1
|
He Q, Li X, Li H, Tan A, Chi Y, Fang D, Li X, Liu Z, Shang Q, Zhu Y, Cielecka-Piontek J, Chen J. TGR5 Activation by Dietary Bioactives and Related Improvement in Mitochondrial Function for Alleviating Diabetes and Associated Complications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6293-6314. [PMID: 40045496 DOI: 10.1021/acs.jafc.4c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1 (GPBAR1), is a cell surface receptor involved in key physiological processes, including glucose homeostasis and energy metabolism. Recent research has focused on the role of TGR5 activation in preventing or treating diabetes while also highlighting its potential impact on the progression of diabetic complications. Functional foods and edible plants have emerged as valuable sources of natural compounds that can activate TGR5, offering potential therapeutic benefits for diabetes management. Despite growing interest, studies on the activation of TGR5 by dietary bioactive compounds remain scattered. This Review aims to provide a comprehensive analysis of how dietary bioactives act as potential agents for TGR5 activation in managing diabetes and its complications. It explores the mechanisms of TGR5 activation through both direct agonistic effects and indirect pathways via modulation of the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Quanrun He
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Xinhang Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Haimeng Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Aditya Tan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yunlin Chi
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Daozheng Fang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Xinyue Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Zhihao Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Qixiang Shang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Yong Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland
| | - Jihang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| |
Collapse
|
2
|
Tian Y, Zhou Y, Liao W, Xia J, Hu Q, Zhao Q, Zhang R, Sun G, Yang L, Li L. Flaxseed powder supplementation in non-alcoholic fatty liver disease: a randomized controlled clinical trial. Food Funct 2025; 16:1389-1406. [PMID: 39878023 DOI: 10.1039/d4fo05847j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. Objectives: Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD. Methods: In this 12-week randomized controlled clinical trial, 50 patients were randomly assigned to the flaxseed group (n = 25) and the control group (n = 25). The flaxseed group received 30 g d-1 flaxseed powder orally before lunch or dinner along with health education, while the control group received only health education. The primary outcome was the intrahepatic lipid content assessed by the proton density fat fraction estimated by magnetic resonance imaging, and secondary outcomes were body composition measurements, liver function, and glucolipid metabolism. Results: Patients in the flaxseed group showed significantly lower liver fat content, body fat percentage, obesity index, visceral fat area, serum total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG) levels after a 12-week intervention compared to pre-intervention levels, while serum apolipoprotein A1 (Apo A1) and high-density lipoprotein cholesterol (HDL-C) levels were significantly increased, with all differences being statistically significant (P < 0.05). Analysis of the gut microbiota showed that, at the phylum level, flaxseed intervention significantly increased the abundance of Bacteroides and Actinobacteria, while decreasing the ratio of Firmicutes to Bacteroidetes. At the genus level, the relative abundance of Clostridium_sensu_stricto_1, Parasutterella, Lachnospiraceae_NK4A136_group, Eubacterium_xylanophilum_group, and Bifidobacterium in the gut microbiota of the flaxseed group was significantly higher than that of the control group (P < 0.05), whereas the relative abundance of Coriobacteriaceae_UCG-002 was significantly lower than that of the control group (P < 0.05). Conclusions: Flaxseed powder intervention for 12 weeks had the effect of improving liver lipid deposition, liver function, body composition indicators, and lipid metabolism in patients with NAFLD. It also regulated the gut microbiota in NAFLD patients, increasing the abundance of beneficial bacteria while reducing harmful bacteria. This suggested that flaxseed is one of the natural and effective foods for improving NAFLD.
