1
|
Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, Wang X. Therapeutic potential of extracellular vesicles from diverse sources in cancer treatment. Eur J Med Res 2024; 29:350. [PMID: 38943222 PMCID: PMC11212438 DOI: 10.1186/s40001-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.
Collapse
Affiliation(s)
- Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun Zhou
- Department of Laboratory Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Tao Ding
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Borikun T, Mushii O, Pavlova A, Burda T, Zadvornyi T. TUMOR MICROENVIRONMENT-ASSOCIATED miR-7-5p, miR-19a-3p, AND miR-23b-3p EXPRESSION IN PROSTATE CANCER WITH DIFFERENT PROGRESSION RISK. Exp Oncol 2024; 45:432-442. [PMID: 38328847 DOI: 10.15407/exp-oncology.2023.04.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays an important role in the occurrence and progression of prostate cancer (PCa). At the same time, the mechanisms and features of the interaction between tumor cells and individual components of the TME in PCa remain not fully elucidated. The aim was to study the expression levels of tumor-associated miR-7-5p, miR-19a-3p, and miR-23b-3p in the PCa tissue and to analyze their relationship with the features of TME. MATERIALS AND METHODS The work is based on the analysis of the results of the examination and treatment of 50 patients with PCa of stages II-IV. The expression of miRNA in the PCa tissue was analyzed by the real-time polymerase chain reaction. The expression of alpha-smooth muscle actin (α-SMA), vimentin (VIM), and CD68 in PCa tissue was determined by the immunohistochemical method. The identification of mast cells in the PCa tissue was assessed by the histochemical method. RESULTS The analysis of the expression levels of tumor-associated miRNAs demonstrated that the tumor tissue of patients with a high risk of PCa progression was characterized by 4.93 (p < 0.01) and 8.97 (p < 0.05) times higher levels of miR-19a-3p and miR-23b-3p, respectively, compared to similar indicators in the group of patients with a low risk of PCa progression. The levels of miR-7-5p and miR-19a-3p expression in the PCa tissue correlated with the expression level of α-SMA (r = 0.49 and r = 0.45, respectively; p < 0.05) and VIM (r = 0.45 and r = 0.46; respectively, p < 0.05). A direct relationship (r = 0.44; p < 0.05) was established between the level of miR-7-5p expression and the degree of infiltration of the prostate gland tissue by tumor-associated macrophages. CONCLUSIONS The features of the expression of tumor-associated miR-7-5p, miR-19a-3p, and miR-23b-3p indicated the prospect of their use as markers of the aggressiveness of the PCa course.
Collapse
Affiliation(s)
- T Borikun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - O Mushii
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - A Pavlova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - T Burda
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - T Zadvornyi
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NAS of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
3
|
Akshaya RL, Saranya I, Selvamurugan N. MicroRNAs mediated interaction of tumor microenvironment cells with breast cancer cells during bone metastasis. Breast Cancer 2023; 30:910-925. [PMID: 37578597 DOI: 10.1007/s12282-023-01491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Breast cancer (BC) bone metastasis is primarily osteolytic and has limited therapeutic options. Metastasized BC cells prime the secondary environment in bone by forming a tumor niche, which favors their homing and colonization. The tumor microenvironment (TME) is primarily generated by the cancer cells. Bone TME is an intricate network of multiple cells, including altered bone, tumor, stromal, and immune cells. Recent findings highlight the significance of small non-coding microRNAs (miRNAs) in influencing TME during tumor metastasis. MiRNAs from TME-resident cells facilitate the interaction between the tumor and its microenvironment, thereby regulating the biological processes of tumors. These miRNAs can serve as oncogenes or tumor suppressors. Hence, both miRNA inhibitors and mimics are extensively utilized in pre-clinical trials for modulating the phenotypes of tumor cells and associated stromal cells. This review briefly summarizes the recent developments on the functional role of miRNAs secreted directly or indirectly from the TME-resident cells in facilitating tumor growth, progression, and metastasis. This information would be beneficial in developing novel targeted therapies for BC.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
4
|
Noor J, Chaudhry A, Noor R, Batool S. Advancements and Applications of Liquid Biopsies in Oncology: A Narrative Review. Cureus 2023; 15:e42731. [PMID: 37654932 PMCID: PMC10466971 DOI: 10.7759/cureus.42731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
According to the World Health Organization (WHO), nearly 10 million people died from cancer worldwide in 2020, making it the leading cause of mortality. Liquid biopsies, which provide non-invasive and real-time monitoring of tumor dynamics, have evolved into innovative diagnostic techniques in the field of oncology. Liquid biopsies offer important insights into tumor heterogeneity, treatment response, minimum residual disease identification, and personalized treatment of cancer through the analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles, and microRNAs. They offer several advantages over traditional tissue biopsies, such as being less invasive, more convenient, more representative of tumor heterogeneity and dynamics, and more informative for guiding personalized treatment decisions. Liquid biopsies are being utilized increasingly in clinical oncology, particularly for patients with metastatic disease who require ongoing monitoring and treatment modification. In this narrative review article, we review the latest developments of liquid biopsy technologies, their applications and limitations, and their potential to transform diagnosis, prognosis, and management of cancer patients.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| |
Collapse
|
5
|
Ashraf NS, Mahjabeen I, Hussain MZ, Rizwan M, Arshad M, Mehmood A, Haris MS, Kayani MA. Role of exosomal miRNA-19a/ 19b and PTEN in brain tumor diagnosis. Future Oncol 2023; 19:1563-1576. [PMID: 37577782 DOI: 10.2217/fon-2023-0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Aim: The current study was designed to evaluate the diagnostic significance of the exosomal miRNAs miR-19a and miR-19b and the PTEN gene in brain tumor patients versus controls. Methods: Exosomes were extracted from the serum samples of 400 brain tumor patients and 400 healthy controls. The exosomes were characterized by scanning electron microscopy, dynamic light scattering and ELISA. Quantitative PCR was used to analyze selected exosome miRNAs and gene expression levels. Results: Analysis showed significant deregulated expression of miR-19a (p < 0.0001), miR-19b (p < 0.0001) and PTEN (p < 0.001) in patients versus controls. Spearman correlation showed a significant correlation among the selected exosomal miRNAs and the PTEN gene. Conclusion: Receiver operating characteristic curve analysis showed the good diagnostic value of exosomal miRNAs and the PTEN gene in brain tumor patients.
