1
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Mao JQ, Cheng L, Zhang YD, Xie GJ, Wang P. Chinese formula Guben-Jiannao Ye alleviates the dysfunction of circadian and sleep rhythms in APP/PS1 mice implicated in activation of the PI3K/AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118696. [PMID: 39151711 DOI: 10.1016/j.jep.2024.118696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese formula Guben-Jiannao Ye (GBJNY) formula has a long history of usage in traditional Chinese medicine (TCM) for the treatment of learning and memory disorders as well as senile insomnia. This formulation is derived from Sun Simiao's five tonic pills. Furthermore, modern pharmacological investigations have revealed its ability to improve cognitive impairment and ameliorate sleep-wake circadian rhythm disorders. However, the precise mechanism underlying its efficacy remains elusive. AIM OF THE STUDY The current research explored the modulatory effects and possible mechanisms of GBJNY in circadian rhythm sleep-wake disorders and cognitive dysfunction in Alzheimer's disease using transcriptome sequencing and experimental validation. MATERIALS AND METHODS The LC-MS/MS tandem technology was utilized to qualitatively discern the active components present in GBJNY. The APP/PS1 mice received continuous treatment with GBJNY or Melatonin for 3 months. The learning and memory abilities of mice were assessed utilizing the Morris water maze (MWM) test, while sleep changes were studied utilizing the electroencephalogram (EEG) and electromyogram (EMG). Concurrently, mice's hippocampus clock gene rhythmicity was investigated. Subsequently, we employed HE staining, Golgi staining, and immunofluorescence to observe GBJNY's impact on synaptic damage and neuronal loss. We performed high-throughput sequencing to analyze the mRNA expression profiles of mice, aiming to identify differentially expressed genes (DEGs). Subsequently, we conducted GO and KEGG enrichment analyses to explore associated signaling pathways. Furthermore, we evaluated the expression levels of proteins involved in the PI3K/AKT/mTOR pathway and Aβ deposition in the hippocampus of mice. Through this comprehensive approach, we sought to elucidate and validate the potential mechanisms of action of GBJNY in APP/PS1 mice. RESULTS Results showed 216 DEGs. Following this, we conducted GO enrichment and KEGG pathway analyses to delve deeper into the distinctions and fundamental functions of the mRNA target genes. The enrichment analysis underscored the prominence of the PI3K/Akt/mTOR signaling pathway as the most pivotal among them. Through in vivo experiments, it was further demonstrated that the administration of GBJNY enhanced memory and learning capacities in APP/PS1 mice. Additionally, GBJNY treatment resulted in alterations in the sleep-wake circadian rhythm, characterized by reduced wakefulness and an increase in non-rapid eye movement (NREM) sleep. Moreover, alterations in the peak expression of Per1, Per2, Clock, Cry1, Cry2, and Bmal1 mRNA were noted in the hippocampus of treated mice. Particularly noteworthy were the observed reductions in amyloid-beta (Aβ) deposition within the hippocampus, improvements in neuronal synaptic integrity, and upregulation of mTOR, Akt, and PI3K protein expression in the hippocampal region. These findings underscore the critical involvement of the PI3K/Akt/mTOR signaling pathway in mitigating disturbances in sleep-wake circadian rhythms. CONCLUSIONS GBJNY enhanced the cognitive performance of APP/PS1 mice and altered clock gene expression patterns, alleviating sleep-wake circadian rhythm disruptions. The fundamental mechanism appears to be linked to the PI3K/Akt/mTOR pathway regulation, offering a foundation for potential clinical applications.
Collapse
Affiliation(s)
- Jian-Qin Mao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yu-Dan Zhang
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China.
| | - Guang-Jing Xie
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Ping Wang
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
3
|
Huang W, Wang J, Xiao Z, Lin J, Tan Z, Sun G. Lingguizhugan decoction alleviates obesity in rats on a high-fat diet through the regulation of lipid metabolism and intestinal microbiota. Front Microbiol 2024; 15:1462173. [PMID: 39606109 PMCID: PMC11600314 DOI: 10.3389/fmicb.2024.1462173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background Individuals with obesity often experience elevated blood lipid levels, leading to a chronic low-grade inflammatory state, exacerbating liver oxidative stress, and increasing the risk of various metabolic diseases. Recent evidence suggests that intestinal microbiota and short-chain fatty acids (SCFAs) play crucial roles in the development and progression of obesity. While the mechanisms by which Lingguizhugan decoction (LGZGD) intervenes in obesity by improving lipid metabolism, enhancing insulin sensitivity, and reducing inflammatory responses are well-documented, its potential in intestinal microbiota and SCFAs remains unclear. This study aims to explore the impact of LGZGD on high-fat diet (HFD) induced obesity in rats and its regulatory effects on intestinal microbiota and SCFAs, providing new insights for obesity prevention and treatment. Methods Fifty-one male SD rats were randomly divided into groups, with six in the normal control group (NC) receiving a ddH2O treatment and a standard diet. The remaining 45 rats were fed a high-fat diet (HFD) using D12451 feed. After 10 weeks, the rats on the HFD gained 20% more weight than the NC group, confirming the successful modeling of obesity. These rats were then randomly divided into the following groups: ddH2O high-fat diet model group (MC), 20 mg/kg/day Orlistat positive control group (Orlistat), 1.62 g/kg/day low-dose LGZGD group (LGZGL), and 3.24 g/kg/day high-dose LGZGD group (LGZGH) for 8 weeks. We evaluated changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) levels. Fat and liver tissues were collected for pathological analysis. Intestinal contents were aseptically collected for 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) to assess gut microbiota and SCFA levels. Results LGZGD reduces body weight, TC, TG, LDL, and HDL levels, significantly reducing hepatic steatosis. Besides, it restored the richness and diversity of gut microbiota, which was reduced by HFD, altering the overall structure. Specifically, LGZGD significantly promoted the growth of Muribaculaceae and Dubosiella while inhibiting the growth of Christensenellaceae_R_7_group and UCG_005. It also restricts the production of caproic acid. Correlation analysis indicated positive correlations: Muribaculaceae with Butyric acid and Isovaleric acid; UCG_005 with TC, LDL, and HDL; and Christensenellaceae_R_7_group with TC and LDL. Conclusion LGZGD increased the abundance of beneficial gut microbiota in HFD-induced obese rats, improved gut microbiota dysbiosis, and inhibited the increase in caproic acid content. These results suggest that LGZGD can mitigate HFD-induced obesity, and its active components warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Wang L, Qi X, Wang S, Tian C, Zou T, Liu Z, Chen Q, Chen Y, Zhao Y, Li S, Yang M, Chai N. Banxia-Yiyiren alleviates insomnia and anxiety by regulating the gut microbiota and metabolites of PCPA-induced insomnia model rats. Front Microbiol 2024; 15:1405566. [PMID: 39575182 PMCID: PMC11578828 DOI: 10.3389/fmicb.2024.1405566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
