1
|
Zheng J, Peng W, Shi H, Zhang J, Hu Q, Chen J. Emerging engineered nanozymes: current status and future perspectives in cancer treatments. NANOSCALE ADVANCES 2025:d4na00924j. [PMID: 39882506 PMCID: PMC11774201 DOI: 10.1039/d4na00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Composite nanozymes are composed of enzymes with similar or different catalytic capabilities and have higher catalytic activity than a single enzyme. In recent years, composite nanozymes have emerged as novel nanomaterial platforms for multiple applications in various research fields, where they are used to produce oxygen, consume glutathione, or produce toxic reactive oxygen species (ROS) for cancer therapy. The therapeutic approach using composite nanozymes is known as chemo-dynamic therapy (CDT). Some composite nanozymes also show special photothermal conversion effects, enabling them to be combined with pioneering cancer treatments, such as photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT), and enhance the anti-cancer effects. In this study, the classification and catalytic performances of composite nanozymes are reviewed, along with their advantages and synthesis methods. Furthermore, the applications of composite nanozymes in the treatment of cancers are emphasized, and the prospective challenges in the future are discussed.
Collapse
Affiliation(s)
- Jiajia Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou Zhejiang China
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Weili Peng
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Houhui Shi
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
- College of Pharmaceutical Science, Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jiaqi Zhang
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jun Chen
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College Hangzhou Zhejiang China
| |
Collapse
|
2
|
Purewal JS, Doshi GM. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur J Pharmacol 2024; 985:177083. [PMID: 39481628 DOI: 10.1016/j.ejphar.2024.177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterised by well-demarcated, red plaques covered in silver scales. It affects people of all ages and can be passed down through generations. Genetics play an important role in determining vulnerability to develop Pso. Several large-scale genome-wide association studies have identified over 80 genetic loci associated with Pso susceptibility. Gene expression can be regulated via RNA interference (RNAi). RNAi suppresses gene expression by degrading mRNA molecules. Since its discovery, RNAi has generated considerable excitement over its potential therapeutic benefits. RNAi is mediated by endogenous small RNA molecules like microRNA (miRNA) or exogenous small RNA molecules like small interfering RNA (siRNA), short hairpin RNA (shRNA), and artificial micro RNA (amiRNA). These small RNA molecules can silence a disease-related gene in a sequence-specific manner. Targeting RNAi pathways can help modify disease-related biological processes in various medical conditions, including autoimmune disorders. In Pso, RNAi can downregulate the expression of molecules involved in the pathophysiology of the disease. Significant progress has been made in the field of RNAi therapeutics. However, further research is needed to fine-tune the design and delivery of RNAi therapeutics in humans. In this review, we discuss various effectors of RNAi, some challenges related to RNAi therapeutics (emphasizing siRNA) and strategies to overcome these challenges. Furthermore, we have discussed some studies that employ RNAi therapeutics for Pso.
Collapse
|
3
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
4
|
Helal MW, Faried MM, Salah SM, Ashraf M, Nasser N, Shawky Y, Hamdy S, Amir AE, Nabil W, El-Husseini DM. Comparative Analysis of Aptamer-Conjugated Chemical and Green Synthesized Gold Nanoparticles for Targeted Therapy in MCF-7 Cancer Cells. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05091-2. [PMID: 39601974 DOI: 10.1007/s12010-024-05091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer remains a challenging health issue, demanding innovative treatment approaches that maximize efficacy while minimizing damage to healthy cells. Targeted therapy offers a promising strategy tailored to the unique characteristics of breast cancer tumors. Gold nanoparticles have been studied in the context of their therapeutic potential towards cancer treatment showing great success. Recently, aptamers were also investigated for their targeting efficiency towards specific receptors allowing their use in targeting delivery systems. In this study, computational analysis was used to confirm the strong binding between AS1411 aptamer and the nucleolin receptor extensively present on the surface of breast cancer cells, highlighting the aptamer's potential for specific targeting. Furthermore, we investigated and compared the use of AS1411 aptamer-conjugated chemically synthesized (GNPs) and flaxseed-green-synthesized (Fs-GNPs) gold nanoparticles as targeting therapeutic systems for breast cancer cells. Our results showed successful conjugation of the AS1411 aptamer with both, the GNPs and Fs-GNPs. Characterization of the nanoparticles and their conjugates validates their size, charge, and morphology, affirming the success of the conjugation process. Cytotoxicity assessments using the MTT assay demonstrated the effectiveness of the conjugates against breast cancer cells, with the AS1411-Fs-GNPs conjugate exhibiting higher inhibitory efficacy, featuring an IC50 value of 11.13 µg/ml. In contrast, they showed minimal effect on normal cells, emphasizing the selectivity and potential safety of these therapies. To our knowledge, this is the first report of conjugating AS1411 aptamer to green-synthesized gold nanoparticles and its use as a targeting therapeutic system.
