1
|
Ran L, Lei J, Liu H, Wang D, Liu J, Yang F, Chen D. Bacillus pumilus SMU5927 protect mice from damage caused by Salmonella Enteritidis colonization. Life Sci 2025; 361:123291. [PMID: 39631534 DOI: 10.1016/j.lfs.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Salmonella Enteritidis is one of the main pathogens of foodborne diseases and an important pathogen causing diarrhea in yaks. Antibiotics are the mainstay of treatment for salmonellosis, but the widespread use of antibiotics has increased Salmonella resistance. Probiotics have been shown to antagonize Salmonella and reduce Salmonella infection. Bacillus pumilus is one of the microbial feed additives approved by the Chinese Ministry of Agriculture for use in animal breeding, which has the effect of improving animal growth performance and immunity, among others. Therefore, this paper explored the anti-infective effect of Bacillus pumilus against Salmonella. RESULTS Bacillus pumilus SMU5927 significantly enhances the intestinal mechanical barrier and reduces the number of Salmonella transferred to the organs. Bacillus pumilus SMU5927 ameliorated intestinal tissue damage and attenuated intestinal inflammatory responses in mice. In addition, Bacillus pumilus increased the ratio of the Firmicutes/Bacteroidetes in the intestinal flora, increased the abundance of beneficial bacteria such as Lactobacillus, and decreased the abundance of harmful bacteria. CONCLUSION This study confirmed the role of Bacillus pumilus SMU5927 in preventing and attenuating Salmonella damage and provided ideas for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Longjun Ran
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiangying Lei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Danni Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of Animal Medicine in Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Wang Q, Li J, Li G, Zang Y, Fan Q, Ye J, Wang Y, Jiang S. Protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota in yellow-feathered broilers under lipopolysaccharide challenge. Poult Sci 2024; 104:104688. [PMID: 39721279 DOI: 10.1016/j.psj.2024.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
This research was performed to investigate protective effects of carnosic acid on growth performance, intestinal barrier, and cecal microbiota of lipopolysaccharide-challenged broilers. Three hundred 1-day-old yellow-feathered broilers (male) were allocated randomly into 5 treatments, with 6 replicates per treatment, and 10 birds per replicate cage. Birds in both the control group (CON) and the lipopolysaccharide-challenged group were provided with a basal diet, while others were fed a basal diet supplemented with 20, 40, and 60 mg/kg carnosic acid (CA20, CA40, CA60), respectively. At 17, 19, and 21 days of age, birds were injected intraperitoneally with lipopolysaccharide (500 μg/kg body weight), except those in CON, which were injected with saline. Compared with challenged birds, the CA20, CA40, and CA60 increased (P < 0.05) the final body weight, average daily gain, and average daily feed intake, and the CA40 and CA60 also decreased diarrhea rate. Compared with challenged birds, carnosic acid reduced (P < 0.05) plasmal levels of D-lactic acid and endotoxin, increased (P < 0.05) the villus height to crypt depth ratio, and the number of goblet cells in duodenum. The CA40 and CA60 elevated (P < 0.05) relative expression of cell junction proteins (Claudin-1/-2 and ZO-1/-2/-3) and MUC-2 in duodenum, while decreased (P < 0.05) relative expression of TLR2, TLR4, and the concentrations of IL-6, IL-10, TNF-α, TGF-β1 in duodenum. CA40 also increased (P < 0.05) the α-diversity of the cecal microbiota and boosted (P < 0.05) the relative abundance of beneficial phyla and genera, particularly Firmicutes, Anaerofilum, and Papilibacter. In conclusion, dietary supplementation with carnosic acid showed protective effects on the growth performance and intestinal health in challenged broilers by down-regulating the expression of TLRs (TLR2/4) and inhibiting the production of inflammatory cytokines, strengthening the tight junction in intestinal epithelial cells, and enhancing the diversity of microbiota and the relative abundance of beneficial bacteria. When supplemented to diet of broilers, 40 mg/kg carnosic acid was recommended.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China; College of Veterinary Medicine, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, 430072, China