Collapse
Affiliation(s)
- Nida Sarosh Ashraf
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Muhammad Zahid Hussain
- Department of Rheumatology, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Rizwan
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Maryam Arshad
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Azhar Mehmood
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Muhammad Shahbaz Haris
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Department of Biosciences, Cancer Genetics & Epigenetics Research Group, COMSATS University Islamabad, Pakistan
| |
Collapse
|
6
|
Hazrati A, Mirsanei Z, Heidari N, Malekpour K, Rahmani-Kukia N, Abbasi A, Soudi S. The potential application of encapsulated exosomes: A new approach to increase exosomes therapeutic efficacy. Biomed Pharmacother 2023; 162:114615. [PMID: 37011484 DOI: 10.1016/j.biopha.2023.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cell therapy is one of the methods that have shown promising results in treating diseases in recent decades. However, the use of different types of cells comes with limitations. The application of immune cells in cell therapy can lead to cytokine storms and inappropriate responses to self-antigens. Also, the use of stem cells has the potential to create tumors. Also, cells may not migrate to the injury site after intravenous injection. Therefore, using exosomes from different cells as therapeutic candidates were proposed. Due to their small size and favorable characteristics, such as biocompatibility and immunocompatibility, the easy storage and isolation, exosomes have attracted much attention. They are used in treating many diseases, including cardiovascular diseases, orthopedic diseases, autoimmune diseases, and cancer. However, the results of various studies have shown that the therapeutic efficiency of exosomes (Exo) can be increased by loading different drugs and microRNAs inside them (encapsulated exosomes). Therefore, analyzing studies investigating encapsulated exosomes' therapeutic ability is critical. In this study, we have examined the studies related to the use of encapsulated exosomes in treating diseases such as cancer and infectious diseases and their use in regenerative medicine. Compared to intact exosomes, the results show that the application of encapsulated exosomes has a higher therapeutic ability. Therefore it is suggested to use this method depending on the treatment type to increase the treatment's efficiency.
Collapse
|
7
|
La Ferlita A, Sp N, Goryunova M, Nigita G, Pollock RE, Croce CM, Beane JD. Small Non-Coding RNAs in Soft-Tissue Sarcomas: State of the Art and Future Directions. Mol Cancer Res 2023; 21:511-524. [PMID: 37052491 PMCID: PMC10238653 DOI: 10.1158/1541-7786.mcr-22-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors that arise from connective tissue and can occur anywhere in the body. Among the plethora of over 50 different STS types, liposarcoma (LPS) is one of the most common. The subtypes of STS are characterized by distinct differences in tumor biology that drive responses to pharmacologic therapy and disparate oncologic outcomes. Small non-coding RNAs (sncRNA) are a heterogeneous class of regulatory RNAs involved in the regulation of gene expression by targeting mRNAs. Among the several types of sncRNAs, miRNAs and tRNA-derived ncRNAs are the most studied in the context of tumor biology, and we are learning more about the role of these molecules as important regulators of STS tumorigenesis and differentiation. However, challenges remain in translating these findings and no biomarkers or therapeutic approaches targeting sncRNAs have been developed for clinical use. In this review, we summarize the current landscape of sncRNAs in the context of STS with an emphasis on LPS, including the role of sncRNAs in the tumorigenesis and differentiation of these rare malignancies and their potential as novel biomarkers and therapeutic targets. Finally, we provide an appraisal of published studies and outline future directions to study sncRNAs in STS, including tRNA-derived ncRNAs.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
9
|
Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations. Bull Math Biol 2022; 85:8. [PMID: 36562835 DOI: 10.1007/s11538-022-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.
Collapse
|