1
|
Youn I, Han AR, Piao D, Lee H, Kwak H, Lee Y, Nam JW, Seo EK. Phytochemical and pharmacological properties of the genus Alpinia from 2016 to 2023. Nat Prod Rep 2024; 41:1346-1367. [PMID: 38717742 DOI: 10.1039/d4np00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering 2016 up to the end of 2023Alpinia is the largest genus of flowering plants in the ginger family, Zingiberaceae, and comprises about 500 species. Many Alpinia are commonly cultivated ornamental plants, and some are used as spices or traditional medicine to treat inflammation, hyperlipidemia, and cancers. However, only a few comprehensive reviews have been published on the phytochemistry and pharmacology of this genus, and the latest review was published in 2017. In this review, we provide an extensive coverage of the studies on Alpinia species reported from 2016 through 2023, including newly isolated compounds and potential biological effects. The present review article shows that Alpinia species have a wide spectrum of pharmacological activities, most due to the activities of diarylheptanoids, terpenoids, flavonoids, and phenolics.
Collapse
Affiliation(s)
- Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Donglan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hwaryeong Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyunkyung Kwak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yeju Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Castiglioni L, Gelosa P, Muluhie M, Mercuriali B, Rzemieniec J, Gotti M, Fiordaliso F, Busca G, Sironi L. Fenofibrate reduces cardiac remodeling by mitochondrial dynamics preservation in a renovascular model of cardiac hypertrophy. Eur J Pharmacol 2024; 978:176767. [PMID: 38909934 DOI: 10.1016/j.ejphar.2024.176767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fenofibrate, a PPAR-α agonist clinically used to lower serum lipid levels, reduces cardiac remodeling and improves cardiac function. However, its mechanism of action is not completely elucidated. In this study we examined the effect of fenofibrate on mitochondria in a rat model of renovascular hypertension, focusing on mediators controlling mitochondrial dynamics and autophagy. Rats with two-kidney one-clip (2K1C) hypertension were treated with fenofibrate 150 mg/kg/day (2K1C-FFB) or vehicle (2K1C-VEH) for 8 weeks. Systolic blood pressure and cardiac functional were in-vivo assessed, while cardiomyocyte size and protein expression of mediators of cardiac hypertrophy and mitochondrial dynamics were ex-vivo examined by histological and Western blot analyses. Fenofibrate treatment counteracted the development of hypertension and the increase of left ventricular mass, relative wall thickness and cross-sectional area of cardiomyocytes. Furthermore, fenofibrate re-balanced the expression Mfn2, Drp1 and Parkin, regulators of fusion, fission, mitophagy respectively. Regarding autophagy, the LC3-II/LC3-I ratio was increased in 2K1C-VEH and 2K1C-FFB, whereas the autophagy was increased only in 2K1C-FFB. In cultured H9C2 cardiomyoblasts, fenofibrate reversed the Ang II-induced mRNA up-regulation of hypertrophy markers Nppa and Myh7, accumulation of reactive oxygen species and depolarization of the mitochondrial membrane exerting protection mediated by up-regulation of the Uncoupling protein 2. Our results indicate that fenofibrate acts directly on cardiomyocytes and counteracts the pressure overload-induced cardiac maladaptive remodeling. This study reveals a so far hidden mechanism involving mitochondrial dynamics in the beneficial effects of fenofibrate, support its repurposing for the treatment of cardiac hypertrophy and provide new potential targets for its pharmacological function.