Collapse
Affiliation(s)
- Mariam W Helal
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohanad M Faried
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Mazen Ashraf
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nada Nasser
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser Shawky
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara Hamdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza El Amir
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Wajeet Nabil
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Dalia M El-Husseini
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
5
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Yang S, Wang R, Liu M, Lv Y, Fu H, Cao X, Dong G. Dual-aptamer-decorated reduction-activated dimeric-prodrug nanoparticles for broad-spectrum treatment of leukemia. Biomed Pharmacother 2024; 180:117543. [PMID: 39405917 DOI: 10.1016/j.biopha.2024.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Leukemia remains a fatal disease for most affected patients, and a simple and effective therapeutic strategy is urgently needed. Targeted delivery chemo-drugs to leukemia cells shows promise, but the diverse subtypes of leukemia make single-ligand nanomedicine often ineffective. Herein, a dual-aptamer decorated, reduction-responsive dimeric prodrug-based nanoparticle (NP), termed SXP-NPs, was developed using the two leukemia-specific aptamers Sgc8c and XQ-2d, a reduction-responsive podophyllotoxin (POD) dimeric prodrug, and DSPE-PEG2000. Because the receptors of XQ-2d (CD71) and Sgc8c (PTK7) are overexpressed in different subtypes of leukemia cells, SXP-NPs can broadly and selectively recognize these leukemia cells after intravenous administration, subsequently releasing POD in response to the intracellular high-reduction environment to kill the leukemia cells. In vitro experiments showed that these simple SXP-NPs can specifically bind to various leukemia cancer cells and kill them. In vivo experiments revealed that SXP-NPs can remarkably reduce spleen weight, decrease white blood cell counts, and extend overall survival in a preclinical leukemia animal model. The in vitro and in vivo validation demonstrated that SXP-NPs offer several advantages, including high drug-loading potential, broad-spectrum recognition of leukemia cells, reduced systemic toxicity, and enhanced therapeutic effects of the drug. Taken together, this study provides a simple and effective strategy for broad-spectrum leukemia therapy and highlights the clinical potential of SXP-NPs.
Collapse
Affiliation(s)
- Shan Yang
- Department of Pharmacy, the General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA), Nanjing 210012, China
| | - Riming Wang
- Department of Pharmacy, the General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA), Nanjing 210012, China
| | - Mei Liu
- Department of Pharmacy, the Air Force Hospital from Eastern Theater of Chinese People's Liberation Army (PLA), Nanjing 210012, China
| | - Yanhong Lv
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Hong Fu
- Department of Pharmacy, the General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA), Nanjing 210012, China
| | - Xiaochen Cao
- Department of Pharmacy, the General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA), Nanjing 210012, China.
| | - Guogang Dong
- Department of Radiology, the General Hospital of Eastern Command of the Chinese People's Liberation Army (PLA), Nanjing 210012, China.