Objective This study aims to clearly define the effects of Banxia-Yiyiren on the gut microbiota and its metabolites in a para-chlorophenylalanine-induced insomnia model and the possible underlying mechanisms involved. Materials and methods We employed 16S ribosomal ribonucleic acid (rRNA) gene sequencing combined with metabonomic analysis to explore the mutual effects of the PCPA-induced insomnia model and the gut microbiota and the intrinsic regulatory mechanism of Banxia-Yiyiren on the gut microbiota and metabolites in the PCPA-induced insomnia model. Results Banxia-Yiyiren was identified by mass spectrometry to include amino acids, small peptides, nucleotides, organic acids, flavonoids, fatty acids, lipids, and other main compound components. The elevated plus maze (EPM) test results revealed that high-dose Banxia-Yiyiren may increase willingness to explore by improving anxiety-like symptoms caused by insomnia. Through 16S rRNA gene sequencing, at the phylum level, compared with those in G1, the relative abundances of Bacteroidota and Proteobacteria in G2 increased, whereas the relative abundance of Firmicutes decreased. At the genus level, compared with those in G1, the relative abundances of Prevotella_9, Prevotella, Ralstonia, Escherichia-Shigella, and UCG-005 in G2 increased, whereas the relative abundances of Lactobacillus, Ligilactobacillus, Alloprevotella, Blautia, and Prevotellaceae_NK3B31_group decreased. The metabolomics analysis results revealed 1,574 metabolites, 36.48% of which were classified as lipids and lipid-like molecules, 20.76% as organic acids and their derivatives, and 13.36% as organic heterocyclic compounds. The correlation between the top 20 differentially abundant metabolites in the G1-G2 groups was greater than that between the G3-G2 and G6-G2 groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the main differentially abundant metabolites in each group were significantly enriched in various pathways, such as amino acid metabolism, adenosine triphosphate (ATP)-binding cassette (ABC) transporters, protein digestion, and absorption. Additionally, there was a significant Pearson correlation between the genus-level differences in the gut microbiota and the differentially abundant metabolites among the G1-G2, G3-G2, and G6-G2 groups. Conclusion This study preliminarily verified that the PCPA-induced insomnia model is closely related to gut microbial metabolism and microecological disorders, and for the first time, we confirmed that Banxia-Yiyiren can act on the gut microbiota of PCPA-induced insomnia model rats and alleviate insomnia and anxiety by regulating the species, structure, abundance, and metabolites of the gut microbiota.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- The 955th Hospital of the Army, Qamdo, Tibet, China
| | - Xiaorong Qi
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Wang
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chujiao Tian
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Zou
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zihan Liu
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Chen
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingfan Chen
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunshan Zhao
- The 955th Hospital of the Army, Qamdo, Tibet, China
| | - Shaodan Li
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Minghui Yang
- Department of Chinese Medicine, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ningli Chai
- Department of Gastroenterology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Zhang H, Gao T, Zhao F, Wang N, Li Z, Qin X, Liu Y, Wang R. Integrated gut microbiome and metabolomic analyses elucidate the therapeutic mechanisms of Suanzaoren decoction in insomnia and depression models. Front Neurosci 2024; 18:1459141. [PMID: 39464422 PMCID: PMC11502468 DOI: 10.3389/fnins.2024.1459141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Insomnia and depression are psychiatric disorders linked to substantial health burdens. The gut microbiome and metabolomic pathways are increasingly recognized as key contributors to these conditions' pathophysiology. Suanzaoren Decoction (SZRD), a traditional Chinese herbal formulation, has demonstrated significant therapeutic benefits for both insomnia and depression. This study aims to elucidate the mechanistic effects of SZRD on insomnia and depression by integrating gut microbiome and metabolomic analyses and to assess the differential impacts of SZRD dosages. Using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS), we identified 66 chemical constituents within SZRD. Behavioral assays indicated that low-dose SZRD (LSZRD) significantly ameliorated insomnia symptoms in rat models, whereas high-dose SZRD (HSZRD) markedly improved depressive behaviors. 16S rRNA sequencing revealed that SZRD modulated gut microbiome dysbiosis induced by insomnia and depression, characterized by an increased abundance of short-chain fatty acid (SCFA)-producing genera. Metabolomic profiling demonstrated reduced plasma amino acid metabolites and disrupted γ-aminobutyric acid (GABA) and L-glutamic acid metabolism in the hippocampus of affected rats. SZRD administration restored fecal SCFA levels and ameliorated metabolic imbalances in both plasma and hippocampal tissues. These findings underscore the pivotal role of gut microbiome modulation and metabolic regulation in the therapeutic effects of SZRD, providing a scientific basis for its use in treating insomnia and depression.
Collapse
Affiliation(s)
- Hongxiong Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Taixiang Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feng Zhao
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Nan Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhixuan Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ying Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Wang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
6
|
Barone M, Martucci M, Sciara G, Conte M, Medina LSJ, Iattoni L, Miele F, Fonti C, Franceschi C, Brigidi P, Salvioli S, Provini F, Turroni S, Santoro A. Towards a personalized prediction, prevention and therapy of insomnia: gut microbiota profile can discriminate between paradoxical and objective insomnia in post-menopausal women. EPMA J 2024; 15:471-489. [PMID: 39239112 PMCID: PMC11371979 DOI: 10.1007/s13167-024-00369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Background Insomnia persists as a prevalent sleep disorder among middle-aged and older adults, significantly impacting quality of life and increasing susceptibility to age-related diseases. It is classified into objective insomnia (O-IN) and paradoxical insomnia (P-IN), where subjective and objective sleep assessments diverge. Current treatment regimens for both patient groups yield unsatisfactory outcomes. Consequently, investigating the neurophysiological distinctions between P-IN and O-IN is imperative for devising novel precision interventions aligned with primary prediction, targeted prevention, and personalized medicine (PPPM) principles.Working hypothesis and methodology.Given the emerging influence of gut microbiota (GM) on sleep physiology via the gut-brain axis, our study focused on characterizing the GM profiles of a well-characterized cohort of 96 Italian postmenopausal women, comprising 54 insomniac patients (18 O-IN and 36 P-IN) and 42 controls, through 16S rRNA amplicon sequencing. Associations were explored with general and clinical history, sleep patterns, stress, hematobiochemical parameters, and nutritional patterns. Results Distinctive GM profiles were unveiled between O-IN and P-IN patients. O-IN patients exhibited prominence in the Coriobacteriaceae family, including Collinsella and Adlercreutzia, along with Erysipelotrichaceae, Clostridium, and Pediococcus. Conversely, P-IN patients were mainly discriminated by Bacteroides, Staphylococcus, Carnobacterium, Pseudomonas, and respective families, along with Odoribacter. Conclusions These findings provide valuable insights into the microbiota-mediated mechanism of O-IN versus P-IN onset. GM profiling may thus serve as a tailored stratification criterion, enabling the identification of women at risk for specific insomnia subtypes and facilitating the development of integrated microbiota-based predictive diagnostics, targeted prevention, and personalized therapies, ultimately enhancing clinical effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00369-1.