Collapse
Affiliation(s)
- Yanyan Tian
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuhao Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Qiaosheng Hu
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Qing Zhao
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Rui Zhang
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihua Li
- Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| |
Collapse
|
3
|
Zhang Z, Guan G, Tang Z, Wan W, Huang Z, Wang Y, Wu J, Li B, Zhong M, Zhang K, Nong L, Gao Y, Cao H. Desmodium styracifolium (Osb.) Merr. Extracts alleviate cholestatic liver disease by FXR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118972. [PMID: 39454708 DOI: 10.1016/j.jep.2024.118972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver disease (CLD) is a disease characterized by cholestasis. Farnesoid X receptor (FXR) is a nuclear receptor that maintains homeostasis in bile acid metabolism. Studies have shown that gut microbiota interfered with the FXR pathway. Modulation of FXR to inhibit cholestasis has become a key measure in the treatment of CLD. In traditional folk medicine, Desmodium styracifolium (Osb.) Merr. was used as a primary treatment for gallstones, gonorrhea, jaundice, cholecystitis and other diseases. Modern pharmacological studies had also found that the herb has anti-calculus, anti-inflammatory, antioxidant, diuretic and liver damage. Therefore, we speculated that Desmodium styracifolium (Osb.) Merr. extracts (DME) could alleviate CLD through the FXR pathway and might be associated with the gut microbiota. However, studies of DME alleviating CLD through the FXR pathway have not been reported. AIM OF STUDY To study the effect and mechanism of DME in relieving CLD through in vivo and in vitro experiments. MATERIALS AND METHODS First, mice were administrated with alpha-naphthyl isothiocyanate (ANIT) to establish a CLD model in vivo. Meanwhile, HepG2 cells were induced by lithocholic acid (LCA) to establish the CLD model in vitro. To evaluate the therapeutic effect of DME on CLD mice, hematoxylin-eosin (HE) staining, and biochemical indicators were performed. The prototype of the blood components in mice serum was detected by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). 16S rDNA sequencing was used to analyze the gut microbiota. Finally, the protein and mRNA expression of the FXR pathway in mice liver tissues or HepG2 cells were detected by Western blot, qRT-PCR, or immunofluorescence. RESULTS Pathological testing and biochemical indexes showed that DME significantly reduced serum ALT, AST, ALP, TBIL, DBIL, TBA and liver TBA levels, and attenuated liver tissue injury, necrosis and jaundice in CLD mice. In addition, MetagenomeSeq analysis of gut microbiota showed that DME significantly up-regulated the abundance of Parvibacter, down-regulated the abundance of Paenalcaligenes, and regulated bile acid homeostasis. In terms of mRNA expression, DME significantly upregulated the mRNA levels of Nr1h4, Abcb11, Cyp7a1 and Slc10a1. Meanwhile, in terms of protein expression, DME significantly up-regulated the protein expression levels of FXR, BSEP, CYP7A1 and NTCP, which regulated bile acid homeostasis. Finally, the molecular docking results showed that the components of DME, such as Lumichrome, Daidzein and Folic acid, all had good binding ability with FXR, and the surface plasmon resonance (SPR) results also showed that both Lumichrome and Daidzein had a relatively high affinity with FXR. CONCLUSION DME alleviated CLD through the FXR pathway, and the mechanisms might be associated with the gut microbiota.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Guoqiang Guan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Zixuan Tang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Zhipeng Huang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yuefeng Wang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jianzhao Wu
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Bo Li
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Lixian Nong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, Guangxi, China; China Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
4
|
Manaer T, Sailike J, Sun X, Yeerjiang B, Nabi X. Therapeutic effects of composite probiotics derived from fermented camel milk on metabolic dysregulation and intestinal barrier integrity in type 2 diabetes rats. Front Pharmacol 2025; 15:1520158. [PMID: 39840100 PMCID: PMC11747018 DOI: 10.3389/fphar.2024.1520158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM). Methods T2DM was induced in Wistar rats using streptozotocin. Experimental groups included a diabetic control, Metformin, and low- and high-dose CPCM. Measurements over 6 weeks included body weight (BW), fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated hemoglobin (HbA1c), C-peptide (CP), lipid profiles, inflammatory markers, fecal short-chain fatty acids (SCFAs), and tight junction protein expression in colonic tissues. Results High-dose CPCM significantly increased BW by 22.2% (p < 0.05) and reduced FBG by 6.5 mmol/L (p < 0.001). The OGTT AUC decreased by 40.1% (p < 0.001), and HbA1c levels fell by 22.9% (p < 0.01). CP levels rose by 21.8% (p < 0.05). Lipid profiles improved: TC decreased by 40.0%, TG by 17.1%, and LDL-C by 30.4% (all p < 0.001). Fecal SCFAs, including acetate (75.4%, p < 0.001), methyl acetate (18.9%, p < 0.05), and butyrate (289.9%, p < 0.001), increased, with total SCFAs rising by 89.7% (p < 0.001). Inflammatory markers IL-1β (12.7%, p < 0.01), TNF-α (16.7%, p < 0.05), and IL-6 (17.3%, p < 0.01) were significantly reduced. Tight junction protein expression (ZO-1, occludin, claudin-1) and mucin (MUC2) in colonic tissues increased (p < 0.05). CPCM treatment also reduced serum total bile acids by 24.9%, while hepatic and fecal bile acids increased by 114.0% and 37.8% (all p < 0.001). CPCM lowered serum DAO, D-lactate, and LPS levels (all p < 0.001). mRNA levels of TGR5 and CYP7A1 in the liver, and TGR5 and FXR in the colon, were markedly elevated (all p < 0.001). Histological examinations revealed reduced pancreatic inflammation and hepatic steatosis, with restored colonic structure. Conclusion CPCM treatment significantly improved metabolic dysregulation in the T2DM rat model, reducing blood glucose and lipid levels, enhancing intestinal barrier function, and increasing insulin secretion. These findings highlight the therapeutic potential of CPCM in T2DM management and probiotics' role in metabolic health.