| |
Collapse
|
7
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
8
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Shahbazlou SV, Vandghanooni S, Dabirmanesh B, Eskandani M, Hasannia S. Recent advances in surface plasmon resonance for the detection of ovarian cancer biomarkers: a thorough review. Mikrochim Acta 2024; 191:659. [PMID: 39382786 DOI: 10.1007/s00604-024-06740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Early detection of ovarian cancer (OC) is crucial for effective management and treatment, as well as reducing mortality rates. However, the current diagnostic methods for OC are time-consuming and have low accuracy. Surface plasmon resonance (SPR) biosensors offer a promising alternative to conventional techniques, as they enable rapid and less invasive screening of various circulating indicators. These biosensors are widely used for biomolecular interaction analysis and detecting tumor markers, and they are currently being investigated as a rapid diagnostic tool for early-stage cancer detection. Our main focus is on the fundamental concepts and performance characteristics of SPR biosensors. We also discuss the latest advancements in SPR biosensors that enhance their sensitivity and enable high-throughput quantification of OC biomarkers, including CA125, HE4, CEA, and CA19-9. Finally, we address the future challenges that need to be overcome to advance SPR biosensors from research to clinical applications. The ultimate goal is to facilitate the translation of SPR biosensors into routine clinical practice for the early detection and management of OC.
Collapse
Affiliation(s)
- Shahnam Valizadeh Shahbazlou
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Lee ES, Cha BS, Jang YJ, Woo J, Kim S, Park SS, Oh SW, Park KS. Harnessing the potential of aptamers in cell-derived vesicles for targeting colorectal cancers at Pan-Dukes' stages. Int J Biol Macromol 2024; 280:135911. [PMID: 39317285 DOI: 10.1016/j.ijbiomac.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility. In this study, a novel method, termed colorectal cancer overall Dukes' staging Systematic Evolution of Ligands by Exponential enrichment (CROSS), was developed to identify Toggle Cell 1 (TC1) aptamers with high binding affinity to CRC cells at various Dukes' stages (A-D). Furthermore, a novel DDS was developed by incorporating a cholesterol-modified TC1 aptamer into CDV, which exhibited improved targeting ability and cellular uptake efficiency toward CRC cells compared to CDV alone. The results of this study highlight the potential efficacy of CDV in constructing a targeted DDS while overcoming the current challenges associated with other lipid-based DDS.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
12
|
Fang Z, Feng X, Tang F, Jiang H, Han S, Tao R, Lu C. Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach. BIOSENSORS 2024; 14:350. [PMID: 39056626 PMCID: PMC11274700 DOI: 10.3390/bios14070350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Aptamers are nucleic acid sequences that specifically bind with target molecules and are vital to applications such as biosensing, drug development, disease diagnostics, etc. The traditional selection procedure of aptamers is based on the Systematic Evolution of Ligands by an Exponential Enrichment (SELEX) process, which relies on repeating cycles of screening and amplification. With the rapid development of aptamer applications, RNA and XNA aptamers draw more attention than before. But their selection is troublesome due to the necessary reverse transcription and transcription process (RNA) or low efficiency and accuracy of enzymes for amplification (XNA). In light of this, we review the recent advances in aptamer selection methods and give an outlook on future development in a non-SELEX approach, which simplifies the procedure and reduces the experimental costs. We first provide an overview of the traditional SELEX methods mostly designed for screening DNA aptamers to introduce the common tools and methods. Then a section on the current screening methods for RNA and XNA is prepared to demonstrate the efforts put into screening these aptamers and the current difficulties. We further predict that the future trend of aptamer selection lies in non-SELEX methods that do not require nucleic acid amplification. We divide non-SELEX methods into an immobilized format and non-immobilized format and discuss how high-resolution partitioning methods could facilitate the further improvement of selection efficiency and accuracy.