Collapse
Affiliation(s)
- Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco Gotti
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Busca
- Azienda "Polo Veterinario di Lodi", University of Milan, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Pedrinha VF, Santos LM, Gonçalves CP, Garcia MT, Lameira OA, Queiroga CL, Marcucci MC, Shahbazi MA, Sharma PK, Junqueira JC, Sipert CR, de Andrade FB. Effects of natural antimicrobial compounds propolis and copaiba on periodontal ligament fibroblasts, molecular docking, and in vivo study in Galleria mellonella. Biomed Pharmacother 2024; 171:116139. [PMID: 38198959 DOI: 10.1016/j.biopha.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Root canal treatment addresses infectious processes that require control. Occasionally, the radicular pulp is vital and inflamed, presenting a superficial infection. To preserve pulpal remnants, conservative procedures have gained favor, employing anti-inflammatory medications. This study investigated the effects of propolis (PRO), and copaiba oil-resin (COR) associated with hydrocortisone (H) and compared their impact to that of Otosporin® concerning cytotoxic and genotoxic activity, cytokine detection, and toxicity in the Galleria mellonella model. Human periodontal ligament fibroblasts (PDLFs) were exposed to drug concentrations and evaluated by the MTT assay. Associations were tested from concentrations that did not compromise cell density. Genotoxicity was evaluated through micronucleus counting, while cytokines IL-6 and TGF-β1 were detected in the cell supernatant using ELISA. Molecular docking simulations were conducted, considering the major compounds identified in PRO, COR, and H. Increasing concentrations of PRO and COR were assessed for acute toxicity in Galleria mellonella model. Cellular assays were analyzed using one-way ANOVA followed by Tukey tests, while larval survivals were evaluated using the Log-rank (Mantel-Cox) test (α = 0.05). PRO and COR promoted PDLFs proliferation, even in conjunction with H. No changes in cell metabolism were observed concerning cytokine levels. The tested materials induce the release of AT1R, proliferating the PDFLs through interactions. PRO and COR had low toxicity in larvae, suggesting safety at tested levels. These findings endorse the potential of PRO and COR in endodontics and present promising applications across medical domains, such as preventive strategies in inflammation, shedding light on their potential development into commercially available drugs.
Collapse
Affiliation(s)
- Victor Feliz Pedrinha
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil; Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands.
| | - Letícia Martins Santos
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (FO-USP), São Paulo, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | | | - Carmen Lucia Queiroga
- State University of Campinas, CPQBA, Division of Phytochemistry, Campinas, São Paulo, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Prashant Kumar Sharma
- Department of Biomaterials and Biomedical Technology (BBT), University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Carla Renata Sipert
- Department of Operative Dentistry, School of Dentistry, University of São Paulo (FO-USP), São Paulo, Brazil
| | - Flaviana Bombarda de Andrade
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil
| |
Collapse
|
4
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Fraga CG, Oteiza PI, Hid EJ, Galleano M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol 2023; 67:102927. [PMID: 37857000 PMCID: PMC10587761 DOI: 10.1016/j.redox.2023.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are enzymes that generate superoxide anion (O2•-) and hydrogen peroxide (H2O2), and that are widely distributed in mammalian tissues. Many bioactives, especially plant (poly)phenols are being studied for their capacity to regulate NOXs. The modulation of these enzymes are of central relevance to maintain redox homeostasis and regulate cell signaling. In in vitro and ex vivo assays, and in experimental animal models, different (poly)phenols are able to modulate NOX-dependent generation of O2•- and H2O2. Mechanistically, most of the known effects of (poly)phenols and of their metabolites on NOX1, NOX2, and NOX4, include the modulation of: i) the expression of the different constituent subunits, and/or ii) posttranslational modifications involved in the assembly and translocation of the protein complexes. Very limited evidence is available on a direct action of (poly)phenols on NOX active site (electron-transferring protein). Moreover, it is suggested that the regulation by (poly)phenols of systemic events, e.g. inflammation, is frequently associated with their capacity to regulate NOX activation. Although of physiological significance, more studies are needed to understand the specific targets/mechanisms of NOX regulation by (poly)phenols, and the (poly)phenol chemical structures and moieties directly involved in the observed effects. It should be kept in mind the difficulties of NOX's studies associated with the complexity of NOXs biochemistry and the methodological limitations of O2•- and H2O2 the determinations. Studies relating human ingestion of specific (poly)phenols, with NOX activity and disease conditions, are guaranteed to better understand the health importance of (poly)phenol consumption and the involvement of NOXs as biological targets.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ezequiel J Hid