Collapse
Affiliation(s)
- Tabusi Manaer
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| | | | - Xin Sun
- Srational for Drug Control and Medical Device Varification of Xinjiang Military Command, Urumchi, China
| | - Baheban Yeerjiang
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| | - Xinhua Nabi
- School of Pharmacy, Xinjiang Medical University, Urumchi, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumchi, China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumchi, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumchi, China
| |
Collapse
|
5
|
Zheng K, Guo L, Cao Y, Yin Y, Gao H, Zhang X, Jiang J, Li J, Huang X, Li K, He S. High-concentrate diet decreases lamb fatty acid contents by regulating bile acid composition. Food Chem X 2024; 24:101871. [PMID: 39974716 PMCID: PMC11838137 DOI: 10.1016/j.fochx.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
Feeding sheep with high-concentrate diet (HCD) to shorten production cycle is a well-developed feeding strategy to increase lamb production. Here, metabolomics were performed to explore the mechanism that HCD changes lamb nutrition composition. Differential metabolites were enriched in primary bile acid biosynthesis. Significantly higher content of bile acids including taurodeoxycholic acid sodium salt (TDCA), taurochenodeoxycholic acid sodium salt (TCDCA) and taurocholic acid (TCA) was observed in lamb of HCD, while the content of lithocholic acid (LCA), cholic acid (CA), chenodeoxycholic acid (CDCA) and Chenodeoxycholic acid-3-beta-D-glucuronide (CDCA-3Gln) were higher in the controls. Furthermore, a significantly decreased content of fatty acids was observed in lamb of HCD group. Finally, primary skeletal cells treated with CA or TCA showed a significant decrease in contents of fatty acids, while TCA showed a stronger effect in decreasing fatty acid contents. Collectively, we suggest that HCD decreases lamb fatty acid contents by regulating bile acid composition.
Collapse
Affiliation(s)
- Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liangyong Guo
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Hui Gao
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Xiaowei Zhang
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinbing Li
- Shangyu District Animal Husbandry and Veterinary Technology Promotion Center, Shaoxing 312300, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kui Li
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Sangang He
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Li Y, Wang L, Yi Q, Luo L, Xiong Y. Regulation of bile acids and their receptor FXR in metabolic diseases. Front Nutr 2024; 11:1447878. [PMID: 39726876 PMCID: PMC11669848 DOI: 10.3389/fnut.2024.1447878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases. Bile acids can not only emulsify lipids in the intestine and promote lipid absorption, but also act as signaling molecules that play an indispensable role in regulating bile acid homeostasis, energy expenditure, glucose and lipid metabolism, immunity. Disorders of bile acid metabolism are therefore important risk factors for metabolic diseases. The farnesol X receptor, a member of the nuclear receptor family, is abundantly expressed in liver and intestinal tissues. Bile acids act as endogenous ligands for the farnesol X receptor, and erroneous FXR signaling triggered by bile acid dysregulation contributes to metabolic diseases, including obesity, non-alcoholic fatty liver disease and diabetes. Activation of FXR signaling can reduce lipogenesis and inhibit gluconeogenesis to alleviate metabolic diseases. It has been found that intestinal FXR can regulate hepatic FXR in an organ-wide manner. The crosstalk between intestinal FXR and hepatic FXR provides a new idea for the treatment of metabolic diseases. This review focuses on the relationship between bile acids and metabolic diseases and the current research progress to provide a theoretical basis for further research and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Jiang C, Shi Y, Shi X, Yan J, Xuan L, Zhuang L, Li J, Xu G, Zheng J. ELOVL5 and VLDLR synergistically affect n-3 PUFA deposition in eggs of different chicken breeds. Poult Sci 2024; 103:104016. [PMID: 39018654 PMCID: PMC11287006 DOI: 10.1016/j.psj.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