Collapse
Affiliation(s)
- Zhihui Fang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.F.); (X.F.); (F.T.); (H.J.); (S.H.)
| | - Xiaorui Feng
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.F.); (X.F.); (F.T.); (H.J.); (S.H.)
| | - Fan Tang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.F.); (X.F.); (F.T.); (H.J.); (S.H.)
| | - Han Jiang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.F.); (X.F.); (F.T.); (H.J.); (S.H.)
| | - Shuyuan Han
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.F.); (X.F.); (F.T.); (H.J.); (S.H.)
| | - Ran Tao
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Z.F.); (X.F.); (F.T.); (H.J.); (S.H.)
| |
Collapse
|
13
|
Mohammadi A, Bagheri F, Abutalebi Y, Aghaei A, Danafar H. Platinum nanoparticles-embedded single-walled carbon nanotubes as a new carrier for curcumin delivery and investigating its anticancer effect on cell line 4T1. Heliyon 2024; 10:e33703. [PMID: 39027555 PMCID: PMC11255493 DOI: 10.1016/j.heliyon.2024.e33703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer, a prevalent disease across various societies, presents a significant challenge in treatment research. Studies show that combination therapies are one of the methods that can help in the effective treatment of cancer. Chemotherapy and radiation therapy are among the main cancer treatments and in this project, for combined chemoradiotherapy treatment, carbon nanotubes were used as improved carriers of chemotherapy in tumors, as well as a substrate for the preparation of radiation sensitizers for local radiation therapy. Following the synthesis of CNT-Platinum-Curcumin nanoparticles (CNT-Pt-CUR), a series of analyses were conducted to verify the successful production of these nanoparticles. Techniques such as Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) were employed. The characterization data revealed a spherical shape Pt nanoparticle morphology with an 8.5 nm diameter on rod-shape CNT, as observed through TEM. Furthermore, FTIR analysis confirmed the successful loaded of the drug into the nanoparticles, highlighting the potential of this approach in cancer treatment. Then, hemolysis and (3(-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests on normal cells were used to assess the biocompatibility of CNT-Pt-CUR nanoparticles. It also explored the anticancer efficacy of these nanoparticles at varying concentrations against cancer cells, both with and without exposure to X-rays. The research confirmed the successful synthesis of these nanoparticles and demonstrated their potential impact on cell viability. Specifically, breast cancer cells exhibited heightened susceptibility to toxicity when exposed to nanoparticles and X-rays. Further analysis revealed that the toxicity of nanoparticles is dose-dependent, and modifying the surface of carbon nanotube (CNT) nanoparticles with CUR significantly reduced blood toxicity. Interestingly, nanoparticle toxicity was significantly amplified in the presence of X-rays, suggesting mechanisms such as DNA damage and increased reactive oxygen species (ROS) levels within cells.
Collapse
Affiliation(s)
- Ali Mohammadi
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fariba Bagheri
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasamin Abutalebi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Afsoon Aghaei
- Department of Chemistry, University of Zanjan, Zanjan, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Bisht A, Bhowmik S, Patel P, Gupta GD, Kurmi BD. Aptamer as a targeted approach towards treatment of breast cancer. J Drug Target 2024; 32:510-528. [PMID: 38512151 DOI: 10.1080/1061186x.2024.2333866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aptamers, a novel type of targeted ligand used in drug delivery, have quickly gained popularity due to their high target specificity and affinity. Different aptamer-mediated drug delivery systems, such as aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalised nanoparticle systems, are currently being developed for the successful treatment of cancer based on the excellent properties of aptamers. These systems can decrease potential toxicity and enhance therapeutic efficacy by targeting the drug moiety. In this review, we provide an overview of recent developments in aptamer-mediated delivery systems for cancer therapy, specifically for breast cancer, and talk about the potential applications and current issues of novel aptamer-based techniques. This study in aptamer technology for breast cancer therapy highlights key aptamers targeting well-established biomarkers such as HER2, oestrogen receptor, and progesterone receptor. Additionally, we explore the potential of aptamers in overcoming various challenges such as drug resistance and improving the delivery of therapeutic agents. This review aims to provide a deeper understanding of the present aptamer-based targeted delivery applications through in-depth analysis to increase efficacy and create new therapeutic approaches that may ultimately lead to better treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
15
|