Collapse
Affiliation(s)
- Monica Barone
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Giuseppe Sciara
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Lorenzo Iattoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Filomena Miele
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Fonti
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, and Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Interdepartmental Centre "Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Yan S, He J, Yu X, Shang J, Zhang Y, Bai H, Zhu X, Xie X, Lee L. Causal relationship between gut microbiota and thyroid nodules: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1417009. [PMID: 39175567 PMCID: PMC11338761 DOI: 10.3389/fendo.2024.1417009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
Objective Emerging evidence suggests alterations in gut microbiota (GM) composition following thyroid nodules (TNs) development, yet the causal relationship remains unclear. Utilizing Mendelian Randomization (MR), this study aims to elucidate the causal dynamics between GM and TNs. Methods Employing summary statistics from the MiBioGen consortium (n=18,340) and FinnGen consortium (1,634 TNs cases, 263,704 controls), we conducted univariable and multivariable MR analyses to explore the GM-TNs association. Techniques including inverse variance weighted, MR-Egger regression, weighted median, and MR-PRESSO were utilized for causal inference. Instrumental variable heterogeneity was assessed through Cochran's Q statistic and leave-one-out analysis. Reverse MR was applied for taxa showing significant forward MR associations, with multivariate adjustments for confounders. Results Our findings suggest that certain microbiota, identified as Ruminococcaceae_NK4A214_group (OR, 1.89; 95%CI, 0.47-7.64; p = 0.040), Senegalimassilia (OR, 1.72; 95%CI, 1.03-2.87; p =0.037), Lachnospiraceae (OR,0.64; 95%CI,0.41-0.99; p =0.045), exhibit a protective influence against TNs' development, indicated by negative causal associations. In contrast, microbiota categorized as Desulfovibrionales (OR, 0.63; 95%CI, 0.41-0.95; p =0.028), Prevotella_7 (OR, 0.79; 95%CI, 0.63-1.00; p =0.049), Faecalibacterium (OR, 0.66; 95%CI, 0.44-1.00; p =0.050), Desulfovibrionaceae (OR, 0.55; 95%CI, 0.35-0.86; p =0.008), Deltaproteobacteria (OR, 0.65; 95%CI, 0.43-0.97; p =0.036) are have a positive correlation with with TNs, suggesting they may serve as risk factors. Reverse MR analyses did not establish significant causal links. After comprehensive adjustment for confounders, taxa Desulfovibrionales (Order), Desulfovibrionaceae (Family), Deltaproteobacteria (Class) remain implicated as potential contributors to TNs' risk. Discussion This study substantiates a significant causal link between GM composition and TNs development, underscoring the thyroid-gut axis's relevance. The findings advocate for the integration of GM profiles in TNs' prevention and management, offering a foundation for future research in this domain.
Collapse
Affiliation(s)
- Shaoshuai Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiawei He
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianwei Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaosheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Han Bai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingyu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoming Xie
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Leanne Lee
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Zhu Q, Zhang P, Liu D, Tang L, Yu J, Zhang C, Jiang G. Glucosinolate extract from radish ( Raphanus sativus L.) seed attenuates high-fat diet-induced obesity: insights into gut microbiota and fecal metabolites. Front Nutr 2024; 11:1442535. [PMID: 39176030 PMCID: PMC11340518 DOI: 10.3389/fnut.2024.1442535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background Radish seed is a functional food with many beneficial health effects. Glucosinolates are characteristic components in radish seed that can be transformed into bioactive isothiocyanates by gut microbiota. Objective The present study aims to assess anti-obesity efficacy of radish seed glucosinolates (RSGs) and explored the underlying mechanisms with a focus on gut microbiota and fecal metabolome. Methods High-fat diet-induced obese mice were supplemented with different doses of RSGs extract for 8 weeks. Changes in body weight, serum lipid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels; and pathological changes in the liver and adipose tissue were examined. Fecal metabolome and 16S rRNA gene sequencing were used to analyze alterations in fecal metabolite abundance and the gut microbiota, respectively. Results and conclusion Results showed that RSG extract prevented weight gain and decreased serum lipid, ALT, AST levels and lipid deposition in liver and epididymal adipocytes in obese mice. Treatment with RSG extract also increased gut microbiota diversity and altered the dominant bacteria genera in the gut microbiota, decreasing the abundance of Faecalibaculum and increasing the abundance of Allobaculum, Romboutsia, Turicibacter, and Akkermansia. Fecal metabolome results identified 570 differentially abundant metabolites, of which glucosinolate degradation products, such as sulforaphene and 7-methylsulfinylheptyl isothiocyanate, were significantly upregulated after RSG extract intervention. Furthermore, enrichment analysis of metabolic pathways showed that the anti-obesity effects of RSG extract may be mediated by alterations in bile secretion, fat digestion and absorption, and biosynthesis of plant secondary metabolites. Overall, RSG extract can inhibit the development of obesity, and the obesity-alleviating effects of RSG are related to alternative regulation of the gut microbiota and glucosinolate metabolites.
