1
|
Mu L, Wang G, Yang X, Liang J, Tong H, Li L, Geng K, Bo Y, Hu X, Yang R, Xu X, Zhang Y, Zhang H. Physiological premature aging of ovarian blood vessels leads to decline in fertility in middle-aged mice. Nat Commun 2025; 16:72. [PMID: 39747922 PMCID: PMC11695630 DOI: 10.1038/s41467-024-55509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Ovarian function declines significantly as females enter middle-age, but the mechanisms underlying this decline remain unclear. Here, we utilize whole-organ imaging to observe a notable decrease in ovarian blood vessel (oBV) density and angiogenesis intensity of middle-aged mice. This leads to a diminished blood supply to the ovaries, resulting in inadequate development and maturation of ovarian follicles. Utilizing genetic-modified mouse models, we demonstrate that granulosa cell secreted VEGFA governs ovarian angiogenesis, but the physiological decline in oBV is not attributed to VEGFA insufficiency. Instead, through single-cell sequencing, we identify the aging of the ovarian vascular endothelium as the primary factor contributing to oBV decline. Consequently, the administration of salidroside, a natural compound that is functional to reverse oBV aging and promote ovarian angiogenesis, significantly enhances ovarian blood supply and improve fertility in older females. Our findings highlight that enhancing oBV function is a promising strategy to boost fertility in females.
Collapse
Affiliation(s)
- Lu Mu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ge Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huan Tong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lingyu Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kaiying Geng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingnan Bo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xindi Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruobing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueqiang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Guo W, Huang R, Bian J, Liao Q, You J, Yong X, Wang Y, Wen D, Fan X, Zhou C, Xu Z. Salidroside ameliorates macrophages lipid accumulation and atherosclerotic plaque by inhibiting Hif-1α-induced pyroptosis. Biochem Biophys Res Commun 2025; 742:151104. [PMID: 39642710 DOI: 10.1016/j.bbrc.2024.151104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Hipoxia-inducible factor 1 alpha (Hif-1α) is a significant risk factor for atherosclerotic cardiovascular disease. Salidroside (SAL) has demonstrated anti-oxidative and anti-cardiovascular disease effects. Currently, there are no relevant studies investigating the interaction between SAL and Hif-1α in the progression of atherosclerosis. METHODS Hif-1α was either knocked down or upregulated in Ana-1 macrophages-derived foam cells, and atherosclerosis ApoE-/- mice were treated with or without SAL. A Protein-protein network involving Hif-1α and pyroptosis-related genes was identified through bioinformatic analysis and validated in human vascular tissues. The Oil Red O and DiI staining were used to detect the intracellular ox-LDL accumulation. The HE and Oil Red O staining were employed to evaluate atherosclerotic plaque in vivo. The levels of relevant molecules were quantified using WB, qRT-PCR, ELISA, and immunohistochemistry. The target proteins of SAL were identified through Molecular docking and Cell Thermal Shift Assay (CESTA). RESULTS Both Hif-1α knockdown and SAL treatment markedly reduced lipid accumulation in macrophages-derived foam cells. Hif-1α was closely associated with Caspase1, Gsdmd, NRLP3, and IL-1β, and co-located in CD86+ macrophages-derived foam cells within atherosclerotic plaque. SAL inhibited Hif-1α-induced Caspase-1-dependent pyroptosis and lipid accumulation by directly bonding to Hif-1α. In vivo, SAL treatment decreased atherosclerotic plaque and improved plasma lipid profiles. Furthermore, SAL reduced M1 macrophages infiltration and the levels of Hif-1α, C-Caspase1, Gsdmd-N, NRLP3, IL-18, and IL-1β in atherosclerotic plaque. CONCLUSION SAL alleviated the lipid accumulation in macrophages and atherosclerotic plaques by inhibiting pyroptosis pathway via directly binding to Hif-1α, which may be a promising therapeutic strategy for AS treatment.
