cells, C6 astrocyte cells, and BV2 microglia cells were cultured for in vitro studies. Targeting multi types of cells extraction combined with HPLC-Q-TOF-MS/MS was established to identify components binding to above cells. Animal studies were used to verify the analgesic activities of components. RESULTS Total alkaloids of RC (RC-TA) significantly relieved neuropathic pain in chronic constriction injury (CCI) rats and repressed spinal central sensitization. Eight components of RC-TA were found to bind to PC12, C6, or BV2 cells. They could respectively suppress the activation of cells in vitro and alleviate CCI-induced neuropathic pain, among which glaucine and dehydrocorydaline induced antinociception was stronger than l-THP. Meanwhile, glaucine had no effect on acute or chronic inflammatory pain, and its antinociception in neuropathic pain could be abolished by dopamine D1 receptor agonist. CONCLUSIONS Employing multi types of cells based on spinal central sensitization rather than single cell may allow for more thorough excavation of active substances. Glaucine was firstly found could attenuate neuropathic pain but not other types of pain which indicated that different alkaloids in RC exert distinct analgesic effects on different pain models, and gluacine has the potential to be developed as an analgesic drug specifically for neuropathic pain relieving.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yu-Jie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
3
|
Sun H, Chen M, He X, Sun Y, Feng J, Guo X, Li L, Zhu J, Xia G, Zang H. Phytochemical analysis and in vitro and in vivo antioxidant properties of Plagiorhegma dubia Maxim as a medicinal crop for diabetes treatment. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
4
|
Miranda de Souza Duarte-Filho LA, Ortega de Oliveira PC, Yanaguibashi Leal CE, de Moraes MC, Picot L. Ligand fishing as a tool to screen natural products with anticancer potential. J Sep Sci 2023:e2200964. [PMID: 36808885 DOI: 10.1002/jssc.202200964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Cancer is the second leading cause of death in the world and its incidence is expected to increase with the aging of the world's population and globalization of risk factors. Natural products and their derivatives have provided a significant number of approved anticancer drugs and the development of robust and selective screening assays for the identification of lead anticancer natural products are essential in the challenge of developing personalized targeted therapies tailored to the genetic and molecular characteristics of tumors. To this end, a ligand fishing assay is a remarkable tool to rapidly and rigorously screen complex matrices, such as plant extracts, for the isolation and identification of specific ligands that bind to relevant pharmacological targets. In this paper, we review the application of ligand fishing with cancer-related targets to screen natural product extracts for the isolation and identification of selective ligands. We provide critical analysis of the system configurations, targets, and key phytochemical classes related to the field of anticancer research. Based on the data collected, ligand fishing emerges as a robust and powerful screening system for the rapid discovery of new anticancer drugs from natural resources. It is currently an underexplored strategy according to its considerable potential.
Collapse
Affiliation(s)
| | | | - Cíntia Emi Yanaguibashi Leal
- Departamento de Ciências Farmacêuticas, Pós-Graduação em Biociências (PGB) Universidade Federal do Vale do São Francisco, Petrolina, Brazil
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Laboratório BIOCROM, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, Département de Biotechnologie, La Rochelle Université, La Rochelle, France
| |
Collapse
|
5
|
Yang H, Zhang Y, Duan Q, Ni K, Jiao Y, Zhu J, Sun J, Zhang W, Ma Z. Dehydrocorydaline alleviates sleep deprivation-induced persistent postoperative pain in adolescent mice through inhibiting microglial P2Y 12 receptor expression in the spinal cord. Mol Pain 2023; 19:17448069231216234. [PMID: 37940138 DOI: 10.1177/17448069231216234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
During adolescence, a second period of central nervous system (CNS) plasticity that follows the fetal period, which involves sleep deprivation (SD), becomes apparent. SD during adolescence may result in abnormal development of neural circuits, causing imbalance in neuronal excitation and inhibition, which not only results in pain, but increases the chances of developing emotion disorders in adulthood, such as anxiety and depression. The quantity of surgeries during adolescence is also consistently on the rise, yet the impact and underlying mechanism of preoperative SD on postoperative pain remain unexplored. This study demonstrates that preoperative SD induces upregulation of the P2Y12 receptor, which is exclusively expressed on spinal microglia, and phosphorylation of its downstream signaling pathway p38Mitogen-activated protein/Nuclear transcription factor-κB (p38MAPK/NF-κB)in spinal microglia, thereby promoting microglia activation and microglial transformation into the proinflammatory M1 phenotype, resulting in increased expression of proinflammatory cytokines that exacerbate persisting postoperative incisional pain in adolescent mice. Both intrathecal minocycline (a microglia activation inhibitor) and MRS2395 (a P2Y12 receptor blocker) effectively suppressed microglial activation and proinflammatory cytokine expression. Interestingly, supplementation with dehydrocorydaline (DHC), an extract of Rhizoma Corydalis, inhibited the P2Y12/p38MAPK/NF-κB signaling pathway, microglia activation, and expression of pro-inflammatory cytokines in the model mice. Taken together, the results indicate that the P2Y12 receptor and microglial activation are important factors in persistent postoperative pain caused by preoperative SD in adolescent mice and that DHC has analgesic effects by acting on these targets.
Collapse
Affiliation(s)
- Haikou Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yufeng Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Qingling Duan
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Ni
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jixiang Zhu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Sun
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|