1
|
Rai V. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Proteomes 2024; 12:32. [PMID: 39585119 PMCID: PMC11587442 DOI: 10.3390/proteomes12040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) not only significantly increase morbidity and mortality but also cost a lot and drain healthcare resources. Persistent inflammation, decreased angiogenesis, and altered extracellular matrix remodeling contribute to delayed healing or non-healing. Recent studies suggest an increasing trend of DFUs in diabetes patients, and non-healing DFYs increase the incidence of amputation. Despite the current treatment with offloading, dressing, antibiotics use, and oxygen therapy, the risk of amputation persists. Thus, there is a need to understand the molecular and cellular factors regulating healing in DFUs. The ongoing research based on proteomics and transcriptomics has predicted multiple potential targets, but there is no definitive therapy to enhance healing in chronic DFUs. Increased or decreased expression of various proteins encoded by genes, whose expression transcriptionally and post-transcriptionally is regulated by transcription factors (TFs) and microRNAs (miRs), regulates DFU healing. For this study, RNA sequencing was conducted on 20 DFU samples of ulcer tissue and non-ulcerated nearby healthy tissues. The IPA analysis revealed various activated and inhibited transcription factors and microRNAs. Further network analysis revealed interactions between the TFs and miRs and the molecular targets of these TFs and miRs. The analysis revealed 30 differentially expressed transcription factors (21 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and seven miRs, including mir-486, mir-324, mir-23, mir-186, mir-210, mir-199, and mir-338 in upstream regulators (p < 0.05), while causal network analysis (p < 0.05) revealed 28 differentially expressed TFs (19 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and five miRs including mir-155, mir-486, mir-324, mir-210, and mir-1225. The protein-protein interaction analysis revealed the interaction of various novel proteins with the proteins involved in regulating DFU pathogenesis and healing. The results of this study highlight many activated and inhibited novel TFs and miRs not reported in the literature so far, as well as the targeted molecules. Since proteins are the functional units during biological processes, alteration of gene expression may result in different proteoforms and protein species, making the wound microenvironment a complex protein interaction (proteome complexity). Thus, investigating the effects of these TFs and miRs on protein expression using proteomics and combining these results with transcriptomics will help advance research on DFU healing and delineate potential therapeutic strategies.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
2
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Tang Y, Gu R, Rong J, Nie X. Bibliometric Analysis of ncRNA Studies in Diabetes Mellitus With Coronary Heart Disease: A Visualization Approach. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241276389. [PMID: 39371961 PMCID: PMC11456197 DOI: 10.1177/11795514241276389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Non-coding RNA (ncRNA) plays a role in the development of diabetes and coronary heart disease. However, there is limited research on the association between ncRNA and these conditions. This study aims to conduct a bibliometric analysis and visualization of existing research to provide a comprehensive reference for future investigation in this field. Methods We searched the China National Knowledge Infrastructure (CNKI) and Web of Science Core Collection (WoSCC) databases for articles published from 2012 to 2024. We analyzed publication volume, country of origin, authors, and keywords using Microsoft Office Excel, CiteSpace, and VOSviewer. Results A total of 414 papers from 56 countries/regions, involving 298 authors, were analyzed. China had the highest number of publications (177), followed by the USA (90) and Italy (28). The number of publications generally shows an increasing trend. Collaborative research efforts were prevalent, with Katare Rajesh being the most cited author on average. International Journal of Molecular Sciences emerged as the most prolific journal in this field, while the article "MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart" was identified as the most frequently cited. The analysis of keywords and literature indicates that current research predominantly focuses on the expression and mechanisms of ncRNA in disease, as well as its potential as a biomarker. Conclusion Research on ncRNA in the context of diabetes and coronary heart disease has made notable strides, although it warrants further exploration. Through bibliometric and visual analysis, we elucidate the collaborative relationships among researchers, which can facilitate the identification of potential collaborators. Additionally, we delineate the key areas and emergent trends in this field, providing valuable insights that can guide researchers in selecting future research directions.
Collapse
Affiliation(s)
- Yu’e Tang
- School of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Rifang Gu
- University Medical Office, Zunyi Medical University, Zunyi, China
| | - Jidong Rong
- Department of Cardiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuqiang Nie
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
- College of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Huang R, Chen J, Dong X, Zhang X, Luo W. Transcriptome Data Revealed the circRNA-miRNA-mRNA Regulatory Network during the Proliferation and Differentiation of Myoblasts in Shitou Goose. Animals (Basel) 2024; 14:576. [PMID: 38396545 PMCID: PMC10885906 DOI: 10.3390/ani14040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
CircRNA, a recently characterized non-coding RNA (ncRNA) variant, functions as a molecular sponge, exerting regulatory control by binding to microRNA (miRNA) and modulating the expression of downstream proteins, either promoting or inhibiting their expression. Among poultry species, geese hold significant importance, prized by consumers for their delectable taste and rich nutritional content. Despite the prominence of geese, research on the growth and development of goose muscle, particularly the regulatory role of circRNAs in goose muscle formation, remains insufficiently explored. In this study, we constructed comprehensive expression profiles of circRNAs and messenger RNAs (mRNAs) within the myoblasts and myotubes of Shitou geese. We identified a total of 96 differentially expressed circRNAs (DEcircRNAs) and 880 differentially expressed mRNAs (DEmRNAs). Notably, the parental genes of DEcircRNAs and DEmRNAs exhibited enrichment in the Wnt signaling pathway, highlighting its potential impact on the proliferation and differentiation of goose myoblasts. Employing RNAhybrid and miRDB, we identified circRNA-miRNA pairs and mRNA-miRNA pairs that may play a role in regulating myogenic differentiation or muscle growth. Subsequently, utilizing Cytoscape, we constructed a circRNA-miRNA-mRNA interaction network aimed at unraveling the intricate regulatory mechanisms involved in goose muscle growth and development, which comprises 93 circRNAs, 351 miRNAs, and 305 mRNAs. Moreover, the identification of 10 hub genes (ACTB, ACTN1, BDNF, PDGFRA, MYL1, EFNA5, MYSM1, THBS1, ITGA8, and ELN) potentially linked to myogenesis, along with the exploration of their circRNA-miRNA-hub gene regulatory axis, was also conducted. These competitive endogenous RNA (ceRNA) regulatory networks elucidate the molecular regulatory mechanisms associated with muscle growth in Shitou geese, providing deeper insights into the reciprocal regulation of circRNA, miRNA, and mRNA in the context of goose muscle formation.