There was no significant difference in the composition and content of fatty acids in eggs among different breeds initially, but following the supplementation of flaxseed oil, Dwarf Layer were observed to deposit more n-3 polyunsaturated fatty acid (PUFA) in eggs. Currently, there is limited research on the mechanisms underlying the differences in egg composition among different breeds. Therefore, in this study, 150 twenty-four-wk-old hens of each breed, including the Dwarf Layer and White Leghorn, were fed either a basal diet or a diet supplemented with 2.5% flaxseed oil. After 28 d, eggs and liver samples were collected to determine fatty acid composition, and serum, liver, intestine, and follicles were collected for subsequent biochemical, intestinal morphology, and lipid metabolism-related genes expression analysis. Duodenal contents were collected for microbial analysis. The results showed that there was no significant difference in the content and deposition efficiency of total n-3 PUFA in the liver of the 2 breeds, but the content and deposition efficiency of total n-3 PUFA in the egg of Dwarf Layer were significantly higher than those of White Leghorn after feeding flaxseed oil. Flaxseed oil and breeds did not have significant effects on cholesterol (CHO), free fatty acids (NEFA), low-density lipoprotein (LDL), and estrogen (E2) levels. After feeding with flaxseed oil, the villus height and the villus-to-crypt ratio in both breeds were increased and duodenal crypt depth was decreased. The villus-to-crypt ratio (4.78 vs. 3.60) in the duodenum of Dwarf Layer was significantly higher than that in White Leghorn after feeding with flaxseed oil. Flaxseed oil can impact the gut microbiota in the duodenum and reduce the microbiota associated with fatty acid breakdown, such as Romboutsia, Subdolibranulum, Lachnochlostridium, and Clostridium. This may mean that less ALA can be decomposed and more ALA can be absorbed into the body. Additionally, after feeding flaxseed oil, the mRNA levels of elongation enzymes 5 (ELOVL5), fatty acid desaturase 1 (FADS1), and fatty acid transporter 1 (FATP1) in the liver of Dwarf Layer were significantly higher than those in White Leghorn, while the mRNA levels of peroxisome proliferator-activated receptor alpha (PPAR), carnitine palmitoyl transferase 1 (CPT1), Acyl CoA oxidase 1 (ACOX1), and Acyl-CoA synthetase (ACSL) were significantly lower than those in White Leghorn. The mRNA level of FABP1 in the duodenum of Dwarf Layer was significantly higher than that of White Leghorn, while the mRNA level of FATP1 was significantly lower than that of White Leghorn. The protein levels of ELOVL5 in the liver of Dwarf Layer and very low-density lipoprotein receptor (VLDLR) in the follicles were significantly higher than those of White Leghorn. In summary, after feeding flaxseed oil, the higher ratio of villus height to crypt depth in Dwarf Layer allows more α-linolenic acid (ALA) to be absorbed into the body. The higher mRNA expression of FADS1, ELOVL5, and FATP1, as well as the higher protein expression of ELOVL5 in the liver of Dwarf Layer enhance the conversion of ALA into DHA. The higher protein expression of VLDLR in follicles of Dwarf Layer allows more n-3 PUFA to deposit in the follicles. These combined factors contribute to the Dwarf Layer's ability to deposit higher levels of n-3 PUFA in eggs, as well as improving the deposition efficiency of n-3 PUFA.
Collapse
Affiliation(s)
- Caiyun Jiang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanhang Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jin Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Xuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longyu Zhuang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Li X, Li M. Unlocking Cholesterol Metabolism in Metabolic-Associated Steatotic Liver Disease: Molecular Targets and Natural Product Interventions. Pharmaceuticals (Basel) 2024; 17:1073. [PMID: 39204178 PMCID: PMC11358954 DOI: 10.3390/ph17081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome, represents a growing global health concern. The intricate pathogenesis of MASLD, driven by genetic, metabolic, epigenetic, and environmental factors, leads to considerable clinical variability. Dysregulation of hepatic lipid metabolism, particularly cholesterol homeostasis, is a critical factor in the progression of MASLD and its more severe form, metabolic dysfunction-associated steatohepatitis (MASH). This review elucidates the multifaceted roles of cholesterol metabolism in MASLD, focusing on its absorption, transportation, biosynthesis, efflux, and conversion. We highlight recent advancements in understanding these processes and explore the therapeutic potential of natural products such as curcumin, berberine, and resveratrol in modulating cholesterol metabolism. By targeting key molecular pathways, these natural products offer promising strategies for MASLD management. Finally, this review also covers the clinical studies of natural products in MASLD, providing new insights for future research and clinical applications.
