1
|
Szychowski KA, Skóra B, Wójtowicz AK. Engagement of peroxisome proliferator-activated receptor gamma (PPARγ) and mammalian target of rapamycin (mTOR) in the triclosan-induced disruption of Cyp450 enzyme activity in an in vitro model of mouse embryo fibroblasts (3T3-L1). Toxicology 2024; 511:154031. [PMID: 39653182 DOI: 10.1016/j.tox.2024.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Triclosan (TCS) is commonly used worldwide due to its bactericidal and antifungal properties. There are data suggesting the involvement of aryl hydrocarbon receptors (AhR) and peroxisome proliferator-activated receptors (PPARγ). Since the effect of TCS on mouse fibroblasts has not been described so far, we decided to investigate the mechanism of action of this compound in the mouse embryonic fibroblast cell line (3T3-L1). Our results showed that high µM concentrations of TCS increased caspase-3 activity and decreased cell viability after 24-h exposure. The molecular analysis confirmed that 1 µM TCS decreased Ki67 mRNA expression and PCNA protein expression with a similar tendency to that of AhR. The analyses of mRNA levels after treatment with αNF or βNF alone and αNF in combination with TCS showed an increase in Ki67 mRNA expression. TCS alone increased AhR mRNA but had different effects on Cyp1a1 and Cyp1b1 expression. These results suggest the involvement of the PPARγ pathway in the inhibition of Cyp1b1 by TCS. After the TCS exposure, we observed a decrease in PPARγ, and this effect was enhanced in the presence of an AhR agonist and antagonist. These results support the theory about the interaction between the AhR and PPARγ pathways. In the experiments, the strongest increase in PI3K protein expression was observed in the group treated simultaneously with TCS and βNF. Changes in the PI3K level were reflected in changes in the examined mTOR protein. TCS caused a decrease in both mTOR and Cyp1b1 after 24 hours, while opposite effects were observed after 48 hours. Given the crucial role of Cyp1b1, PPARγ, and mTOR in cellular metabolism, we can conclude that TCS is able to disrupt a number of cellular processes. Our data suggest that TCS reduces the metabolism of this xenobiotic in mouse preadipocytes.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, Rzeszów 35-225, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, Rzeszów 35-225, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture, Rędzina 1B, Kraków 30-248, Poland
| |
Collapse
|
2
|
Zhang Y, Tu L, Chen J, Zhou L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies. Int J Endocrinol 2024; 2024:2564389. [PMID: 39659890 PMCID: PMC11631346 DOI: 10.1155/ije/2564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs), found in various cosmetic products, interfere with the normal functioning of the endocrine system, impacting hormone regulation and posing risks to human health. Common cosmetic EDCs, such as ultraviolet (UV) filters, parabens, and triclosan, can enter the human body through different routes, including skin absorption. Their presence has been linked to adverse effects on reproduction, immune function, and development. High-throughput in vitro assays, using various human cell lines, were employed to assess the effects of common cosmetic EDCs such as ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), homosalate, and parabens. Despite ongoing regulatory efforts, gaps persist in understanding their long-term impacts, particularly when they are present as mixtures or degradation products in the environment. This study focuses on recent in vitro research to investigate the mechanisms through which cosmetic-related EDCs disrupt the endocrine system and other physiological systems. The in vitro findings highlight the broader systemic impact of these chemicals, extending beyond the endocrine system to include immune, reproductive, and cardiovascular effects. This research underscores the importance of developing safer cosmetic formulations and enhancing public health protection, emphasizing the need for stricter regulations.
Collapse
Affiliation(s)
- Yixuan Zhang
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Tu
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Jian Chen
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| |
Collapse
|
3
|
Kosińska K, Szychowski KA. Current state of knowledge of triclosan (TCS)-dependent reactive oxygen species (ROS) production. ENVIRONMENTAL RESEARCH 2024; 250:118532. [PMID: 38401681 DOI: 10.1016/j.envres.2024.118532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Triclosan (TCS) is widely used in a number of industrial and personal care products. This molecule can induce reactive oxygen species (ROS) production in various cell types, which results in diverse types of cell responses. Therefore, the aim of the present study was to summarize the current state of knowledge of TCS-dependent ROS production and the influence of TCS on antioxidant enzymes and pathways. To date, the TCS mechanism of action has been widely investigated in non-mammalian organisms that may be exposed to contaminated water and soil, but there are also in vivo and in vitro studies on plants, algae, mammalians, and humans. This literature review has revealed that mammalian organisms are more resistant to TCS than non-mammalian organisms and, to obtain a toxic effect, the effective TCS dose must be significantly higher. The TCS-dependent increase in the ROS level causes damage to DNA, protein, and lipids, which together with general oxidative stress leads to cell apoptosis or necrosis and, in the case of cancer cells, faster oncogenesis and even initiation of oncogenic transformation in normal human cells. The review presents the direct and indirect TCS action through different receptor pathways.