Collapse
Affiliation(s)
- Quanfeng Zhu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Peng Zhang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Leilei Tang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiawen Yu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojun Jiang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Cheng J, Wu Q, Sun R, Li W, Wang Z, Zhou M, Yang T, Wang J, Lyu Y, Yue C. Protective effects of a probiotic-fermented germinated grain complex on neurotransmitters and sleep quality in sleep-deprived mice. Front Microbiol 2024; 15:1438928. [PMID: 39135872 PMCID: PMC11317376 DOI: 10.3389/fmicb.2024.1438928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Objective To explore the effects of probiotic fermentation products of germinated grains on cognitive and sleep improvement in mice with sleep deprivation induced by chlorophenylalanine (PCPA), and to provide theoretical and experimental basis for the development of natural products to alleviate insomnia. Methods ELISA and high-performance liquid chromatography (HPLC) were used to determine the contents of γ-aminobutyric acid and L-theanine in fermentation products. Open Field Test was used to analyze the changes of emotional behavior between groups before and after intervention. ELISA was used to analyze the changes of hypothalamic serotonin, GABA, glutamate, and serum interleukin 6. 16S rRNA sequencing was used to analyze the changes of intestinal flora before and after the intervention of compound fermentation products. LC-MS/MS was used to analyze the changes of intestinal SCFAs before and after the intervention. Results The content of GABA and L-theanine in 7 L fermentation products was 12.555 μmol/L (1.295 mg/L) and 0.471 mg/mL by ELISA. Compared with the PCPA-induced Model group, the sleep duration of the KEY group was statistically significant (p < 0.0001). Compared with the PCPA-induced Model group, the number of crossing the central lattice in the KEY group was significantly increased, and the number of grooming was significantly reduced (all p < 0.05), suggesting that the anxiety behavior of the mice was improved. In addition, this study found that the compound fermentation products could significantly increase the content of neurotransmitters such as 5-HT, GABA and Glu in the hypothalamus of mice, reduce the content of inflammatory factors such as IL-6, IL-1β and TNF-α in serum, regulate the structure of intestinal flora and increase the content of short-chain fatty acids. Conclusion Probiotic fermentation products of germinated grains can significantly improve sleep deprivation in PCPA mice, which may be related to regulating the levels of neurotransmitters and inflammatory factors, improving the structure of intestinal flora, and increasing the content of short-chain fatty acids. This study provides new candidates and research directions for the development of natural drugs to alleviate insomnia.
Collapse
Affiliation(s)
- Jiahua Cheng
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Qiqi Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Rui Sun
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Clinical Laboratory, Xi’an Daxing Hospital, Xi’an, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhuoling Wang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Tian Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Yan’an University, Yan’an, China
| | - Yuhong Lyu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, China
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| |
Collapse
|
10
|
Luo J, Tu L, Zhou C, Li G, Shi L, Hu S. SGLT2 inhibition, circulating proteins, and insomnia: A mendelian randomization study. Sleep Med 2024; 119:480-487. [PMID: 38795402 DOI: 10.1016/j.sleep.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT2i) initially emerged as oral antidiabetic medication but were subsequently discovered to exhibit pleiotropic actions. Insomnia is a prevalent and debilitating sleep disorder. To date, the causality between SGLT2 inhibitors and insomnia remains unclear. This study aims to evaluate the causality between SGLT2 inhibitors and insomnia and identify potential plasma protein mediators. METHODS Using a two-sample Mendelian Randomization (MR) analysis, we estimated the causality of SGLT2 inhibition on insomnia and sleep duration. Additionally, employing a two-step and proteome-wide MR analysis, we evaluated the causal link of SGLT2 inhibition on 4907 circulating proteins and the causality of SGLT2 inhibition-driven plasma proteins on insomnia. We applied a false discovery rate (FDR) correction for multiple comparisons. Furthermore, mediation analyses were used to identify plasma proteins that mediate the effects of SGLT2 inhibition on insomnia. RESULTS SGLT2 inhibition was negatively correlated with insomnia (odds ratio [OR] = 0.791, 95 % confidence interval [CI] [0.715, 0.876], P = 5.579*10^-6) and positively correlated with sleep duration (β = 0.186, 95 % CI [0.059, 0.314], P = 0.004). Among the 4907 circulating proteins, diadenosine tetraphosphatase (Ap4A) was identified as being linked to both SGLT2 inhibition and insomnia. Mediation analysis indicated that the effect of SGLT2 inhibition on insomnia partially operates through Ap4A (β = -0.018, 95 % CI [-0.036, -0.005], P = 0.023), with a mediation proportion of 7.7 %. CONCLUSION The study indicated a causality between SGLT2 inhibition and insomnia, with plasma Ap4A potentially serving as a mediator.
Collapse
Affiliation(s)
- Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gen Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
11
|
Du L, Yang D, Wu L, Mei L, Wu S, Ba Y, Bao Y, Su R, Song L. Integration of Gut Microbiota, Serum Metabolomic, and Network Pharmacology to Reveal the Anti Insomnia Mechanism of Mongolian Medicine Sugemule-4 Decoction on Insomnia Model Rats. Drug Des Devel Ther 2024; 18:2617-2639. [PMID: 38957410 PMCID: PMC11217142 DOI: 10.2147/dddt.s455600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Objective To explored the potential molecular mechanism of Sugemule-4 decoction (MMS-4D) in treating insomnia. Methods DL-4-chlorophenylalanine (PCPA) + chronic unpredictable mild stress stimulation (CUMS) was used to induce an insomnia model in rats. After the model was successfully established, MMS-4D was intervened at low, medium, and high doses for 7 days. The open-field test (OFT) was used to preliminarily evaluate the efficacy. The potential mechanism of MMS-4D in treating insomnia was investigated using gut microbiota, serum metabolomics, and network pharmacology (NP). Experimental validation of the main components of the key pathways was carried out using ELISA and Western blot. Results The weights of the insomnia-model rats were significantly raised (p ≤ 0.05), the total exercise distance in the OFT increased (p ≤ 0.05), the rest time shortened, and the number of standing times increased (p ≤ 0.05), after treatment with MMS-4D. Moreover, there was a substantial recovery in the 5-HT, DA, GABA, and Glu levels in the hypothalamus tissue and the 5-HT and GABA levels in the colon tissue of rats. The expression of DAT and DRD1 proteins in the hippocampus of insomnia rats reduced after drug treatment. MMS-4D may treat insomnia by regulating different crucial pathways including 5-HT -, DA -, GABA -, and Glu-mediated neuroactive light receiver interaction, cAMP signaling pathway, serotonergic, glutamatergic, dopaminergic, and GABAergic synapses. Conclusion This study revealed that MMS-4D can improve the general state and behavioral changes of insomnia model rats. Its mechanism may be related to the reversal of abnormal pathways mediated by 5-HT, DA, GABA, and Glu, such as Serotonergic synapse, Dopaminergic synapse, Glutamatergic synapse, and GABAergic synapse.