Woldekidan HB, Nxumalo Z, Takundwa MM, Woldesemayat AA, Thimiri Govinda Raj DB. Protocol for Testing the Effects of ssDNA Aptamer in HeLa and MCF-7. Methods Mol Biol 2024. [PMID: 38634995 DOI: 10.1007/7651_2024_539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Conventional approaches for treating tumors encompass chemotherapy, radiotherapy, and surgery. However, these methods come with their limitations when applied in clinical practice. Aptamers are often referred to as "chemical antibodies" and consist of short DNA or RNA molecules, designed to bind to a wide range of targets, including proteins or nucleic acid structures. They exhibit strong affinities and remarkable specificity for their target molecules, making them capable of functioning as therapeutic agents to directly impede tumor cell proliferation. This approach helps minimize the harm to normal cells, thus reducing toxicity through decreased side effects. Here we report the procedure to develop ssDNA aptamer and investigate its ability to inhibit cancer cell proliferation in HeLa and MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Haregewoin Bezu Woldekidan
- Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Zandile Nxumalo
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Mutsa M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Adugna Abdi Woldesemayat
- Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
16
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
17
|
Cunha PDS, de Miranda MC, de Melo MIA, Ferreira ADF, Barbosa JL, Oliveira JADC, Goes TDS, Gomes DA, de Goes AM. Selection of internalizing RNA aptamers into human breast cancer cells derived from primary sites. J Cell Biochem 2024; 125:e30540. [PMID: 38372191 DOI: 10.1002/jcb.30540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Breast cancer is the most common cancer in women. Although chemotherapy is still broadly used in its treatment, adverse effects remain a challenge. In this scenario, aptamers emerge as a promising alternative for theranostic applications. Studies using breast cancer cell lines provide useful information in laboratory and preclinical investigations, most of which use cell lines established from metastatic sites. However, these cell lines correspond to cell populations of the late stage of tumor progression. On the other hand, studies using breast cancer cells established from primary sites make it possible to search for new theranostic approaches in the early stages of the disease. Therefore, this work aimed to select RNA aptamers internalized by MGSO-3 cells, a human breast cancer cell line, derived from a primary site previously established in our laboratory. Using the Cell-Internalization SELEX method, we have selected two candidate aptamers (ApBC1 and ApBC2). We evaluated their internalization efficiencies, specificities, cellular localization by Reverse Transcription-qPCR (RT-qPCR) and confocal microscopy assays. The results suggest that both aptamers were efficiently internalized by human breast cancer cells, MACL-1, MDA-MB-231, and especially by MGSO-3 cells. Furthermore, both aptamers could effectively distinguish human breast cancer cells derived from normal human mammary cell (MCF 10A) and prostate cancer cell (PC3) lines. Therefore, ApBC1 and ApBC2 could be promising candidate molecules for theranostic applications, even in the early stages of tumor progression.
Collapse
Affiliation(s)
- Pricila da Silva Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joana Lobato Barbosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Tércio de Souza Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
18
|
Park SG, Lee HJ, Ji T, Kim K, Ohk SH. Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein. J Microbiol Biotechnol 2024; 34:289-295. [PMID: 38111313 PMCID: PMC10940744 DOI: 10.4014/jmb.2310.10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 μg/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.
Collapse
Affiliation(s)
- Suk-Gyun Park
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun Ju Lee
- Department of Cosmetic Science, Kwangju Women’s University, Gwangju 62396, Republic of Korea
| | - Taeksoo Ji
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyungbaek Kim
- School of Electronics and Computer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Ho Ohk
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
19
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
20
|
Venkatesan S, Chanda K, Balamurali MM. Recent Advancements of Aptamers in Cancer Therapy. ACS OMEGA 2023; 8:32231-32243. [PMID: 37720779 PMCID: PMC10500573 DOI: 10.1021/acsomega.3c04345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023]
Abstract
Aptamers are chemical antibodies possessing the capability of overcoming the limitations posed by conventional antibodies, particularly for diagnostic, therapeutic, and theranostic applications in cancer. The ease of chemical modifications or functionalization, including conjugations with nucleic acids, drug molecules, and nanoparticles, has made these aptamers to gain priorities in research. In this Mini-review, various reports on therapeutics with aptamer-functionalized nanomaterials for controlled or multistep drug release, targeted delivery, stimuli-responsive drug release, etc. are discussed. In the case of nucleic-acid-conjugated aptamers, DNA nanotrains and DNA beacons are discussed in terms of the possibility of multidrug loading for chemotherapy and gene therapy. Developments with electrochemical aptasensors and signal-enhanced immune aptasensors are also discussed. Further, the future scope of aptamer technology in cancer theranostics and the prevailing limitations are discussed.
