1
|
Geng X, Wu Y, Liu Z, Liu J, Xie B, Liu L, Zhang H, Mo L, Liu Y, Zeng X, Yang P. Probiotic DNA alleviates experimental airway allergy. Cell Signal 2025; 127:111578. [PMID: 39725367 DOI: 10.1016/j.cellsig.2024.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Xiaorui Geng
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Yongjin Wu
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Zhiqiang Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Jiangqi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Bailing Xie
- State Key Laboratory of Respiratory Diseases Division of Allergy at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key laboratory of Allergy & Immunology, Shenzhen, China
| | - Le Liu
- State Key Laboratory of Respiratory Diseases Division of Allergy at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key laboratory of Allergy & Immunology, Shenzhen, China
| | - Hanqing Zhang
- State Key Laboratory of Respiratory Diseases Division of Allergy at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key laboratory of Allergy & Immunology, Shenzhen, China
| | - Lihua Mo
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Xianhai Zeng
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China.
| | - Pingchang Yang
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; State Key Laboratory of Respiratory Diseases Division of Allergy at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, and Shenzhen Key laboratory of Allergy & Immunology, Shenzhen, China.
| |
Collapse
|
2
|
Chen B, Li W, Jiang X, Huang Z, Lin L, Lin X, He Z, Lin X. Entrapment of multi-scale structure of alginate beads stabilized with cellulose nanofibrils for potential intestinal delivery of lactic acid bacteria. Int J Biol Macromol 2024; 281:136363. [PMID: 39374729 DOI: 10.1016/j.ijbiomac.2024.136363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Soybean cellulose nanofibrils (SCNFs) were formed by autoclave-enzymatic hydrolysis combined with ball milling. SCNFs were blended with sodium alginate (SA) to encapsulate lactic acid bacteria (LAB) through inotropic gelation. The effect of SCNFs on the multiscale structure of SA beads, leading to changes in the survival and release of LAB during simulated digestion, was investigated. Microscopy and rheological testing indicated that SCNF10-30 was well-dispersed in the SA paste in the form of interlaced nanofibrils, and could reduce the deformation of the paste under stress by 47.31 %. Multiscale structural analysis indicated SCNF10-30 not only increased the immobilized water of SA beads by 15.59 % by coordinating calcium, but also regulated the in situ-assembly of SA beads, including an increase in the scale of dimers from 6.73 nm to 8.32 nm and improved arrangement, thus forming a dense gel network. LAB viability of SA-SCNF10-30 in simulated digestion was increased by 1.3 log CFU/g compared to SA beads. Cellulose nanofibrils improved gastrointestinal survival and controlled release of LAB better than fiber rods. This study provides a strategy to regulate the multiscale structure of SA beads through nanofibrils to enable stabilization and sustainable release of LAB in gastrointestinal fluids.
Collapse
Affiliation(s)
- Bingyan Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Weixin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Xinyan Jiang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China
| | - Zhiji Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lijuan Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Xiaojie Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhigang He
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| | - Xiaozi Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
3
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Xue J, Liu Z, Xie B, Dong R, Wu J, Wu Y, Xu Z, Tian Y, Wei Y, Geng Z, Lu L, Liu Y, Xie J, Yang P. Probiotic nucleotides increase IL-10 expression in airway macrophages to mitigate airway allergy. Inflamm Res 2024; 73:1919-1930. [PMID: 39235607 DOI: 10.1007/s00011-024-01940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Dysfunctional immune regulation plays a crucial role in the pathogenesis of airway allergies. Macrophages are one of the components of the immune regulation cells. The aim of this study is to elucidate the role of lysine demethylase 5 A (KDM5A) in maintaining macrophages' immune regulatory ability. METHODS DNA was extracted from Lactobacillus rhamnosus GG to be designated as LgDNA. LgDNA was administered to the mice through nasal instillations. M2 macrophages (M2 cells) were isolated from the airway tissues using flow cytometry. RESULTS We found that airway M2 cells of mice with airway Th2 polarization had reduced amounts of IL-10 and KDM5A. Mice with Kdm5a deficiency in M2 cells showed the airway Th2 polarization. The expression of Kdm5a in airway M2 cells was enhanced by nasal instillations containing LgDNA. KDM5A mediated the effects of LgDNA on inducing the Il10 expression in airway M2 cells. Administration of LgDNA mitigated experimental airway allergy. CONCLUSIONS M2 macrophages in the airway tissues of mice with airway allergy show low levels of KDM5A. By upregulating KDM5A expression, LgDNA can increase Il10 expression and reconcile airway Th2 polarization.
