1
|
Liang J, He P. A reference for selecting an appropriate method for generating glioblastoma organoids from the application perspective. Discov Oncol 2024; 15:459. [PMID: 39292297 PMCID: PMC11411047 DOI: 10.1007/s12672-024-01346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma organoids (GBOs) serve as a powerful and reliable tool to study glioblastoma stem cells (GSCs) and glioblastoma (GBM). GBOs can be derived from different materials using different methods. To identify the predominant generation methods and the most applications of GBOs, we searched four databases (PubMed, Embase, Web of Science, and Wiley Online Laboratory) from August 2021 to August 2023. After screening, 42 out of 295 articles were included and analyzed. GBOs in these articles were generated using only one material, such as tumor tissues, tumor cells, and gene-edited multifunctional stem cells, or simultaneously using two materials, such as tumor cells and normal organoids. Methodologically, direct cultivation of GBM cells or tissues was the most commonly used method to generate GBOs. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) were the frequently used multifunctional stem cells to generate GBOs by simultaneously silencing P53, NF1, and PTEN using CRISPR/Cas9. In terms of applications, GBOs generated by direct cultivation of GBM tissue had the most applications, including molecular mechanisms, therapy, and culture technique. This review provides a theoretical reference for selecting an appropriate method to generate GBOs when studying GSCs and GBM.
Collapse
Affiliation(s)
- Jing Liang
- Department of Operating Room, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Peng He
- Department of Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Liu X, Li M, Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics 2024; 16:1167. [PMID: 39339204 PMCID: PMC11434838 DOI: 10.3390/pharmaceutics16091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The efficacy and potential toxicity of drug treatments depends on the drug concentration at its site of action, intricately linked to its distribution within diverse organelles of mammalian cells. These organelles, including the nucleus, endosome, lysosome, mitochondria, endoplasmic reticulum, Golgi apparatus, lipid droplets, exosomes, and membrane-less structures, create distinct sub-compartments within the cell, each with unique biological features. Certain structures within these sub-compartments possess the ability to selectively accumulate or exclude drugs based on their physicochemical attributes, directly impacting drug efficacy. Under pathological conditions, such as cancer, many cells undergo dynamic alterations in subcellular organelles, leading to changes in the active concentration of drugs. A mechanistic and quantitative understanding of how organelle characteristics and abundance alter drug partition coefficients is crucial. This review explores biological factors and physicochemical properties influencing subcellular drug distribution, alongside strategies for modulation to enhance efficacy. Additionally, we discuss physiologically based computational models for subcellular drug distribution, providing a quantifiable means to simulate and predict drug distribution at the subcellular level, with the potential to optimize drug development strategies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| | - Miaomiao Li
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210-1267, USA;
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-8033, USA;
| |
Collapse
|
3
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
4
|
Liu H, Shi K, Wei Z, Zhang Y, Li J. T cell-mediated tumor killing based signature to predict the prognosis and immunotherapy for glioblastoma. Heliyon 2024; 10:e31207. [PMID: 38813229 PMCID: PMC11133811 DOI: 10.1016/j.heliyon.2024.e31207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Despite the significant advancements in cancer treatment brought by immune checkpoint inhibitors (ICIs), their effectiveness in treating glioblastoma (GBM) remains highly dissatisfactory. Immunotherapy relies on the fundamental concept of T cell-mediated tumor killing (TTK). Nevertheless, additional investigation is required to explore its potential in prognostic prediction and regulation of tumor microenvironment (TME) in GBM. TTK sensitivity related genes (referred to as GSTTKs) were obtained from the TISIDB. The training cohort was available from the TCGA-GBM, while the independent validation group was gathered from GEO database. Firstly, we examined differentially expressed GSTTKs (DEGs) with limma package. Afterwards, the prognostic DEGs were identified and the TTK signature was established with univariate and LASSO Cox analyses. Next, we examined the correlation between the TTK signature and outcome of GBM as well as immune phenotypes of TME. Furthermore, the evaluation of TTK signature in predicting the effectiveness of immunotherapy has also been conducted. We successfully developed a TTK signature with an independent predictive value. Patients who had a high score experienced a worse prognosis compared to patients with low scores. The TTK signature showed a strong positive association with the infiltration degree of immunocyte and the presence of various immune checkpoints. Moreover, individuals with a lower score exhibited increased responsiveness to ICIs and experienced improved prognosis. In conclusions, we successfully developed and verified a TTK signature that has the ability to predict the outcome and immune characteristics of GBM. Furthermore, the TTK signature has the potential to direct the personalized immunotherapy for GBM.