Collapse
Affiliation(s)
- Swathi Venkatesan
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai, Tamil Nadu 600027, India
| | - Kaushik Chanda
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Musuvathi Motilal Balamurali
- Chemistry
Division, School of Advanced Sciences, Vellore
Institute of Technology, Chennai, Tamil Nadu 600027, India
| |
Collapse
|
21
|
Li J, Wang J, Ma D, Bai H. Highly sensitive and specific resonance Rayleigh scattering detection of esophageal cancer cells via dual-aptamer target binding strategy. Mikrochim Acta 2023; 190:248. [PMID: 37266700 DOI: 10.1007/s00604-023-05828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
The modification of EGFR aptamer (Apt 1) and HER2 aptamer (Apt 2) with gold nanoparticles (AuNPs) is reported to obtain probe I (Apt 1-AuNPs) and probe II (Apt 2-AuNPs). Taking Eca109, KYSE510, and KYSE150 cells as models, the sandwich scattering system of probe I-cell-probe II was formed by the recognition of tumor markers by the aptamer modified probe, and the resonance Rayleigh scattering (RRS) spectra were investigated. The results showed that the scattering system can be used to quantitatively detect the Eca109 cell lines in the range 5.0×10 to 5.0×105 cells·mL-1 with a detection limit of 15 cells· mL-1.The system can also detect the KYSE510 cell lines in a linear range of 5.0×10 to 5.0×105 cells·mL-1 with a detection limit of 18 cells·mL-1 and the KYSE150 cell lines in a linear range of 3.0×10 to 5.0×105 cells·mL-1 with a detection limit of 12 cells·mL-1. To demonstrate the potential application of the RRS method for real sample analysis, cells were spiked into blank serum samples at concentrations from 1.0×102 to 1.0×105 cells·mL-1. The recovery was between 97.0% and 102.3%, and the RSD was between 1.1% and 4.9%, confirming the feasibility of the proposed method for ESCC cell determination.
Collapse
Affiliation(s)
- Junbo Li
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China.
| | - Jinghua Wang
- Department of Traditional Chinese Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, ,046000, China
| | - Dandan Ma
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China
| | - Huiyun Bai
- Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, China
| |
Collapse
|
22
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Chavez-Galan L, Ruiz A, Ramón-Luing LA, Escamilla-Gutiérrez A, Sánchez-Monciváis A, Tecuatzi-Cadena B, Medina-Quero K, Córdova-Espinoza MG. The SEB1741 Aptamer Is an Efficient Tool for Blocking CD4+ T Cell Activation Induced by Staphylococcal Enterotoxin B. Molecules 2023; 28:3480. [PMID: 37110712 PMCID: PMC10142257 DOI: 10.3390/molecules28083480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Staphylococcal enterotoxin B (SEB) is a protein produced by Staphylococcus aureus, which is toxic to humans. It is well known for its ability to stimulate the exacerbated activation of proinflammatory CD4+ T cells (Th1 profile), and in vitro studies have been conducted to understand its mechanism of action and its potential use as an immune therapy. However, the efficiency of the SEB1741 aptamer in blocking SEB has not been experimentally demonstrated. METHODS Enrichment CD4+ T cells were stimulated with SEB, and as a blocker, we used the SEB1741 aptamer, which was previously synthesised by an "in silico" analysis, showing high affinity and specificity to SEB. The efficiency of the SEB1741 aptamer in blocking CD4+ T cell activation was compared with that of an anti-SEB monoclonal antibody. Flow cytometry and Bio-Plex were used to evaluate the T-cell function. RESULTS In vitro, SEB induced the activation of CD4+ T cells and favoured a Th1 profile; however, the SEB1741 aptamer was highly efficient in decreasing the frequency of CD4+ T cells positive to ki-67 and CD69 cells, this means that proliferation and activation of CD4+ T cells was decreased. Moreover, the production of interleukin 2 (IL-2) and interferon-gamma (IFN-γ) was affected, suggesting that the Th1 profile is not present when the SEB1441 aptamer is used. Thus, the SEB1741 function was similar to that of anti-SEB. CONCLUSIONS The SEB1741 aptamer is a valuable tool for blocking CD4+ T cell activation and the subsequent release of proinflammatory cytokines by SEB stimulation.