Collapse
Affiliation(s)
- Karolina Kosińska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
4
|
López-Pintor RM, González-Serrano J, Ivaylova Serkedzhieva K, Serrano Valle J, de Arriba L, Hernández G, Sanz M. Gingival hypersensitivity reactions to toothpastes: A case series and scoping review. J Am Dent Assoc 2024; 155:213-226.e3. [PMID: 38206258 DOI: 10.1016/j.adaj.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Hypersensitivity reactions to toothpastes are rare. The objective of this study was to present the authors' clinical cases in the past 10 years and perform a scoping review of gingival hypersensitivity responses to toothpastes. TYPES OF STUDIES REVIEWED The authors reviewed records of documented gingival hypersensitivity reactions to dentifrices at the Postgraduate Clinic of Oral Medicine, Complutense University, Madrid, Spain, from January 2013 through December 2022. Furthermore, the authors conducted a search in PubMed with no date limit for articles reporting these hypersensitivity responses up through October 18, 2023. RESULTS Eleven cases were collected from the clinic. Eight gingival hypersensitivity reactions occurred in women, and 6 were associated with cinnamon. The most frequent lesions diagnosed were red gingiva. The discontinuation of the toothpaste led to the disappearance of the lesions. The search yielded 643 references. Thirteen articles were included in the scoping review, all of them case series and case reports, reporting 32 cases. Lesions affected middle-aged women most frequently, the most common hypersensitivity reaction was gingival redness, and the cases implicated toothpastes containing cinnamon and herbal composition. PRACTICAL IMPLICATIONS This study provides clues for diagnosing and treating hypersensitivity reactions to toothpastes, which may improve the identification, management, and reporting of these cases.
Collapse
|
5
|
Zhuang J, Chen Q, Xu L, Chen X. Effects of chronic triclosan exposure on nephrotoxicity and gut microbiota dysbiosis in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115866. [PMID: 38199221 DOI: 10.1016/j.ecoenv.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Triclosan (TCS), a broad-spectrum, lipophilic, and antibacterial agent, has been commonly used in cosmetics, medical devices, and household products. The toxicity of TCS has recently become a research hotspot. Emerging evidence has shown that TCS can easily migrate to humans and animals and cause adverse effects on various target organs. However, the effects of TCS exposure on nephrotoxicity and underlying mechanisms remain unknown. The aim of the present study was to explore TCS-induced nephrotoxicity. Therefore, we establish a mouse model based on adult male mice to explore the effects of 10-week TCS exposure (50 mg/kg) on kidney. After mice were sacrificed, their blood, feces, and renal tissues were harvested for further analysis. We found that TCS treatment dramatically caused kidney structural damage, and increased blood urea nitrogen (BUN) and creatinine (Cr) expression levels, which indicated renal dysfunction. In addition, TCS exposure increased the malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and total cholesterol (TCHO) expression levels, which indicated oxidative stress and lipid metabolism changes. The RNA sequencing (RNA-seq) of kidney tissue identified 221 differentially expressed genes (DEGs) enriched in 50 pathways, including drug metabolism-other enzymes, oxidative phosphorylation, glutathione metabolism, and inflammatory mediator regulation of TRP channels signaling pathways. The full-length 16S rRNA gene sequencing results showed that TCS exposure altered the community of gut microbiota, which was closely related to renal function damage. The above findings provide new insights into the mechanism of TCS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
7
|
Li Y, Xiang S, Hu L, Qian J, Liu S, Jia J, Cui J. In vitro metabolism of triclosan and chemoprevention against its cytotoxicity. CHEMOSPHERE 2023; 339:139708. [PMID: 37536533 DOI: 10.1016/j.chemosphere.2023.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 μM, 20 ± 10 μM and 60 ± 20 μM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.
Collapse
Affiliation(s)
- Yubei Li
- School of China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Shouyan Xiang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Liuyin Hu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Qian
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Shuoguo Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China; School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
8
|
Cai X, Ning C, Fan L, Li Y, Wang L, He H, Dong T, Cai Y, Zhang M, Lu Z, Chen C, Shi K, Ye T, Zhong R, Tian J, Li H, Li H, Zhu Y, Miao X. Triclosan is associated with breast cancer via oxidative stress and relative telomere length. Front Public Health 2023; 11:1163965. [PMID: 37213605 PMCID: PMC10197149 DOI: 10.3389/fpubh.2023.1163965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Triclosan (TCS), a widely prescribed broad-spectrum antibacterial agent, is an endocrine-disrupting chemical. The relationship and biological mechanisms between TCS exposure and breast cancer (BC) are disputed. We aimed to examine the correlation between urinary TCS exposure and BC risk and estimated the mediating effects of oxidative stress and relative telomere length (RTL) in the above association. Methods This case-control study included 302 BC patients and 302 healthy individuals in Wuhan, China. We detected urinary TCS, three common oxidative stress biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)], and RTL in peripheral blood mononuclear cells. Results Significant associations were observed between log-transformed urinary concentrations of TCS, 8-OHdG, HNE-MA, 8-isoPGF2α, RTL, and BC risk, with the odds ratios (95% confidence intervals) being 1.58 (1.32-1.91), 3.08 (1.55-6.23), 3.39 (2.45-4.77), 3.99 (2.48-6.54), and 1.67 (1.35-2.09), respectively. Continuous TCS exposure was significantly positively correlated with RTL, HNE-MA, and 8-isoPGF2α (all p<0.05) but not with 8-OHdG (p = 0.060) after adjusting for covariates. The mediated proportions of 8-isoPGF22α and RTL in the relationship between TCS and BC risk were 12.84% and 8.95%, respectively (all p<0.001). Discussion In conclusion, our study provides epidemiological evidence to confirmed the deleterious effects of TCS on BC and indicated the mediating effect of oxidative stress and RTL on the correlation between TCS and BC risk. Moreover, exploring the contribution of TCS to BC can clarify the biological mechanisms of TCS exposure, provide new clues for the pathogenesis of BC, which is of great significance to improving public health systems.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tianyi Dong
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianrun Ye
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| | - Haijie Li
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| |
Collapse
|
9
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|