| | - Jiawei Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Guanhuo Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yingan Zang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qiuli Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jingling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Yibing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| | - Shouqun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, No.1 Dafeng Street 1, Wushan, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Huang J, Zhang J, Wang F, Tang X. Exploring the immune landscape of disulfidptosis in ulcerative colitis and the role of modified gegen qinlian decoction in mediating disulfidptosis to alleviate colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118527. [PMID: 38971342 DOI: 10.1016/j.jep.2024.118527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC), a recurrent inflammatory bowel disease, continues to challenge effective pharmacologic management. Disulfidptosis, a recently identified form of cell death, appears implicated in the progression of various diseases. Scientific studies have demonstrated that Modified Gegen Qinlian decoction (MGQD) alleviates UC symptoms. However, the underlying mechanisms remain inadequately elucidated. AIM OF THE STUDY This study investigated the role of disulfidptosis in UC and explored the potential of MGQD to ameliorate UC by mediating disulfidptosis. METHODS Microarray data were utilized to identify disulfidptosis-related genes stably expressed in UC, and integrated genomic analyses were conducted to elucidate the landscape of disulfidptosis in UC. Subsequently, C57BL/6J mice were administered 3% dextran sodium sulfate (DSS) to induce experimental colitis and treated with MGQD. Quantitative real-time polymerase chain reaction and immunohistochemical analysis of colonic tissues from colitis mice were performed to validate the microarray data findings. Finally, molecular docking was employed to explore the binding interactions between MGQD components and disulfidptosis biomarkers. RESULTS Myosin heavy chain 10 (MYH10) and filamin A (FLNA) were identified as stably expressed in UC, demonstrating high diagnostic value for the disease. Correlation analysis indicated that disulfidptosis-related genes are associated with elevated levels of immune cells in UC. Single gene set enrichment analysis further clarified that these genes might be involved in the pathological processes of UC via immune-related pathways. Subsequent animal experiments revealed that MYH10 and FLNA were significantly upregulated in mice with colitis, a condition reversed by MGQD treatment. Molecular docking results showed that MYH10 and FLNA serve as stable binding targets for the primary components of MGQD. CONCLUSIONS The study identified a connection between the disulfidptosis-related landscape and immune infiltration in UC, suggesting that MGQD may modulate disulfidptosis by inhibiting MYH10 and FLNA, thereby alleviating UC.
Collapse
Affiliation(s)
- Jinke Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Lin X, Xu L, Gu M, Shao H, Yao L, Huang X. Gegen Qinlian Decoction reverses oxaliplatin resistance in colorectal cancer by inhibiting YTHDF1-regulated m6A modification of GLS1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155906. [PMID: 39089089 DOI: 10.1016/j.phymed.2024.155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) and its chemoresistance pose significant threats to human health. Gegen Qinlian Decoction (GQD) is frequently employed alongside chemotherapy drugs for the treatment of CRC and various intestinal disorders. Despite its widespread use, there is limited research investigating the mechanisms through which GQD reverses chemoresistance. PURPOSE This study investigated the mechanism by which GQD reverses oxaliplatin (OXA) resistance in CRC. METHODS A YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-knockdown OXA-resistant cell line was constructed by lentivirus to clarify YTHDF1-mediated chemoresistance through the regulation of glutaminase 1 (GLS1). The efficacy of GQD in reversing OXA resistance in CRC in vitro was evaluated by Cell Counting Kit-8, western blotting, quantitative real-time polymerase chain reaction, and glutaminase activity assays. In vivo validation was performed by constructing tumor xenografts in nude mice with OXA-resistant cells. In addition, mouse feces were collected and a 16S rDNA assay was performed to assess the regulation of intestinal flora by GQD. RESULTS Overexpression of YTHDF1 upregulated GLS1 expression and induced OXA-resistance in CRC. GQD induced apoptosis in LoVo/OXAR, increased OXA accumulation in LoVo/OXAR, inhibited expression of YTHDF1 and GLS1 when administered alone and in combination with OXA, and suppressed GLS1 activity to reverse drug resistance with good synergistic effects. GQD and OXA combination or GLS1 inhibitor alleviated OXA toxicity, reduced the volume of tumor xenografts in nude mice, inhibited YTHDF1 and GLS1 protein expression and GLS1 activity, adjusted the intestinal flora, and significantly reversed the increased Firmicutes/Bacteroidetes ratio. CONCLUSION GQD has shown superior efficacy in reversing OXA-resistance and increasing sensitivity. These findings indicate that the therapy combined with GQD has potential utility in the treatment of OXA-resistant CRC.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Integrated Traditional & Western Medicine, Ningbo Haishu Traditional Chinese Medicine Hospital, Ningbo, Zhejiang, 315010, China; Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, China
| | - Li Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, China
| | - Meng Gu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, China
| | - Huan Shao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, China
| | - Li Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310060, China.