Collapse
Affiliation(s)
- Hongchao Liu
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Kangke Shi
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yu Zhang
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jiaqiong Li
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Nguyen HTL, Kohl E, Bade J, Eng SE, Tosevska A, Al Shihabi A, Tebon PJ, Hong JJ, Dry S, Boutros PC, Panossian A, Gosline SJC, Soragni A. A platform for rapid patient-derived cutaneous neurofibroma organoid establishment and screening. CELL REPORTS METHODS 2024; 4:100772. [PMID: 38744290 PMCID: PMC11133839 DOI: 10.1016/j.crmeth.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Localized cutaneous neurofibromas (cNFs) are benign tumors that arise in the dermis of patients affected by neurofibromatosis type 1 syndrome. cNFs are benign lesions: they do not undergo malignant transformation or metastasize. Nevertheless, they can cover a significant proportion of the body, with some individuals developing hundreds to thousands of lesions. cNFs can cause pain, itching, and disfigurement resulting in substantial socio-emotional repercussions. Currently, surgery and laser desiccation are the sole treatment options but may result in scarring and potential regrowth from incomplete removal. To identify effective systemic therapies, we introduce an approach to establish and screen cNF organoids. We optimized conditions to support the ex vivo growth of genomically diverse cNFs. Patient-derived cNF organoids closely recapitulate cellular and molecular features of parental tumors as measured by immunohistopathology, methylation, RNA sequencing, and flow cytometry. Our cNF organoid platform enables rapid screening of hundreds of compounds in a patient- and tumor-specific manner.
Collapse
Affiliation(s)
- Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Kohl
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica Bade
- Pacific Northwest National Laboratories, Seattle, WA, USA
| | - Stefan E Eng
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anela Tosevska
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jenny J Hong
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Sara J C Gosline
- Pacific Northwest National Laboratories, Seattle, WA, USA; Department of Biomedical Engineering, Oregon Health and Sciences University, Portland, OR, USA.
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Ruskin J, Sachs RK, Wang M, Dekeyser R, Lew Z, Williams P, Hwang H, Majumdar A, Dudding T, Lectka T. Metal Ion-Induced Large Fragment Deactivation: A Different Strategy for Site-Selectivity in a Complex Molecule. Angew Chem Int Ed Engl 2024; 63:e202317070. [PMID: 38063469 DOI: 10.1002/anie.202317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Complex natural product functionalizations generally involve the use of highly engineered reagents, catalysts, or enzymes to react exclusively at a desired site through lowering of a select transition state energy. In this communication, we report a new, complementary strategy in which all transition states representing undesirable sites in a complex ionophore substrate are simultaneously energetically increased through the chelation of a metal ion to the large fragment we wish to neutralize. In the case of an electrophilic, radical based fluorination reaction, charge repulsion (electric field effects), induced steric effects, and electron withdrawal provide the necessary deactivation and proof of principle to afford a highly desirable natural product derivative. We envisage that many other electrophilic or charge based synthetic methods may be amenable to this approach as well.
Collapse
Affiliation(s)
- Jonah Ruskin
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Roseann K Sachs
- Department of Chemistry and Biochemistry, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Roxanne Dekeyser
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S3A1, Canada
| | - Zachary Lew
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Phoebe Williams
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Habin Hwang
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Ananya Majumdar
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Schloo C, Kutscher LM. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol 2023; 25:1225-1235. [PMID: 36757217 PMCID: PMC10326493 DOI: 10.1093/neuonc/noad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 02/10/2023] Open
Abstract
Pluripotent stem cells offer unique avenues to study human-specific aspects of disease and are a highly versatile tool in cancer research. Oncogenic processes and developmental programs often share overlapping transcriptomic and epigenetic signatures, which can be reactivated in induced pluripotent stem cells. With the emergence of brain organoids, the ability to recapitulate brain development and structure has vastly improved, making in vitro models more realistic and hence more suitable for biomedical modeling. This review highlights recent research and current challenges in human pluripotent stem cell modeling of brain and neural crest neoplasms, and concludes with a call for more rigorous quality control and for the development of models for rare tumor subtypes.