Collapse
Affiliation(s)
- Lina Du
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Dezhi Yang
- Innovative Mongolian Medical Engineering Research Center, Inner Mongolia International Mongolian Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lan Wu
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Li Mei
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Sarula Wu
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yasula Ba
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yongchang Bao
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Rigugaqiqige Su
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lin Song
- College of Mongolian Medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
12
|
Pan LM, Hong ZB, Guan RQ. Research progress on insomnia treated by traditional Chinese medicine and acupuncture based on microbial-gut-brain axis theory. World J Clin Cases 2024; 12:3314-3320. [PMID: 38983433 PMCID: PMC11229893 DOI: 10.12998/wjcc.v12.i18.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Insomnia, as one of the emotional diseases, has been increasing in recent years, which has a great impact on people's life and work. Therefore, researchers are eager to find a more perfect treatment. The microbiome-gut-brain axis is a new theory that has gradually become popular abroad in recent years and has a profound impact in the field of insomnia. In recent years, traditional Chinese medicine (TCM) has played an increasingly important role in the treatment of insomnia, especially acupuncture and Chinese herbal medicine. It is the main method of TCM in the treatment of insomnia. This paper mainly reviews the combination degree of "microorganism-gut-brain axis" theory with TCM and acupuncture under the system of TCM. To explore the mechanism of TCM and acupuncture in the treatment of insomnia under the guidance of "microorganism-gut-brain axis" theory, in order to provide a new idea for the diagnosis and treatment of insomnia.
Collapse
Affiliation(s)
- Li-Min Pan
- Department of Outpatient Deputy Chief Physician, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Haerbin 150010, Heilongjiang Province, China
| | - Zhi-Bo Hong
- School of Heilongjiang University of Chinese Medicine Graduate, Heilongjiang University of Chinese Medicine, Haerbin 150000, Heilongjiang Province, China
| | - Rui-Qian Guan
- Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Haerbin 150010, Heilongjiang Province, China
| |
Collapse
|
13
|
Han YL, Kang ZX, Jin SW, Pan XL, Zhang HX, Zhang LY, Tang L. Electroacupuncture improves low-grade duodenal inflammation in FD rats by reshaping intestinal flora through the NF-κB p65/NLRP3 pyroptosis pathway. Heliyon 2024; 10:e31197. [PMID: 38807876 PMCID: PMC11131961 DOI: 10.1016/j.heliyon.2024.e31197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Electroacupuncture (EA) is an effective alternative for the treatment of functional dyspepsia (FD). It reduces low-grade duodenal inflammation and improves the symptoms of FD by downregulating the expression of NF-κB p65 and NLRP3, but its mechanism needs to be elucidated. To examine the regulatory effect of electroacupuncture (EA) on intestinal flora and NF-κB p65/NLRP3 pyroptosis pathway in FD rats. The FD rat model was established via multi-factor stress intervention for two weeks. The rats were randomly divided into the NC group, model group, NF-kB inhibitor group (NF-κB inhibitor BAY 11-7082 was administered), EA group, and EA + NF-kB inhibitor group. After 14 days of treatment, the rats were sacrificed, and the protein and mRNA levels of NF-κB p65, IκB, and NLRP3 in the duodenum were evaluated by Western blotting assays and real-time fluorescent quantitative PCR. The Illumina MiSeq sequencing platform was used to analyze the V4 region of the 16S rRNA gene of intestinal flora and predict functional genes. The concentration of short-chain fatty acids (SCFAs) in feces was assessed by metabolomics. EA can decrease low-grade duodenal inflammation and promote gastrointestinal motility in FD rats. This effect is mediated by inhibition of the NF-κB p65/NLRP3 pyroptosis pathway, an increase in the alpha and beta diversity of gut microbiota in the duodenum, an increase in the abundance of beneficial bacteria at the phylum and genus levels, and an increase in the content of SCFAs. The protective effect of EA against FD might involve multiple hierarchy and pathways. EA may remodel intestinal flora by inhibiting the NF-κB p65/NLRP3 pyroptosis pathway, thereby improving low-grade duodenal inflammation in FD rats.
Collapse
Affiliation(s)
- Yong-Li Han
- Acupuncture Department, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, 450003, China
| | - Zhao-Xia Kang
- Department of Acupuncture and Moxibustion, GuiZhou University of Traditional Chinese Medicine, GuiYang, GuiZhou, 550025, China
| | - Shu-Wen Jin
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, 430061, China
| | - Xiao-Li Pan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, 430061, China
| | - Hong-Xing Zhang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, 430061, China
- Jianghan University Health Science Center, Wuhan, Hubei, 430056, China
- Institute of Acupuncture and Moxibustion, Jianghan University, Wuhan, Hubei, 430056, China
| | - Liang-Yu Zhang
- Digestive Endoscopy Treatment Center, Second Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210017, China
| | - Lei Tang
- Rehabilitation Department, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| |
Collapse
|
14
|
Xu W, Li Y, Liu L, Xie J, Hu Z, Kuang S, Fu X, Li B, Sun T, Zhu C, He Q, Sheng W. Icaritin-curcumol activates CD8 + T cells through regulation of gut microbiota and the DNMT1/IGFBP2 axis to suppress the development of prostate cancer. J Exp Clin Cancer Res 2024; 43:149. [PMID: 38778379 PMCID: PMC11112810 DOI: 10.1186/s13046-024-03063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Dermatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China
| | - Yingqiu Li
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lumei Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Xie
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
| | - Zongren Hu
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
| | - Shida Kuang
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinying Fu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bonan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tiansong Sun
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Congxu Zhu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China.