| |
Collapse
|
5
|
Peng Y, Du Y, Zhang Y, Wang Z, Hu T, Mai Y, Song H, Pan W, Cai Q, Ge F, Fan Y, Kim HY, Liu D, Guan X. Gegen Qinlian decoction alleviates depression-like behavior by modulating the gut microenvironment in CUMS rats. BMC Complement Med Ther 2024; 24:339. [PMID: 39304871 DOI: 10.1186/s12906-024-04638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine (TCM) formula primarily utilized for treating gut disorders. GQD showed therapeutic effects on several diseases in clinical and animal studies by targeting gut microbes. Our recent studies also found that GQD efficiently alleviated anxiety in methamphetamine-withdrawn mice via regulating gut microbiome and metabolism. Given that various studies have indicated the link between the gut microbiome and the development of depression, here we endeavor to explore whether GQD can manage depression disorders by targeting the gut microbiome. METHODS AND MATERIALS The depression-like model was induced in rats through chronic unpredictable mild stress (CUMS) and the depression levels were determined using the sucrose preference test (SPT). To address the depression-like behavior in rats, oral administration of GQD was employed. The colon microbiome and metabolite patterns were determined by 16s rRNA sequencing and untargeted metabolomics, respectively. RESULTS We found 6 weeks of CUMS can induce depression-like behavior in rats and 4 weeks of GQD treatment can significantly alleviate the depression-like behavior. GQD treatment can also ameliorate the histological lesions in the colon of CUMS rats. Then, CUMS increased the abundance of gut microbes, while GQD treatment can restore it to a lower level. We further discovered that the abundances of 19 bacteria at the genus level were changed with CUMS treatment, among which the abundances of Ruminococcus, Lachnoclostridium, Pygmaiobacter, Bacteroides, Pseudomonas, and Pseudomonas Family_XIII_AD3011_group were stored by GQD treatment. Besides, we identified the levels of 36 colon metabolites were changed with CUMS treatment, among which the levels of Fasciculic acid B, Spermine, Fludrocortisone acetate, alpha-Ketoglutaric acid, 2-Oxoglutaric acid, N'-(benzoyloxy)-2-(2,2-dichlorocyclopropyl) ethanimidamide, N6-Succinyl Adenosine Oleanolic acid, KQH, Ergosta-5,7,9(11),22-Tetraen-3-beta-Ol, Gentisic acid, 4-Hydroxyretinoic Acid, FAHFA (3:0/16:0), Leucine-enkephalin and N-lactoyl-phenylalanine can be restored by GQD treatment. CONCLUSION Our findings provide evidence supporting the therapeutic efficacy of GQD in alleviating depression-like behavior in CUMS rats, potentially being targeted on colon bacteria (especially the abundance of Ruminococcus and Bacteroides) and metabolites (especially the level of Oleanolic acid).
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuning Mai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongxiu Song
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Xu J, Zou Z, Li X, Sun X, Wang X, Qin F, Abulizi A, Chen Q, Pan Z, Shen H, Lv Y, Yan R. Effect of Gegen Qinlian Decoction on the regulation of gut microbiota and metabolites in type II diabetic rats. Front Microbiol 2024; 15:1429360. [PMID: 39234553 PMCID: PMC11371796 DOI: 10.3389/fmicb.2024.1429360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024] Open
Abstract
Gegen Qinlian Decoction (GGQLT) is a traditional Chinese herbal medicine that has been reported to have a significant therapeutic effect in the management of type II diabetes mellitus (T2DM). In this study, we constructed a T2DM rat model by feeding a high-fat diet and injecting streptozotocin (STZ) and tested the effects of feeding GGQLT and fecal transplantation on the physiological indices, microbiota, and metabolism of rats. The results showed that the administration of GGQLT can significantly improve the growth performance of rats and has a remarkable antihyperlipidemic effect. In addition, GGQLT altered the composition of gut microbiota by increasing beneficial bacteria such as Coprococcus, Bifidobacterium, Blautia, and Akkermansia. In addition, GGQLT elevated levels of specific bile acids by metabolomic analysis, potentially contributing to improvements in lipid metabolism. These findings suggest that GGQLT may have beneficial effects on T2DM by influencing lipid metabolism and gut microbiota. However, further studies are needed to elucidate its mechanisms and assess clinical applications.