Collapse
Affiliation(s)
- Rongqin Huang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiahui Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xu Dong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Wen Luo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (R.H.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Yao Q, He X, Wang J, Liu J, Zhang Q, Zhang J, Bo Y, Lu L. DLEU2/EZH2/GFI1 Axis Regulates the Proliferation and Apoptosis of Human Bone Marrow Mesenchymal Stem Cells. Crit Rev Eukaryot Gene Expr 2024; 34:61-71. [PMID: 38305289 DOI: 10.1615/critreveukaryotgeneexpr.2023050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) has become a vital regulator in the pathogenesis of osteoporosis (OP). This study aimed to investigate the role of lncRNA DLEU2 in the development of proliferation and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). High-throughput sequencing in bone tissues from 3 pairs of healthy donors and OP patients was used to search for differential lncRNAs. The expression of DLEU2 was also verified in bone tissues. The hBMSCs were transfected with DLEU2 ASO. Cell viability was detected suing MTT. Cell proliferation was determined using colony formation and EdU assays. Cell cycle and apoptosis was detected using flow cytometry. RIP, RNA pulldown, and Co-IP assays were carried out to verify the interaction between protein and protein/RNA. The binding sites between GFI1 and the promoter of DLEU2 was verified using ChIP and luciferase assays. DLEU2 expression was down-regulated in OP patients. Knockdown of DLEU2 expression significantly inhibited proliferation and promoted apoptosis of hBMSCs. Moreover, DLEU2 could interact with EZH2 to induce the activation of GFI1. Additionally, GFI1 transcriptionally activated DLEU2. Taken together, DLEU2/EZH2/GFI1 axis suppressed proliferation and enhanced hBMSC apoptosis. This may provide novel strategy for OP.
Collapse
Affiliation(s)
- Qing Yao
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Research Centre for Bone and Stem Cells, Nanjing Medical University, Nanjing 210000, China
| | - Jing Wang
- Department of Anatomy, Histology and Embryology, Research Centre for Bone and Stem Cells, Nanjing Medical University, Nanjing 210000, China
| | - Juan Liu
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Qing Zhang
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Jie Zhang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yawen Bo
- Department of Endocrinology and Metabolic Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Lin Lu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| |
Collapse
|
6
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
7
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
8
|
Yu L, Guo S, Ji W, Sun H, Lee S, Zhang D. Intervention Effects of Physical Activity on Type 2 Diabetic Patients Potentially Infected with COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1772. [PMID: 37893490 PMCID: PMC10608032 DOI: 10.3390/medicina59101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has clearly had a great influence on the lifestyles of the population, especially on patients with type 2 diabetes mellitus. During the COVID-19 outbreak, many countries/regions implemented social-isolation measures, leading to an increase in negative behaviors and impairing the capability of diabetic patients to resist COVID-19, ultimately causing severe prognoses. Moreover, as the epidemic progressed, multiple studies emphasized the significance of physical exercise in the management of type 2 diabetic patients infected with COVID-19. In this study, we selected research from 1 December 2019 to 9 August 2023 that focused on COVID-19-infected diabetic patients to investigate the impact of type 2 diabetes on the immune functions, inflammation factor levels, lung injuries, and mental disorders of such patients, as well as to assess the risk of novel coronavirus pneumonia in these patients. Additionally, the effects of high-intensity, moderate-intensity, and low-intensity exercises on novel coronavirus pneumonia infection in type 2 diabetic patients and the mechanisms of the effects of such exercise were considered. We concluded that elderly diabetic patients with COVID-19 should perform low-intensity exercises to facilitate their recoveries. This study offers guidance for a proper understanding of the dangers of diabetes and the use of appropriate measures to reduce the risk of novel coronavirus pneumonia infections in type 2 diabetic patients.
Collapse
Affiliation(s)
- Lihua Yu
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
- Institute of Public Foundations, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Sainyu Guo
- College of Arts and Sports, Myongji University, Seoul 04763, Republic of Korea
| | - Wen Ji
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
| | - Hailian Sun
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
| | - Seongno Lee
- College of Arts and Sports, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; (L.Y.)
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 0000, Hong Kong
| |
Collapse
|