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| | - Wen Sheng
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| |
Collapse
|
15
|
Zeng H, Xu J, Zheng L, Zhan Z, Fang Z, Li Y, Zhao C, Xiao R, Zheng Z, Li Y, Yang L. Traditional Chinese herbal formulas modulate gut microbiome and improve insomnia in patients with distinct syndrome types: insights from an interventional clinical study. Front Cell Infect Microbiol 2024; 14:1395267. [PMID: 38817449 PMCID: PMC11137223 DOI: 10.3389/fcimb.2024.1395267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Background Traditional Chinese medicine (TCM) comprising herbal formulas has been used for millennia to treat various diseases, such as insomnia, based on distinct syndrome types. Although TCM has been proposed to be effective in insomnia through gut microbiota modulation in animal models, human studies remain limited. Therefore, this study employs machine learning and integrative network techniques to elucidate the role of the gut microbiome in the efficacies of two TCM formulas - center-supplementing and qi-boosting decoction (CSQBD) and spleen-tonifying and yin heat-clearing decoction (STYHCD) - in treating insomnia patients diagnosed with spleen qi deficiency and spleen qi deficiency with stomach heat. Methods Sixty-three insomnia patients with these two specific TCM syndromes were enrolled and treated with CSQBD or STYHCD for 4 weeks. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) every 2 weeks. In addition, variations in gut microbiota were evaluated through 16S rRNA gene sequencing. Stress and inflammatory markers were measured pre- and post-treatment. Results At baseline, patients exhibiting only spleen qi deficiency showed slightly lesser severe insomnia, lower IFN-α levels, and higher cortisol levels than those with spleen qi deficiency with stomach heat. Both TCM syndromes displayed distinct gut microbiome profiles despite baseline adjustment of PSQI, ISI, and IFN-α scores. The nested stratified 10-fold cross-validated random forest classifier showed that patients with spleen qi deficiency had a higher abundance of Bifidobacterium longum than those with spleen qi deficiency with stomach heat, negatively associated with plasma IFN-α concentration. Both CSQBD and STYHCD treatments significantly improved sleep quality within 2 weeks, which lasted throughout the study. Moreover, the gut microbiome and inflammatory markers were significantly altered post-treatment. The longitudinal integrative network analysis revealed interconnections between sleep quality, gut microbes, such as Phascolarctobacterium and Ruminococcaceae, and inflammatory markers. Conclusion This study reveals distinct microbiome profiles associated with different TCM syndrome types and underscores the link between the gut microbiome and efficacies of Chinese herbal formulas in improving insomnia. These findings deepen our understanding of the gut-brain axis in relation to insomnia and pave the way for precision treatment approaches leveraging TCM herbal remedies.
Collapse
Affiliation(s)
- Huimei Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Liming Zheng
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Zhan
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zenan Fang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxi Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunyi Zhao
- The Second Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Rong Xiao
- Department of Rehabilitation, The Eighth People’s Hospital of Hefei, Hefei, China
| | - Zhuanfang Zheng
- Teaching and research Center, Guangdong Provincial Trade Union Cadre School, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Cai Y, Zhang X, Li J, Yang W. Effect of acupuncture combined with Ningshen mixture on climacteric insomnia: A randomized controlled trial. Medicine (Baltimore) 2024; 103:e37930. [PMID: 38669364 PMCID: PMC11049734 DOI: 10.1097/md.0000000000037930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In recent years, the incidence of menopause insomnia has gradually increased, seriously affecting women's physical and mental health. METHODS Total 82 climacteric insomnia patients received from January 2021 to January 2023 were divided into 2 groups at random. In control group, 41 cases received conventional Western medicine, and in study group, 41 cases received acupuncture combined with Ningshen mixture. Clinical effectiveness of both groups was compared, neurotransmitter levels, TCM syndrome integral and Pittsburgh Sleep Quality Index (PSQI) were assessed in both groups. Meanwhile, the recurrence rate and safety were evaluated in 2 groups. RESULTS The curative effect in study group was better than that in control group (P < .05). After treatment, the expressions of 5-hydroxytryptamine and β-endorphin (β-EP) in study group were higher than control group (P < .05); TCM syndrome scores and PSQI scores in study group were lower than control group (P < .05). The total recurrence rate in study group was obviously lower than control group at 3 months after treatment (P < .05). There were no serious adverse reactions in both group, and no distinct difference between 2 groups was found (P > .05). CONCLUSION Acupuncture united with Ningshen mixture has a significant therapeutic effect and high safety in climacteric insomnia patients. It can effectively improve the neurotransmitter levels, clinical symptoms and sleep quality, and reduce the recurrence rate of climacteric insomnia patients, which has high clinical application value and is worthy of clinical promotion.
Collapse
Affiliation(s)
- Yan Cai
- Department of Traditional Medicine, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Zhang
- Department of Traditional Medicine, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaying Li
- Department of Traditional Medicine, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yang
- Department of Traditional Medicine, The Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhao FY, Spencer SJ, Kennedy GA, Zheng Z, Conduit R, Zhang WJ, Xu P, Yue LP, Wang YM, Xu Y, Fu QQ, Ho YS. Acupuncture for primary insomnia: Effectiveness, safety, mechanisms and recommendations for clinical practice. Sleep Med Rev 2024; 74:101892. [PMID: 38232645 DOI: 10.1016/j.smrv.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Primary insomnia (PI) is an increasing concern in modern society. Cognitive-behavioral therapy for insomnia is the first-line recommendation, yet limited availability and cost impede its widespread use. While hypnotics are frequently used, balancing their benefits against the risk of adverse events poses challenges. This review summarizes the clinical and preclinical evidence of acupuncture as a treatment for PI, discussing its potential mechanisms and role in reliving insomnia. Clinical trials show that acupuncture improves subjective sleep quality, fatigue, cognitive impairments, and emotional symptoms with minimal adverse events. It also positively impacts objective sleep processes, including prolonging total sleep time, improving sleep efficiency, reducing sleep onset latency and wake after sleep onset, and enhancing sleep architecture/structure, including increasing N3% and REM%, and decreasing N1%. However, methodological shortcomings in some trials diminish the overall quality of evidence. Animal studies suggest that acupuncture restores circadian rhythms in sleep-deprived rodents and improves their performance in behavioral tests, possibly mediated by various clinical variables and pathways. These may involve neurotransmitters, brain-derived neurotrophic factors, inflammatory cytokines, the hypothalamic-pituitary-adrenal axis, gut microbiota, and other cellular events. While the existing findings support acupuncture as a promising therapeutic strategy for PI, additional high-quality trials are required to validate its benefits.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia; Institute of Health and Wellbeing, Federation University, Mount Helen, Victoria, Australia; Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Xu
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, China.
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
18
|
Wang Q, Gao T, Zhang W, Liu D, Li X, Chen F, Mei J. Causal relationship between the gut microbiota and insomnia: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1279218. [PMID: 38500501 PMCID: PMC10945026 DOI: 10.3389/fcimb.2024.1279218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Changes in the gut microbiota are closely related to insomnia, but the causal relationship between them is not yet clear. Objective To clarify the relationship between the gut microbiota and insomnia and provide genetic evidence for them, we conducted a two-sample Mendelian randomization study. Methods We used a Mendelian randomized two-way validation method to discuss the causal relationship. First, we downloaded the data of 462,341 participants relating to insomnia, and the data of 18,340 participants relating to the gut microbiota from a genome-wide association study (GWAS). Then, we used two regression models, inverse-variance weighted (IVW) and MR-Egger regression, to evaluate the relationship between exposure factors and outcomes. Finally, we took a reverse MR analysis to assess the possibility of reverse causality. Results The combined results show 19 gut microbiotas to have a causal relationship with insomnia (odds ratio (OR): 1.03; 95% confidence interval (CI): 1.01, 1.05; p=0.000 for class. Negativicutes; OR: 1.03; 95% CI: 1.01, 1.05; p=0.000 for order.Selenomonadales; OR: 1.01; 95% CI: 1.00, 1.02; p=0.003 for genus.RikenellaceaeRC9gutgroup). The results were consistent with sensitivity analyses for these bacterial traits. In reverse MR analysis, we found no statistical difference between insomnia and these gut microbiotas. Conclusion This study can provide a new direction for the causal relationship between the gut microbiota (class.Negativicutes, order.Selenomonadales, genus.Lactococcus) and insomnia and the treatment or prevention strategies of insomnia.