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Yang T, Liu H, Yang C, Mo H, Wang X, Song X, Jiang L, Deng P, Chen R, Wu P, Chen A, Yan J. Galangin Attenuates Myocardial Ischemic Reperfusion-Induced Ferroptosis by Targeting Nrf2/Gpx4 Signaling Pathway. Drug Des Devel Ther 2023; 17:2495-2511. [PMID: 37637264 PMCID: PMC10460190 DOI: 10.2147/dddt.s409232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose Myocardial ischemic reperfusion injury (MIRI) is a crucial clinical problem globally. The molecular mechanisms of MIRI need to be fully explored to develop new therapeutic methods. Galangin (Gal), which is a natural flavonoid extracted from Alpinia Officinarum Hance and Propolis, possesses a wide range of pharmacological activities, but its effects on MIRI remain unclear. This study aimed to determine the pharmacological effects of Gal on MIRI. Methods C57BL/6 mice underwent reperfusion for 3 h after 45 min of ischemia, and neonatal rat cardiomyocytes (NRCs) subjected to hypoxia and reoxygenation (HR) were cultured as in vivo and in vitro models. Echocardiography and TTC-Evans Blue staining were performed to evaluate the myocardial injury. Transmission electron microscope and JC-1 staining were used to validate the mitochondrial function. Additionally, Western blot detected ferroptosis markers, including Gpx4, FTH, and xCT. Results Gal treatment alleviated cardiac myofibril damage, reduced infarction size, improved cardiac function, and prevented mitochondrial injury in mice with MIRI. Gal significantly alleviated HR-induced cell death and mitigated mitochondrial membrane potential reduction in NRCs. Furthermore, Gal significantly inhibited ferroptosis by preventing iron overload and lipid peroxidation, as well as regulating Gpx4, FTH, and xCT expression levels. Moreover, Gal up-regulated nuclear transcriptive factor Nrf2 in HR-treated NRCs. Nrf2 inhibition by Brusatol abolished the protective effect of Gal against ferroptosis. Conclusion This study revealed that Gal alleviates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway.
Collapse
Affiliation(s)
- Tao Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Luping Jiang
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ping Deng
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ran Chen
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Iampanichakul M, Potue P, Rattanakanokchai S, Maneesai P, Khamseekaew J, Settheetham-Ishida W, Pakdeechote P. Limonin ameliorates cardiovascular dysfunction and remodeling in hypertensive rats. Life Sci 2023; 327:121834. [PMID: 37290669 DOI: 10.1016/j.lfs.2023.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
AIMS Limonin is a tetracyclic triterpenoid isolated from citrus fruits. Here, the effects of limonin on cardiovascular abnormalities in nitric oxide-deficient rats induced by Nω-Nitrol-arginine methyl ester (L-NAME) were explored. MAIN METHODS Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) for 3 weeks and then treated daily with polyethylene glycol (vehicle), limonin (50 or 100 mg/kg) or telmisartan (10 mg/kg) for two weeks. KEY FINDINGS Limonin (100 mg/kg) markedly reduced L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats (P < 0.05). Increases in systemic angiotensin-converting enzyme (ACE) activity and angiotensin II (Ang II) and a reduction in circulating ACE2 were restored in hypertensive rats treated with limonin (P < 0.05). Reductions in antioxidant enzymes and nitric oxide metabolites (NOx) and increases in oxidative stress components induced by L-NAME were relieved by limonin treatment (P < 0.05). Limonin suppressed the increased expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in cardiac tissue and circulating TNF-α in rats that received L-NAME (P < 0.05). Changes in Ang II receptor type I (AT1R), Mas receptor (MasR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) and NADPH oxidase subunit 2 (gp91phox) protein expression in cardiac and aortic tissue were normalized by limonin (P < 0.05). SIGNIFICANCE In conclusion, limonin ameliorated L-NAME-induced hypertension, cardiovascular dysfunction and remodeling in rats. These effects were relevant to restorations of the renin-angiotensin system, oxidative stress and inflammation in NO-deficient rats. The molecular mechanisms are associated with the modulation of AT1R, MasR, NF-ĸB and gp91phox protein expression in cardiac and aortic tissue.
Collapse
Affiliation(s)
- Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|