Collapse
Affiliation(s)
- Jinmei Xue
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Bailing Xie
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy and Immunology, Shenzhen University School of Medicine, Room A7-509 at Lihu Campus. 1066 Xueyuan Blvd., Shenzhen, China
| | - Rui Dong
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Juan Wu
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Yisha Wu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Zhihan Xu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Yuhe Tian
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Yao Wei
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Zhigang Geng
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Lei Lu
- Department of Otolaryngology, Head and Neck Surgery, Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Rapid Diagnosis and Precision Treatment of Airway Allergic Diseases, Taiyuan, China
| | - Yu Liu
- Department of General Practice Medicine, Third Hospital of Shenzhen University, Shenzhen, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy and Immunology, Shenzhen University School of Medicine, Room A7-509 at Lihu Campus. 1066 Xueyuan Blvd., Shenzhen, China.
| |
Collapse
|
5
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Rivero-Pino F, Casquete M, Castro MJ, Redondo del Rio P, Gutierrez E, Mayo-Iscar A, Nocito M, Corell A. Prospective, Randomized, Double-Blind Parallel Group Nutritional Study to Evaluate the Effects of Routine Intake of Fresh vs. Pasteurized Yogurt on the Immune System in Healthy Adults. Nutrients 2024; 16:1969. [PMID: 38931322 PMCID: PMC11206341 DOI: 10.3390/nu16121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The immune system is affected by the dietary products humans intake. Immune system regulation by nutrition has uses in the clinical context, but it can also benefit healthy populations by delaying or preventing the emergence of immune-mediated chronic illnesses. In this study, the purpose was to describe and compare the modulator effects on the immune system of the routine ingestion of fresh vs. pasteurized yogurt. A unicentral, prospective, randomized, double-blind, parallel group 8-week nutritional study was carried out comparing the ingestion of 125 g of the products in healthy adults three times a day. A complete battery of in vitro tests on the activity of the immune system, processes and phenomena was performed. Exclusive immune-modulatory effects of fresh yogurt with respect to base line were found in terms of increased systemic IgM (primary immune responses), increased synthesis of IFN-gamma upon stimulation (Th1) and increased peripheral T cells (mainly "naive" CD4s). In the three interventions, we observed an increased phagocytic activity and burst test in granulocytes, together with increased secretion of IL-6, IL-1 β and IL-8 (pro-inflammatory) and increased CD16 expression (FcR favoring phagocytosis) in granulocytes. Overall, it is concluded that regardless of bacteria being alive or thermally inactivated, yogurt has common effects on the innate system, but the presence of live bacteria is necessary to achieve a potentiating effect on the specific immune response.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Mar Casquete
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Maria José Castro
- Departamento de Enfermería, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paz Redondo del Rio
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Eloina Gutierrez
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Agustín Mayo-Iscar
- Departamento de Estadística e Investigación Operativa & IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Mercedes Nocito
- Inmunología, Hospital Clínico de Zaragoza, 50009 Zaragoza, Spain
| | - Alfredo Corell
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
7
|
Safari Z, Sadeghizadeh M, Zavaran Hosseini A, Hazrati A, Soudi S. Intra-abdominal transplantation of PLGA/PCL/M13 phage electrospun scaffold induces self-assembly of lymphoid tissue-like structure. Biomed Pharmacother 2024; 173:116382. [PMID: 38460368 DOI: 10.1016/j.biopha.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Lymphoid organs are the main structural components of the immune system. In the current research, the mixture of poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), and M13 phage or its RGD-modified form was used in the construction of a fibrillar scaffold using the electrospinning method. The constructs were transplanted intra-abdominally and examined for the formation of lymphoid-like tissues at different time intervals. The confocal and scanning electron microscopy demonstrate that M13 phage-containing scaffolds provide a suitable environment for lymph node-isolated fibroblasts. Morphological analysis demonstrate the formation of lymph node-like tissues in the M13 phage-containing scaffolds after transplantation. Histological analysis confirm both blood and lymph angiogenesis in the implanted construct and migration of inflammatory cells to the M13 phage-containing scaffolds. In addition, flow cytometry and immunohistochemistry analysis showed the homing and compartmentalization of dendritic cells (DCs), B and T lymphocytes within the PLGA/PCL/M13 phage-RGD based scaffolds and similar to what is seen in the mouse lymphoid tissues. It seems that the application of M13 phage could improve the generation of functional lymphoid tissues in the electrospun scaffolds and could be used for lymphoid tissue regeneration.
Collapse
Affiliation(s)
- Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Nekrasova I, Glebezdina N, Maslennikova I, Danchenko I, Shirshev S. Estriol and commensal microflora strains regulate innate lymphoid cells functional activity in multiple sclerosis. Mult Scler Relat Disord 2024; 83:105453. [PMID: 38277978 DOI: 10.1016/j.msard.2024.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disease in which the immune system attacks myelin basic protein of nerve axons. Recently, there has been growing interest in studying the role of a newly described population of immunity cells - innate lymphoid cells (ILCs) in the pathogenesis of the disease. At the same time, it was found that during pregnancy there is a weakening of Th1-mediated autoimmune pathologies manifestations, including MS. In this work, we studied phenotypic characteristics of ILC in MS patients in comparison with healthy donors after 48 h incubation with pregnancy hormone estriol (E3) and commensal microflora cells. To activate ILC, strains of Ecsherichia coli K12 and Lactobacillus plantarum 8R-A3 were used. ILC phenotype was assessed by flow cytometry using monoclonal antibody staining. It has been established that E3 and bacterial factors are able to regulate the maturation of ILC subtypes and their cytokines in different ways. In general, the studied factors influence the phenotypic changes in ILC cells, leading to the transition from one type to another, both in healthy donors and in MS patients.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia.