Collapse
Affiliation(s)
- Qianfei Wang
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tianci Gao
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weichao Zhang
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dong Liu
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Li
- The Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fenqiao Chen
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianqiang Mei
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
19
|
Chen Y, Shi Y, Liang C, Min Z, Deng Q, Yu R, Zhang J, Chang K, Chen L, Yan K, Wang C, Tan Y, Wang X, Chen J, Hua Q. MicrobeTCM: A comprehensive platform for the interactions of microbiota and traditional Chinese medicine. Pharmacol Res 2024; 201:107080. [PMID: 38272335 DOI: 10.1016/j.phrs.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Thanks to the advancements in bioinformatics, drugs, and other interventions that modulate microbes to treat diseases have been emerging continuously. In recent years, an increasing number of databases related to traditional Chinese medicine (TCM) or gut microbes have been established. However, a database combining the two has not yet been developed. To accelerate TCM research and address the traditional medicine and micro ecological system connection between short board, we have developed the most comprehensive micro-ecological database of TCM. This initiative includes the standardization of the following advantages: (1) A repeatable process achieved through the standardization of a retrieval strategy to identify literature. This involved identifying 419 experiment articles from PubMed and six authoritative databases; (2) High-quality data integration achieved through double-entry extraction of literature, mitigating uncertainties associated with natural language extraction; (3) Implementation of a similar strategy aiding in the prediction of mechanisms of action. Leveraging drug similarity, target entity similarity, and known drug-target entity association, our platform enables the prediction of the effects of a new herb or acupoint formulas using the existing data. In total, MicrobeTCM includes 171 diseases, 725 microbes, 1468 herb-formulas, 1032 herbs, 15780 chemical compositions, 35 acupoint-formulas, and 77 acupoints. For further exploration, please visit https://www.microbetcm.com.
Collapse
Affiliation(s)
- Yufeng Chen
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Yu Shi
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Chengbang Liang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Zhuochao Min
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Zoology, The George S. Wise Faculty of Life Sciences Tel Aviv Tel Aviv University, Tel Aviv 69978, Israel
| | - Qiqi Deng
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Rui Yu
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Jiani Zhang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Kexin Chang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Luyao Chen
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Ke Yan
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Chunxiang Wang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Yan Tan
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Xu Wang
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China
| | - Jianxin Chen
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China.
| | - Qian Hua
- School of Traditional Chinese Medicine, School of Life Science, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese medicine, Beijing 100029, China.
| |
Collapse
|
20
|
Shirolapov IV, Gribkova OV, Kovalev AM, Shafigullina LR, Ulivanova VA, Kozlov AV, Ereshchenko AA, Lyamin AV, Zakharov AV. [The interactions along the microbiota-gut-brain axis in the regulation of circadian rhythms, sleep mechanisms and disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:79-86. [PMID: 38934670 DOI: 10.17116/jnevro202412405279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The bidirectional relationship between cerebral structures and the gastrointestinal tract involving the microbiota embraces the scientific concept of the microbiota-gut-brain axis. The gut microbiome plays an important role in many physiological and biochemical processes of the human body, in the immune response and maintenance of homeostasis, as well as in the regulation of circadian rhythms. There is a relationship between the higher prevalence of a number of neurological disorders, sleep disorders and changes in the intestinal microbiota, which actualizes the study of the complex mechanisms of such correlation for the development of new treatment and prevention strategies. Environmental factors associated with excessive light exposure can aggravate the gut dysbiosis of intestinal microflora, and as a result, lead to sleep disturbances. This review examines the integrative mechanisms of sleep regulation associated with the gut microbiota (the role of neurotransmitters, short-chain fatty acids, unconjugated bile acids, bacterial cell wall components, cytokines). Taking into account the influence of gut dysbiosis as a risk factor in the development of various diseases, the authors systematize key aspects and modern scientific data on the importance of microflora balance to ensure optimal interaction along the microbiota-gut-brain axis in the context of the regulatory role of the sleep-wake cycle and its disorders.
Collapse
Affiliation(s)
| | | | - A M Kovalev
- Samara State Medical University, Samara, Russia
| | | | | | - A V Kozlov
- Samara State Medical University, Samara, Russia
| | | | - A V Lyamin
- Samara State Medical University, Samara, Russia
| | | |
Collapse
|
21
|
Chen HW, Zhou R, Cao BF, Liu K, Zhong Q, Huang YN, Liu HM, Zhao JQ, Wu XB. The predictive, preventive, and personalized medicine of insomnia: gut microbiota and inflammation. EPMA J 2023; 14:571-583. [PMID: 38094575 PMCID: PMC10713890 DOI: 10.1007/s13167-023-00345-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/21/2023] [Indexed: 12/05/2024]
Abstract
Background The human gut microbiota (GM) has been recognized as a significant factor in the development of insomnia, primarily through inflammatory pathways, making it a promising target for therapeutic interventions. Considering the principles of primary prediction, targeted prevention, and personalized treatment medicine (PPPM), identifying specific gut microbiota associated with insomnia and exploring the underlying mechanisms comprehensively are crucial steps towards achieving primary prediction, targeted prevention, and personalized treatment of insomnia. Working hypothesis and methodology We hypothesized that alterations in the composition of specific GM could induce insomnia through an inflammatory response, which postulates the existence of a GM-inflammation-insomnia pathway. Mendelian randomization (MR) analyses were employed to examine this pathway and explore the mediative effects of inflammation. We utilized genetic proxies representing GM, insomnia, and inflammatory indicators (including 41 circulating cytokines and C-reactive protein (CRP)), specifically identified from European ancestry. The primary method used to identify insomnia-related GM and examine the medicative effect of inflammation was the inverse variance weighted method, supplemented by the MR-Egger and weighted median methods. Our findings have the potential to identify individuals at risk of insomnia through screening for GM imbalances, leading to the development of targeted prevention and personalized treatment strategies for the condition. Results Nine genera and three circulating cytokines were identified to be associated with insomnia; only the associations of Clostridium (innocuum group) and β-NGF on insomnia remained significant after the FDR test, OR = 1.08 (95% CI = 1.04-1.12, P = 1.45 × 10-4, q = 0.02) and OR = 1.06 (95% CI = 1.02-1.10, P = 1.06 × 10-3, q = 0.04), respectively. CRP was associated with an increased risk of insomnia, OR = 1.05 (95% CI = 1.01-1.10, P = 6.42 × 10-3). CRP mediated the association of Coprococcus 1, Holdemania, and Rikenellaceae (RC9gut group) with insomnia. No heterogeneity or pleiotropy were detected. Conclusions Our study highlights the role of specific GM alterations in the development of insomnia and provides insights into the mediating effects of inflammation. Targeting these specific GM alterations presents a promising avenue for advancing the transition from reactive medicine to PPPM in managing insomnia, potentially leading to significant clinical benefits. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00345-1.