Collapse
Affiliation(s)
- Cedar Schloo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
9
|
Clemente N, Baroni S, Fiorilla S, Tasso F, Reano S, Borsotti C, Ruggiero MR, Alchera E, Corrazzari M, Walker G, Follenzi A, Crich SG, Carini R. Boosting intracellular sodium selectively kills hepatocarcinoma cells and induces hepatocellular carcinoma tumor shrinkage in mice. Commun Biol 2023; 6:574. [PMID: 37248274 DOI: 10.1038/s42003-023-04946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Pharmacological treatments for advanced hepatocellular carcinoma (HCC) have a partial efficacy. Augmented Na+ content and water retention are observed in human cancers and offer unexplored targets for anticancer therapies. Na+ levels are evaluated upon treatments with the antibiotic cation ionophore Monensin by fluorimetry, ICP-MS, 23Na-MRI, NMR relaxometry, confocal or time-lapse analysis related to energy production, water fluxes and cell death, employing both murine and human HCC cell lines, primary murine hepatocytes, or HCC allografts in NSG mice. Na+ levels of HCC cells and tissue are 8-10 times higher than that of healthy hepatocytes and livers. Monensin further increases Na+ levels in HCC cells and in HCC allografts but not in primary hepatocytes and in normal hepatic and extrahepatic tissue. The Na+ increase is associated with energy depletion, mitochondrial Na+ load and inhibition of O2 consumption. The Na+ increase causes an enhancement of the intracellular water lifetime and death of HCC cells, and a regression and necrosis of allograft tumors, without affecting the proliferating activity of either HCCs or healthy tissues. These observations indicate that HCC cells are, unlike healthy cells, energetically incapable of compensating and surviving a pharmacologically induced Na+ load, highlighting Na+ homeostasis as druggable target for HCC therapy.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | - Simone Fiorilla
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Francesco Tasso
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simone Reano
- Department of Department of Translational Medicine, Unit of Muscle Biology, Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Chiara Borsotti
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Marco Corrazzari
- Department of Health Science and Interdisciplinary Research Center of Autoimmune Disease (IRCAD), Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Gillian Walker
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Antonia Follenzi
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy.
| | - Rita Carini
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy.
| |
Collapse
|
10
|
Seçme M, Kocoglu SS. Investigation of the TLR4 and IRF3 signaling pathway-mediated effects of monensin in colorectal cancer cells. Med Oncol 2023; 40:187. [PMID: 37219624 DOI: 10.1007/s12032-023-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Monensin is an ionophore antibiotic isolated from Streptomyces cinnamonensis with very strong antibacterial and antiparasitic effects. Although monensin is known to exhibit anticancer activity in different cancer types, there are a very limited number of studies on its anti-inflammatory effects in colorectal cancer (CRC) cells. The aim of this study was to investigate the TLR4/IRF3-mediated antiproliferative and anti-inflammatory effects of monensin in colorectal cancer cells. The dose- and time-dependent antiproliferative activity of monensin in colorectal cancer cells was determined by XTT method and its effects on mRNA expression changes of Toll-like receptors and IRF3 genes were determined by RT-PCR. TLR4 and Interferon Regulatory Factor 3 (IRF3) protein expression was evaluated by immunofluorescence method. TLR4 and type 1 interferon (IRF) levels were also evaluated by ELISA. IC50 value of monensin in HT29 cells was determined as 10.7082 µM at 48 h and 12.6288 µM at 48th for HCT116 cells. Monensin treatment decreased TLR4 and TLR7 and IRF3 mRNA expression in CRC cells. Monensin treatment decreased the expression level of IRF3 induced by LPS. Our study demonstrates for the first time the TLR4/IRF3-mediated anti-inflammatory effects of monensin in colorectal cancer cells. Further studies on the effects of monensin on TLR receptors in colorectal cancer cells are needed.
Collapse
Affiliation(s)
- Mücahit Seçme
- School of Medicine, Department of Medical Biology, Ordu University, Ordu, Turkey.
| | - Sema Serter Kocoglu
- School of Medicine, Department of Histology and Embryology, Balikesir University, Balikesir, Turkey
| |
Collapse
|
11
|
Khamis ZI, Sarker DB, Xue Y, Al-Akkary N, James VD, Zeng C, Li Y, Sang QXA. Modeling Human Brain Tumors and the Microenvironment Using Induced Pluripotent Stem Cells. Cancers (Basel) 2023; 15:cancers15041253. [PMID: 36831595 PMCID: PMC9954701 DOI: 10.3390/cancers15041253] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Brain cancer is a group of diverse and rapidly growing malignancies that originate in the central nervous system (CNS) and have a poor prognosis. The complexity of brain structure and function makes brain cancer modeling extremely difficult, limiting pathological studies and therapeutic developments. Advancements in human pluripotent stem cell technology have opened a window of opportunity for brain cancer modeling, providing a wealth of customizable methods to simulate the disease in vitro. This is achieved with the advent of genome editing and genetic engineering technologies that can simulate germline and somatic mutations found in human brain tumors. This review investigates induced pluripotent stem cell (iPSC)-based approaches to model human brain cancer. The applications of iPSCs as renewable sources of individual brain cell types, brain organoids, blood-brain barrier (BBB), and brain tumor models are discussed. The brain tumor models reviewed are glioblastoma and medulloblastoma. The iPSC-derived isogenic cells and three-dimensional (3D) brain cancer organoids combined with patient-derived xenografts will enhance future compound screening and drug development for these deadly human brain cancers.
Collapse
Affiliation(s)
- Zahraa I. Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Laboratory of Cancer Biology and Molecular Immunology, Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Nancy Al-Akkary
- Laboratory of Cancer Biology and Molecular Immunology, Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Viviana D. James
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: ; Tel.: +1-850-644-8683; Fax: +1-850-644-8281
| |
Collapse
|