Collapse
Affiliation(s)
- Wen Guo
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China; Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China; Affiliated hospital of Nanchong Health School of Sichuan Province, Nanchong, 637000, China
| | - Rong Huang
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Jiaojiao Bian
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Qing Liao
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Jun You
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Xi Yong
- Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Yuquan Wang
- Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Dan Wen
- Pharmacy Department, Department of Vascular Surgery, Cardiovascular Medicine, Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaochun Fan
- Key Laboratory of Traditional Chinese medicine for prevention and treatment of skeletal muscle disease, Nanchong Hospital of Traditional Chinese Medicine, Nanchong, 637000, China
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| | - Zhengmin Xu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Zhang L, Yin H, Xie Y, Zhang Y, Dong F, Wu K, Yang L, Lv H. Exploring the anti‑oxidative mechanisms of Rhodiola rosea in ameliorating myocardial fibrosis through network pharmacology and in vitro experiments. Mol Med Rep 2024; 30:214. [PMID: 39370810 PMCID: PMC11450433 DOI: 10.3892/mmr.2024.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Myocardial fibrosis (MF) significantly compromises cardiovascular health by affecting cardiac function through excessive collagen deposition. This impairs myocardial contraction and relaxation and leads to severe complications and increased mortality. The present study employed network pharmacology and in vitro assays to investigate the bioactive compounds of Rhodiola rosea and their targets. Using databases such as HERB, the Encyclopedia of Traditional Chinese Medicine, Pubchem, OMIM and GeneCards, the present study identified effective components and MF‑related targets. Network analysis was conducted with Cytoscape to develop a Drug‑Ingredient‑Target‑Disease network and the STRING database was utilized to construct a protein‑protein interaction network. Key nodes were analyzed for pathway enrichment using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular interactions were further explored through molecular docking techniques. The bioactivity of salidroside (SAL), the principal component of Rhodiola rosea, against MF was experimentally validated in H9c2 cardiomyocytes treated with angiotensin II and assessed for cell viability, protein expression and oxidative stress markers. Network pharmacology identified 25 active ingredients and 372 targets in Rhodiola rosea, linking SAL with pathways such as MAPK, EGFR, advanced glycosylation end products‑advanced glycosylation end products receptor and Forkhead box O. SAL showed significant interactions with core targets such as albumin, IL6, AKT serine/threonine kinase 1, MMP9 and caspase‑3. In vitro, SAL mitigated AngII‑induced increases in collagen I and alpha smooth muscle actin protein levels and oxidative stress markers, demonstrating dose‑dependent effectiveness in reversing MF. SAL from Rhodiola rosea exhibited potent anti‑oxidative properties that mitigated MF by modulating multiple molecular targets and signaling pathways. The present study underscored the therapeutic potential of SAL in treating oxidative stress‑related cardiovascular diseases.
Collapse
Affiliation(s)
- Luna Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hang Yin
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yumin Xie
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yueyue Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Feihong Dong
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ke Wu
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Le Yang
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
4
|
Guo S, Gong Z, Sun X, Gao F, Li X, Zu X, Qu C, Zhang H, Gao H. Consensus Clustering Analysis Identifies Ferroptosis-Related Patient Clusters and Predictive Signature Construction Based on Ferroptosis-Related Genes in Ischemic Cardiomyopathy. J Inflamm Res 2024; 17:6797-6814. [PMID: 39372582 PMCID: PMC11451430 DOI: 10.2147/jir.s475645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Background Ischemic cardiomyopathy (ICM) significantly contributes to global disease burden, while the role of ferroptosis in ICM remains underexplored. Methods We identified differentially expressed ferroptosis-related genes (DEFRGs) by analyzing the GSE57338 dataset and cross-referencing with FerrDb. Consensus clustering was then used to identify ferroptosis-associated clusters within the ICM samples. A ferroptosis-specific predictive signature was developed using the least absolute shrinkage and selection operator (LASSO) method and validated with the GSE5406 dataset. Additionally, quantitative real-time PCR (qRT-PCR) experiments were performed to validate the 11 feature genes in a rat ICM model. Results We identified 15 DEFRGs in GSE57338, which distinguished two patient clusters with distinct ferroptosis gene expression, pathway enrichment profiles, and metabolic characteristics. All DEFRGs were upregulated in cluster 2. Potential therapeutic targets were also identified for different ICM patient clusters. The 11-gene predictive signature (TXNRD1, STEAP3, STAT3, SCL2A1, PLIN2, NQO1, NNMT, IL33, ENPP2, ARRDC3, ALOX5) showed robust predictive power in both training and validation sets. High-risk patients exhibited increased infiltration of CD8+ T cells, CD4+ naïve T cells, M0/M1 macrophages, and resting mast cells, along with significant enrichment in epithelial mesenchymal transition and interferon responses. Low-risk patients had higher infiltration of regulatory T cells and monocytes. Results of qPCR analysis confirmed the bioinformatic analysis, validating the expression of the 11 feature genes in the rat ICM model. Conclusion We identified two ferroptosis-related clusters in ICM patients and developed a predictive signature based on ferroptosis-related genes. Our findings highlight the importance of ferroptosis in ICM and offer new insights for its diagnosis and treatment.