Collapse
Affiliation(s)
- Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Andy Ruiz
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Alejandro Escamilla-Gutiérrez
- Laboratory of Medical Bacteriology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
- Hospital General “Dr. Gaudencio González Garza”, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social IMSS, Mexico City 02990, Mexico
| | - Anahí Sánchez-Monciváis
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - Brenda Tecuatzi-Cadena
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - Karen Medina-Quero
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - María Guadalupe Córdova-Espinoza
- Laboratory of Medical Bacteriology, Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11350, Mexico
- Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| |
Collapse
|
24
|
Zhu Y, Yang D, Guo T, Lin M. Use of S2.2/DOX Magnetic Nanoliposomes in MR Molecule Imaging and Targeted Thermochemotherapy for Breast Cancer In Vitro. Technol Cancer Res Treat 2023; 22:15330338231194498. [PMID: 37563954 PMCID: PMC10422896 DOI: 10.1177/15330338231194498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE To prepare S2.2/DOX magnetic nanoliposomes by combining the potential benefits of MNPs in MRI and the targeted performance of nano-drugs as an innovative method for integrated diagnosis and treatment of breast cancer (BC). METHODS We created a S2.2-PEG-MZF/DOX molecular probe by using a lipid material to encapsulate PEG-MZF-NPs and doxorubicin (DOX), and a S2.2 aptamer to target MUC1 to conjugate with PEG-MZF/DOX nanoliposomes. The potential of probe for cell-specific targeting and magnetic resonance (MR) molecular imaging was evaluated by MR scanner and Prussian blue staining. Additionally, we explored the feasibility by using nanoliposome magnetic induction heating to interfere with MCF-7 (MUC1+) BC cells under the influence of an alternating magnetic field (AMF). RESULTS PEG-MZF-NPs were biologically safe. The T2 relaxation rate of PEG-MZF-NPs was found to inhibit T2 signal in a concentration-dependent manner, and the T2 signal of the S2.2-PEG-MZF molecular probe in MCF-7 cells was significantly lower than that in PEG-MZF-NPs group. Moreover, the T2 signal reduction was more pronounced in MCF-7 cells than in the hepatoma cell line HepG2 (MUC1-), suggesting a strong MRI potential of the S2.2-PEG-MZF molecular probe. The S2.2-PEG-MZF/DOX nanoliposome was able to achieve the desired temperature range for tumor hyperthermia (42-44 °C) in vitro. The S2.2-PEG-MZF/DOX nanoliposome accompanied by magnetic fluid hyperthermia (MFH) could inhibit proliferation and invasion and induce apoptosis of MCF-7 cells. The effects of this approach were significantly higher than those observed in the other groups. CONCLUSION We successfully developed a novel technique for BC diagnosis and treatment using thermochemotherapy under the guidance of MR molecular imaging. This approach holds great potential for improving the management of this devastating disease in the future.
Collapse
Affiliation(s)
- Yinxing Zhu
- Taizhou School of Clinical Medicine, Nanjing Medical University, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Dazhuang Yang
- Imaging Department, General Hospital of Xuzhou Mining Group, Xuzhou, Jiangsu, China
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|