Collapse
Affiliation(s)
- Jinyao Xu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenkai Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuanyi Li
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Feng Qin
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Abulikemu Abulizi
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhigang Pan
- Department of Hepatobiliary Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | | | | | - Ruicheng Yan
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Li S, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Lv H, Mu Y, Xuan Y, Li S, Ding X. Extract of Scutellaria baicalensis and Lonicerae flos improves growth performance, antioxidant capacity, and intestinal barrier of yellow-feather broiler chickens against Clostridium perfringens. Poult Sci 2024; 103:103718. [PMID: 38692178 PMCID: PMC11077025 DOI: 10.1016/j.psj.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024] Open
Abstract
In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.
Collapse
Affiliation(s)
- Shi Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; Beijing Centre Biology Co. Ltd. Daxing District, Beijing 102218, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
8
|
Liu W, Guo K. Tannic acid alleviates ETEC K88-induced intestinal damage through regulating the p62-keap1-Nrf2 and TLR4-NF-κB-NLRP3 pathway in IPEC-J2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5186-5196. [PMID: 38288747 DOI: 10.1002/jsfa.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection-induced post-weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS The results indicated that TA supplementation (2 and 4 g kg-1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF-α and IL-1β) (P < 0.05) compared to the Infection group (IG), group in vivo. In vitro, TA treatment effectively alleviated ETEC-induced cytotoxicity, increased the expression of ZO-1, occludin and claudin-1 at both mRNA and protein levels. Moreover, TA pre-treatment increased the activity of antioxidant enzymes (such as T-SOD) and decreased serum cytokine levels (TNF-α and IL-1β). Furthermore, TA increased cellular antioxidant capacity by activating the Nrf2 signaling pathway and decreased inflammatory response by down-regulating the expression of TLR4, MyD88, NF-kB and NLRP3. CONCLUSION The present study showed that TA reduced the diarrhea rate of weaned piglets by restoring the intestinal mucosal mechanical barrier function, alleviating oxidative stress and inflammation. The underlying mechanism was achieved by modulating the p62-keap1-Nrf2 and TLR4-NF-κB-NLRP3 pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Wang D, Zeng J, Wujin C, Ullah Q, Su Z. Lactobacillus reuteri derived from horse alleviates Escherichia coli-induced diarrhea by modulating gut microbiota. Microb Pathog 2024; 188:106541. [PMID: 38224920 DOI: 10.1016/j.micpath.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Diarrhea is a prevalent health issue in farm animals and poses a significant challenge to the progress of animal husbandry. Recent evidence suggested that probiotics can alleviate diarrhea by maintaining gut microbial balance and enhancing the integrity of the intestinal barrier. However, there is a scarcity of studies investigating the efficacy of equine Lactobacillus reuteri in relieving E. coli-induced diarrhea. Hence, this study aimed to examine the potential of equine-derived Lactobacillus reuteri in alleviating E. coli diarrhea from the perspective of gut microbiota. Results demonstrated that supplementation of Lactobacillus reuteri had the potential to alleviate diarrhea induced by E. coli infection and restore the decline of tight junction genes, such as Claudin-1 and ZO-1. Additionally, Lactobacillus reuteri supplementation can restore the expression of inflammatory factors (IL-6, IL-10, TNF-α, and IFN-γ) and reduce colon inflammatory damage. Diversity analysis, based on amplicon sequencing, revealed a significant reduction in the diversity of gut microbiota during E. coli-induced diarrhea. Moreover, there were notable statistical differences in the composition and structure of gut microbiota among the different treatment groups. E. coli could induce gut microbial dysbiosis by decreasing the abundance of beneficial bacteria, including Lactobacillus, Bifidobacterium, Ligilactobacillus, Enterorhabdus, and Lachnospiraceae_UCG_001, in comparison to the control group. Conversely, supplementation with Lactobacillus reuteri could restore the abundance of beneficial bacteria and increase the diversity of the gut microbiota, thereby reshaping gut microbiota. Additionally, we also observed that supplementation with Lactobacillus reuteri alone improved the gut microbial composition and structure. In summary, the findings suggest that Lactobacillus reuteri can alleviate E. coli-induced diarrhea by preserving the integrity of the intestinal barrier and modulating the composition of the gut microbiota. These results not only contribute to understanding of the mechanism underlying the beneficial effects of Lactobacillus reuteri in relieving diarrhea, but also provide valuable insights for the development of probiotic products aimed at alleviating diarrheal diseases.