Collapse
Affiliation(s)
- Shuai Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhaoting Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaona Sun
- Department of Cardiology, Laizhou City People’s Hospital, Laizhou, People’s Republic of China
| | - Fei Gao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiang Li
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaolin Zu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chao Qu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongliang Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hai Gao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Wu X, Liu C, Jiang Y, Dai T, Zhang L, Wang J, Zhao H. Coaxial Electrospun Polycaprolactone/Gelatin Nanofiber Membrane Loaded with Salidroside and Cryptotanshinone Synergistically Promotes Vascularization and Osteogenesis. Int J Nanomedicine 2024; 19:6519-6546. [PMID: 38957181 PMCID: PMC11217144 DOI: 10.2147/ijn.s461141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Background Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/β-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chun Liu
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yuqing Jiang
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Ting Dai
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Linxiang Zhang
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Jiafeng Wang
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Hongbin Zhao
- Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Central Hospital, Gansu, People’s Republic of China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
6
|
Yang B, Xu Y, Yu J, Wang Q, Fan Q, Zhao X, Qiao Y, Zhang Z, Zhou Q, Yin D, He M, He H. Salidroside pretreatment alleviates ferroptosis induced by myocardial ischemia/reperfusion through mitochondrial superoxide-dependent AMPKα2 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155365. [PMID: 38552436 DOI: 10.1016/j.phymed.2024.155365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 01/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis, a form of regulated cell death (RCD) that relies on excessive reactive oxygen species (ROS) generation, Fe2+accumulation, abnormal lipid metabolism and is involved in various organ ischemia/reperfusion (I/R) injury, expecially in myocardium. Mitochondria are the powerhouses of eukaryotic cells and essential in regulating multiple RCD. However, the links between mitochondria and ferroptosis are still poorly understood. Salidroside (Sal), a natural phenylpropanoid glycoside isolated from Rhodiola rosea, has mult-bioactivities. However, the effects and mechanism in alleviating ferroptosis caused by myocardial I/R injury remains unclear. PURPOSE This study aimed to investigate whether pretreated with Sal could protect the myocardium against I/R damage and the underlying mechanisms. In particular, the relationship between Sal pretreatment, AMPKα2 activity, mitochondria and ROS generation was explored. STUDY DESIGN AND METHODS Firstly, A/R or I/R injury models were employed in H9c2 cells and Sprague-Dawley rats. And then the anti-ferroptotic effects and mechanism of Sal pretreatment was detected using multi-relevant indexes in H9c2 cells. Further, how does Sal pretreatment in AMPKα2 phosphorylation was explored. Finally, these results were validated by I/R injury in rats. RESULTS Similar to Ferrostatin-1 (a ferroptosis inhibitor) and MitoTEMPO, a mitochondrial free radical scavenger, Sal pretreatment effectively alleviated Fe2+ accumulation, redox disequilibrium and maintained mitochondrial energy production and function in I/R-induced myocardial injury, as demonstrated using multifunctional, enzymatic, and morphological indices. However, these effects were abolished by downregulation of AMPKα2 using an adenovirus, both in vivo and in vitro. Moreover, the results also provided a non-canonical mechanism that, under mild mitochondrial ROS generation, Sal pretreatment upregulated and phosphorylated AMPKα2, which enhanced mitochondrial complex I activity to activate innate adaptive responses and increase cellular tolerance to A/R injury. CONCLUSION Overall, our work highlighted mitochondria are of great impotance in myocardial I/R-induced ferroptosis and demonstrated that Sal pretreatment activated AMPKα2 against I/R injury, indicating that Sal could become a candidate phytochemical for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Bin Yang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Ying Xu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Jingzhi Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Qihao Wang
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Qigui Fan
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Xiaoyu Zhao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Yang Qiao
- Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zeyu Zhang
- Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Ming He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China.