| | - Natalia Glebezdina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia
| | - Irina Maslennikova
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia; Perm State Medical University named after E.A. Wagner, Perm, Russia
| | - Irina Danchenko
- Perm State Medical University named after E.A. Wagner, Perm, Russia
| | - Sergei Shirshev
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, Perm 614081, Russia
| |
Collapse
|
9
|
Rodrigues RA, Silva LAM, Brugnera HC, Pereira N, Casagrande MF, Makino LC, Bragança CRS, Schocken-Iturrino RP, Cardozo MV. Association of Bacillus subtilis and Bacillus amyloliquefaciens: minimizes the adverse effects of necrotic enteritis in the gastrointestinal tract and improves zootechnical performance in broiler chickens. Poult Sci 2024; 103:103394. [PMID: 38194830 PMCID: PMC10792630 DOI: 10.1016/j.psj.2023.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to evaluate the efficiency and capacity of the probiotic composed of Bacillus subtilis and Bacillus amyloliquefaciens, in improving the zootechnical performance of broiler chickens challenged with Eimeria spp. and Clostridium perfringens. The broilers were distributed in a completely randomized design in poultry isolators (12 birds each), resulting in 3 treatments: T1 (control, no challenge and no Bacillus in diet), T2 (challenged with Eimeria spp., followed by Clostridium perfringens infection and no Bacillus in the diet), and T3 (challenged with Eimeria spp., Clostridium perfringens and treated with Bacillus subtilis and Bacillus amyloliquefaciens). They were evaluated for a period of 29 d, divided into preinitial (1-7 d of age), initial (8-21 d), and growth (22-29 d) phases. Assessments of body weight, weight gain, feed consumption, and feed conversion were conducted, along with the classification of the scores and optical microscopy of the tract gastrointestinal. The animals challenged and treated with the probiotic containing Bacillus spp. showed improved indicators of zootechnical performance. Additionally, the animals challenged and treated (T3) had a better score for intestinal lesions compared to the other treatment groups. Therefore, the probiotic consisting of Bacillus subtilis and Bacillus amyloliquefaciens could be considered an effective option for disease prevention and improving the zootechnical performance of broiler chickens.
Collapse
Affiliation(s)
- Romário A Rodrigues
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Leandro A M Silva
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Heloisa C Brugnera
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Natália Pereira
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Mariana F Casagrande
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lilian C Makino
- Department of Fisheries and Aquaculture Resources, School of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Caio R S Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Rubén Pablo Schocken-Iturrino
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marita V Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| |
Collapse
|
10
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Mandato C, Colucci A, Lanzillo R, Staiano A, Scarpato E, Schiavo L, Operto FF, Serra MR, Di Monaco C, Napoli JS, Massa G, Vajro P. Multiple Sclerosis-Related Dietary and Nutritional Issues: An Updated Scoping Review with a Focus on Pediatrics. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1022. [PMID: 37371254 PMCID: PMC10297186 DOI: 10.3390/children10061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Lifestyle/dietetic habits play an important role in the development and progression of multiple sclerosis (MS) disease. Here, we examine the basic pathomechanisms underlying intestinal and brain barrier modifications in MS and consider diets and dietary supplementations proposed over time to complement pharmacological therapies for improving disease outcome both in adults and in children. METHODS Scoping literature search about evidence-based findings in MS-related gut-brain axis (GBA) pathophysiology and nutritional issues at all ages. FINDINGS Data show that (1) no universal best diet exists, (2) healthy/balanced diets are, however, necessary to safeguard the adequate intake of all essential nutrients, (3) diets with high intakes of fruits, vegetables, whole grains, and lean proteins that limit processed foods, sugar, and saturated fat appear beneficial for their antioxidant and anti-inflammatory properties and their ability to shape a gut microbiota that respects the gut and brain barriers, (4) obesity may trigger MS onset and/or its less favorable course, especially in pediatric-onset MS. Vitamin D and polyunsaturated fatty acids are the most studied supplements for reducing MS-associated inflammation. CONCLUSIONS Pending results from other and/or newer approaches targeting the GBA (e.g., pre- and probiotics, engineered probiotics, fecal-microbiota transplantation), accurate counseling in choosing adequate diet and maintaining physical activity remains recommended for MS prevention and management both in adults and children.
Collapse
Affiliation(s)
- Claudia Mandato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Elena Scarpato
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Luigi Schiavo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Nutrition Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Francesca Felicia Operto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatric Psychiatry Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Maria Rosaria Serra
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Cristina Di Monaco
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Julia Sara Napoli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Grazia Massa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| |
Collapse
|