Collapse
Affiliation(s)
- Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Jiangyong Zeng
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Cuomu Wujin
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Lhasa, Tibet, 850009, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, 29111, Pakistan
| | - Zhonghua Su
- Tibet Autonomous Region Animal Disease Prevention and Control Center, Lhasa, Tibet, 850009, China.
| |
Collapse
|
10
|
Shen R, Li Z, Wang H, Wang Y, Li X, Yang Q, Fu Y, Li M, Gao LN. Chinese Materia Medica in Treating Depression: The Role of Intestinal Microenvironment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1927-1955. [PMID: 37930334 DOI: 10.1142/s0192415x23500854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Depression is a highly heterogeneous mental illness. Drug treatment is currently the main therapeutic strategy used in the clinic, but its efficacy is limited by the modulation of a single target, slow onset, and side effects. The gut-brain axis is of increasing interest because intestinal microenvironment disorders increase susceptibility to depression. In turn, depression affects intestinal microenvironment homeostasis by altering intestinal tissue structure, flora abundance and metabolism, hormone secretion, neurotransmitter transmission, and immune balance. Depression falls into the category of "stagnation syndrome" according to Traditional Chinese Medicine (TCM), which further specifies that "the heart governs the spirit and is exterior-interior with the small intestine". However, the exact mechanisms of the means by which the disordered intestinal microenvironment affects depression are still unclear. Here, we present an overview of how the Chinese materia medica (CMM) protects against depression by repairing intestinal microenvironment homeostasis. We review the past five years of research progress in classical antidepressant TCM formulae and single CMMs on regulating the intestinal microenvironment for the treatment of depression. We then analyze and clarify the multitarget functions of CMM in repairing intestinal homeostasis and aim to provide a new theoretical basis for CMM clinical application in the treatment of depression.
Collapse
Affiliation(s)
- Ruhui Shen
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Zhipeng Li
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
| | - Yongchao Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Xiaofang Li
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, Shandong 276800, P. R. China
| | - Qian Yang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Yingjie Fu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Ming Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong 272067, P. R. China
- Jining Key Laboratory of Depression Prevention and Treatment, Jining Medical University, Jining, Shandong 272067, P. R. China
| |
Collapse
|
11
|
Zhou R, Huang Y, Tian C, Yang Y, Zhang Z, He K. Coptis chinensis and Berberine Ameliorate Chronic Ulcerative Colitis: An Integrated Microbiome-Metabolomics Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:2195-2220. [PMID: 37930330 DOI: 10.1142/s0192415x23500945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Coptis chinensis Franch (RC), has historically been used for the treatment of "Xiao Ke" and "Xia Li" symptoms in China. "Xia Li" is characterized by abdominal pain and diarrhea, which are similar to the clinical symptoms of ulcerative colitis (UC). For the first time, this study aims to compare the anti-colitis effects of berberine (BBR) and total RC alkaloids (TRCA) and investigate the underlying metabolites and gut microbiota biomarkers. Metabolomics results showed that several colitis-related biomarkers, including lysophosphatidyl ethanolamine, lysophosphatidylcholine, scopolamine-methyl-bromide, N1-methyl-2-pyridone-5-carboxamide, 4-hydroxyretinoic acid, and malic acid, were significantly improved in model mice after BBR and TRCA treatments. High-dose BBR and TRCA treatments reversed the mouse colon shortening caused by dextran sodium sulfate (DSS), alleviated bowel wall swelling, and reduced inflammatory cell infiltration. BBR and TRCA restored the damaged mucosa integrity in colitis mice by upregulating claudin 1 and occludin, preventing colon epithelium apoptosis by inhibiting the cleavage of caspase 3. Additionally, BBR and TRCA significantly decreased the richness of the pathogenic bacteria Bacteroides acidifaciens but increased the abundance of the probiotic Lactobacillus spp. Notably, TRCA exhibited superior anti-colitis effects to those of BBR. Thus, this agent warrants further study and application in the treatment of inflammatory bowel disease in the clinic.