| |
Collapse
|
7
|
Wu S, Chen Z, Wu Y, Shi Q, Yang E, Zhang B, Qian Y, Lian X, Xu J. ADSC-Exos enhance functional recovery after spinal cord injury by inhibiting ferroptosis and promoting the survival and function of endothelial cells through the NRF2/SLC7A11/GPX4 pathway. Biomed Pharmacother 2024; 172:116225. [PMID: 38306845 DOI: 10.1016/j.biopha.2024.116225] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating disease that causes major motor, sensory and autonomic dysfunctions. Currently, there is a lack of effective treatment. In this study, we aimed to investigate the potential mechanisms of Exosomes from adipose-derived stem cells (ADSC-Exos) in reducing ferroptosis and promoting angiogenesis after spinal cord injury. METHODS We isolated ADSC-Exos, the characteristics of which were confirmed. In vitro, we tested the potential of ADSC-Exos to promote the survival and function of human brain microvascular endothelial cells (HBMECs) and analyzed the ferroptosis of HBMECs. In vivo, we established rat models of SCI and locally injected ADSC-Exos to verify their efficacy. RESULTS ADSC-Exos can reduce reactive oxygen species (ROS) accumulation and cell damage induced by an excessive inflammatory response in HBMECs. ADSC-Exos inhibit ferroptosis induced by excessive inflammation and upregulate the expression of glutathione peroxidase 4(GPX4) in HBMECs. It can also effectively promote proliferation, migration, and vessel-like structure formation. In vitro, ADSC-Exos improved behavioral function after SCI and increased the number and density of blood vessels around the damaged spinal cord. Moreover, we found that ADSC-Exos could increase nuclear factor erythroid-2-related factor 2(NRF2) expression and nuclear translocation, thereby affecting the expression of solute carrier family 7 member 11(SLC7A11) and GPX4, and the NRF2 inhibitor ML385 could reverse the above changes. CONCLUSION Our results suggest that ADSC-Exos may inhibit ferroptosis and promote the recovery of vascular and neural functions after SCI through the NRF2/SLC7A11/GPX4 pathway. This may be a potential therapeutic mechanism for spinal cord injury.
Collapse
Affiliation(s)
- Shengting Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Yinghao Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Qiang Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Erzhu Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Yuxuan Qian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China.
| | - Xiaofeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China.
| | - Jianguang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
8
|
Liu Q, Chen J, Zeng A, Song L. Pharmacological functions of salidroside in renal diseases: facts and perspectives. Front Pharmacol 2024; 14:1309598. [PMID: 38259279 PMCID: PMC10800390 DOI: 10.3389/fphar.2023.1309598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Rhodiola rosea is a valuable functional medicinal plant widely utilized in China and other Asian countries for its anti-fatigue, anti-aging, and altitude sickness prevention properties. Salidroside, a most active constituent derived from Rhodiola rosea, exhibits potent antioxidative, hypoxia-resistant, anti-inflammatory, anticancer, and anti-aging effects that have garnered significant attention. The appreciation of the pharmacological role of salidroside has burgeoned over the last decade, making it a beneficial option for the prevention and treatment of multiple diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, cardiovascular disease, and more. With its anti-aging and renoprotective effects, in parallel with the inhibition of oxidative stress and inflammation, salidroside holds promise as a potential therapeutic agent for kidney damage. This article provides an overview of the microinflammatory state in kidney disease and discuss the current therapeutic strategies, with a particular focus on highlighting the recent advancements in utilizing salidroside for renal disease. The potential mechanisms of action of salidroside are primarily associated with the regulation of gene and protein expression in glomerular endothelial cells, podocytes, renal tubule cells, renal mesangial cells and renal cell carcinoma cell, including TNF-α, TGF-β, IL-1β, IL-17A, IL-6, MCP-1, Bcl-2, VEGF, ECM protein, caspase-3, HIF-1α, BIM, as well as the modulation of AMPK/SIRT1, Nrf2/HO-1, Sirt1/PGC-1α, ROS/Src/Cav-1, Akt/GSK-3β, TXNIP-NLRP3, ERK1/2, TGF-β1/Smad2/3, PI3K/Akt, Wnt1/Wnt3a β-catenin, TLR4/NF-κB, MAPK, JAK2/STAT3, SIRT1/Nrf2 pathways. To the best of our knowledge, this review is the first to comprehensively cover the protective effects of salidroside on diverse renal diseases, and suggests that salidroside has great potential to be developed as a drug for the prevention and treatment of metabolic syndrome, cardiovascular and cerebrovascular diseases and renal complications.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianzhu Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Liu ZB, Fan XY, Wang CW, Ye X, Wu CJ. Potentially active compounds that improve PAD through angiogenesis: A review. Biomed Pharmacother 2023; 168:115634. [PMID: 37879211 DOI: 10.1016/j.biopha.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.
Collapse
Affiliation(s)
- Zi-Bo Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Yun Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xun Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Guo J, Yang X, Chen J, Wang C, Sun Y, Yan C, Ren S, Xiong H, Xiang K, Zhang M, Li C, Jiang G, Xiang X, Wan G, Jiang T, Kang Y, Xu X, Chen Z, Li W. Exosomal miR-125b-5p derived from adipose-derived mesenchymal stem cells enhance diabetic hindlimb ischemia repair via targeting alkaline ceramidase 2. J Nanobiotechnology 2023; 21:189. [PMID: 37308908 DOI: 10.1186/s12951-023-01954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|