Collapse
Affiliation(s)
- Hao-Wen Chen
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Bi-Fei Cao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Kuan Liu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Yi-Ning Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Hua-Min Liu
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Qing Zhao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| | - Xian-Bo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, No. 1063-No. 1023, Shatai South Road, Baiyun District, Guangzhou, 510515 China
| |
Collapse
|
22
|
Li Y, Deng Q, Liu Z. The relationship between gut microbiota and insomnia: a bi-directional two-sample Mendelian randomization research. Front Cell Infect Microbiol 2023; 13:1296417. [PMID: 38089822 PMCID: PMC10714008 DOI: 10.3389/fcimb.2023.1296417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Insomnia is the second most common mental health issue, also is a social and financial burden. Insomnia affects the balance between sleep, the immune system, and the central nervous system, which may raise the risk of different systemic disorders. The gut microbiota, referred to as the "second genome," has the ability to control host homeostasis. It has been discovered that disruption of the gut-brain axis is linked to insomnia. Methods In this study, we conducted MR analysis between large-scale GWAS data of GMs and insomnia to uncover potential associations. Results Ten GM taxa were detected to have causal associations with insomnia. Among them, class Negativicutes, genus Clostridiuminnocuumgroup, genus Dorea, genus Lachnoclostridium, genus Prevotella7, and order Selenomonadalesare were linked to a higher risk of insomnia. In reverse MR analysis, we discovered a causal link between insomnia and six other GM taxa. Conclusion It suggested that the relationship between insomnia and intestinal flora was convoluted. Our findings may offer beneficial biomarkers for disease development and prospective candidate treatment targets for insomnia.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | | | | |
Collapse
|
23
|
Bao Q, Liu Y, Zhang X, Li Y, Wang Z, Ye F, He X, Xia M, Chen Z, Yao J, Zhong W, Wu K, Wang Z, Sun M, Chen J, Hong X, Zhao L, Yin Z, Liang F. Clinical observation and mechanism of acupuncture on amnestic mild cognitive impairment based on the gut-brain axis: study protocol for a randomized controlled trial. Front Med (Lausanne) 2023; 10:1198579. [PMID: 37415772 PMCID: PMC10321407 DOI: 10.3389/fmed.2023.1198579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Background Amnestic mild cognitive impairment (aMCI) is a pre-dementia condition associated with declined cognitive function dominated by memory impairment. The occurrence of aMCI is associated with the gut-brain axis. Previous studies have shown cognitive improvements in MCI after acupuncture treatment. This study evaluates whether acupuncture can produce a therapeutic effect in patients with aMCI by modulating the gut-brain axis. Methods and design This is a prospective, parallel, multicenter randomized controlled trial. A total of 40 patients with aMCI will be randomly assigned to an acupuncture group (AG) or a waiting-list group (WG), participants in both groups will receive health education on improving cognitive function at each visit, and acupuncture will be conducted twice a week for 12 weeks in the AG. Another 20 matched healthy volunteers will be enrolled as normal control. The primary outcome will be the change in Alzheimer's Disease Assessment Scale-cognitive scale score before and after treatment. Additionally, functional magnetic resonance imaging data, faeces, and blood will be collected from each participant to characterize the brain function, gut microbiota, and inflammatory cytokines, respectively. The differences between patients with aMCI and healthy participants, and the changes in the AG and WG groups before and after treatment will be observed. Ultimately, the correlation among brain function, gut microbiota, inflammatory cytokines, and clinical efficacy evaluation in patients with aMCI will be analyzed. Discussion This study will identify the efficacy and provide preliminary data on the possible mechanism of acupuncture in treating aMCI. Furthermore, it will also identify biomarkers of the gut microbiota, inflammatory cytokines, and brain function correlated with therapeutic effects. The results of this study will be published in peer-reviewed journals. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2200062084.
Collapse
Affiliation(s)
- Qiongnan Bao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Yiwei Liu
- The West China Hospital, Chengdu, China
| | - Xinyue Zhang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Yaqin Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqi Wang
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Fang Ye
- The Sichuan Province People's Hospital, Chengdu, China
| | - Xia He
- The Rehabilitation Hospital of Sichuan Province, Chengdu, China
| | - Manze Xia
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Zhenghong Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Jin Yao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Wanqi Zhong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Kexin Wu
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Ziwen Wang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Mingsheng Sun
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Jiao Chen
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Xiaojuan Hong
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Ling Zhao
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Zihan Yin
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Fanrong Liang
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| |
Collapse
|
24
|
Yang Z, Lin S, Liu Y, Song Z, Ge Z, Fan Y, Chen L, Bi Y, Zhao Z, Wang X, Wang Y, Mao J. Targeting intestinal microecology: potential intervention strategies of traditional Chinese medicine for managing hypertension. Front Pharmacol 2023; 14:1171119. [PMID: 37324472 PMCID: PMC10264781 DOI: 10.3389/fphar.2023.1171119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Hypertension has become one of the major public health problems in the world. At present, the pathogenesis of hypertension has still not been completely elucidated. In recent years, an increasing evidence shows that intestinal microecology is closely related to hypertension, which provides a new thinking for the prevention and treatment of hypertension. Traditional Chinese medicine (TCM) has unique advantages in the treatment of hypertension. Taking intestinal microecology as the target, it is possible to interpreting the scientific connotation of TCM prevention and treatment of hypertension by updating the treatment concept of hypertension, so as to improve the therapeutic effect. In our study, the clinical evidence for TCM treatment of hypertension was systematicly summarized. And the relationship among TCM, intestinal microecology and hypertension was analyzed. In addition, the methods by which TCM regulates intestinal microecology to prevent and treat hypertension were presented, to provide new research ideas for prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhao Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujian Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingfei Bi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhiqiang Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|