Collapse
Affiliation(s)
- Rui Zhou
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, Hunan, P. R. China
| | - Yangyi Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Huaihua 418000, Hunan, P. R. China
| | - Congjian Tian
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, Hunan, P. R. China
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, P. R. China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Huaihua 418000, Hunan, P. R. China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, Hunan, P. R. China
- Hunan Provincial Key Laboratory of Dong Medicine, Huaihua 418000, Hunan, P. R. China
| |
Collapse
|
12
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
13
|
Fan Y, Zhao Q, Wei Y, Wang H, Ga Y, Zhang Y, Hao Z. Pingwei San Ameliorates Spleen Deficiency-Induced Diarrhea through Intestinal Barrier Protection and Gut Microbiota Modulation. Antioxidants (Basel) 2023; 12:antiox12051122. [PMID: 37237988 DOI: 10.3390/antiox12051122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Pingwei San (PWS) has been used for more than a thousand years as a traditional Chinese medicine prescription for treating spleen-deficiency diarrhea (SDD). Nevertheless, the exact mechanism by which it exerts its antidiarrheal effects remains unclear. The objective of this investigation was to explore the antidiarrheal efficacy of PWS and its mechanism of action in SDD induced by Rhubarb. To this end, UHPLC-MS/MS was used to identify the chemical composition of PWS, while the body weight, fecal moisture content, and colon pathological alterations were used to evaluate the effects of PWS on the Rhubarb-induced rat model of SDD. Additionally, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were employed to assess the expression of inflammatory factors, aquaporins (AQPs), and tight junction markers in the colon tissues. Furthermore, 16S rRNA was utilized to determine the impact of PWS on the intestinal flora of SDD rats. The findings revealed that PWS increased body weight, reduced fecal water content, and decreased inflammatory cell infiltration in the colon. It also promoted the expression of AQPs and tight junction markers and prevented the loss of colonic cup cells in SDD rats. In addition, PWS significantly increased the abundance of Prevotellaceae, Eubacterium_ruminantium_group, and Tuzzerella, while decreasing the abundance of Ruminococcus and Frisingicoccus in the feces of SDD rats. The LEfSe analysis revealed that Prevotella, Eubacterium_ruminantium_group, and Pantoea were relatively enriched in the PWS group. Overall, the findings of this study indicate that PWS exerted a therapeutic effect on Rhubarb-induced SDD in rats by both protecting the intestinal barrier and modulating the imbalanced intestinal microbiota.
Collapse
Affiliation(s)
- Yimeng Fan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qingyu Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuanyuan Wei
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Huiru Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yannan Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultura University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|
14
|
Liu Y, Li H, Ren P, Che Y, Zhou J, Wang W, Yang Y, Guan L. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota. Int J Biol Macromol 2023; 230:123154. [PMID: 36610568 DOI: 10.1016/j.ijbiomac.2023.123154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Lead (Pb) can cause damages to the brain, liver, kidney, endocrine and other systems. Flammulina velutipes residues polysaccharide (FVRP) has been reported to exhibit anti-heavy metal toxicity on yeast, but its regulating mechanism is unclear. Therefore, the protective effect and the underlying mechanism of FVRP on Pb-intoxicated mice were investigated. The results showed that FVRP could reduce liver and kidney function indexes, serum inflammatory factor levels, and increase antioxidant enzyme activity of Pb-poisoned mice. FVRP also exhibited a protective effect on histopathological damages in organs of Pb-intoxicated mice. Furthermore, FVRP attenuated Pb-induced kidney injury by inhibiting apoptosis via activating the Akt/GSK3β/Nrf-2/HO-1 signaling pathway. In addition, based on 16 s rRNA and ITS-2 sequencing data, FVRP regulated the imbalance of gut microbiota to alleviate the damage of Pb-poisoned mice by increasing the abundance of beneficial microbiota (Lachnospiraceae, Lactobacillaceae, Saccharomyces and Mycosphaerella) and decreasing the abundance of harmful microbiota (Muribaculaceae and Pleosporaceae). In conclusion, FVRP inhibited kidney injury in Pb-poisoned mice by inhibiting apoptosis via activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway, and regulating gut fungi and gut bacteria. This study not only revealed the role of gut fungi in Pb-toxicity, but also laid a theoretical foundation for FVRP as a natural drug against Pb-toxicity.
Collapse
Affiliation(s)
- Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|