Collapse
Affiliation(s)
| | - Meng Li
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China;
| |
Collapse
|
9
|
Wang J, Zang J, Yu Y, Liu Y, Cao H, Guo R, Zhang L, Liu M, Zhang Z, Li X, Kong L. Lingguizhugan oral solution alleviates MASLD by regulating bile acids metabolism and the gut microbiota through activating FXR/TGR5 signaling pathways. Front Pharmacol 2024; 15:1426049. [PMID: 39211777 PMCID: PMC11358101 DOI: 10.3389/fphar.2024.1426049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The preservation of the Lingguizhugan (LGZG) decoction and patient compliance issue often limit the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Hence, herein, an LGZG oral solution was developed for alleviating MASLD. Additionally, the potential mechanisms underlying LGZG-mediated MASLD mitigation were explored. Methods A MASLD mouse model was constructed using oleic and palmitic acid-induced LO2 cells and a high-fat diet. The apoptosis, lipid deposition, and mouse liver function were analyzed to assess the therapeutic effects of the LGZG oral solution on MASLD. Serum untargeted metabolomics, gut microbiota, bile acid (BA) metabolism, immunohistochemistry, and Western blotting analyses were performed to investigate the potential mechanism of action of LGZG oral solution on MASLD. Results The LGZG oral solution ameliorated lipid deposition, oxidative stress, inflammation, and pathological damage. Serum untargeted metabolomics results revealed the LGZG-mediated regulation of the primary BA biosynthetic pathway. The 16S ribosomal RNA sequencing of the fecal microbiota showed that LGZG oral solution increased the relative abundance of the BA metabolism-associated Bacteroides, Akkermansia, and decreased that of Lactobacillus. Additionally, the BA metabolism analysis results revealed a decrease in the total taurine-α/β-muricholic acid levels, whereas those of deoxycholic acid were increased, which activated specific receptors in the liver and ileum, including farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 (TGR5). Activation of FXR resulted in an increase in short heterodimer partner and subsequent inhibition of cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, and activation of FXR also results in the upregulation of fibroblast growth factor 15/19 expression, and consequently inhibition of cholesterol 7α-hydroxylase, which correlated with hepatic BA synthesis and lipogenesis, ultimately attenuating lipid deposition and bile acid stasis, thereby improving MASLD. Conclusion Altogether, the findings of this study suggest that modulating microbiota-BA-FXR/TGR5 signaling pathway may be a potential mechanism of action of LGZG oral solution for the treatment of MASLD.
Collapse
Affiliation(s)
- Jiahua Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Juan Zang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yang Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Yang Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Huimin Cao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ruibo Guo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mo Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zixu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xuetao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
10
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
11
|
Weerawatanakorn M, Kamchonemenukool S, Koh YC, Pan MH. Exploring Phytochemical Mechanisms in the Prevention of Cholesterol Dysregulation: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6833-6849. [PMID: 38517334 PMCID: PMC11018292 DOI: 10.1021/acs.jafc.3c09924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Although cholesterol plays a key role in many physiological processes, its dysregulation can lead to several metabolic diseases. Statins are a group of drugs widely used to lower cholesterol levels and cardiovascular risk but may lead to several side effects in some patients. Therefore, the development of a plant-based therapeutic adjuvant with cholesterol-lowering activity is desirable. The maintenance of cholesterol homeostasis encompasses multiple steps, including biosynthesis and metabolism, uptake and transport, and bile acid metabolism; issues arising in any of these processes could contribute to the etiology of cholesterol-related diseases. An increasing body of evidence strongly indicates the benefits of phytochemicals for cholesterol regulation; traditional Chinese medicines prove beneficial in some disease models, although more scientific investigations are needed to confirm their effectiveness. One of the main functions of cholesterol is bile acid biosynthesis, where most bile acids are recycled back to the liver. The composition of bile acid is partly modulated by gut microbes and could be harmful to the liver. In this regard, the reshaping effect of phytochemicals on gut microbiota has been widely reported in the literature for its significance. Therefore, we reviewed studies conducted over the past 5 years elucidating the regulatory effects of phytochemicals or herbal medicines on cholesterol metabolism. In addition, their effects on the recomposition of gut microbiota and bile acid metabolism due to modulation are discussed. This review aims to provide novel insights into the treatment of cholesterol dysregulation and the anticipated development of natural-based compounds in the near and far future.
Collapse
Affiliation(s)
- Monthana Weerawatanakorn
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok 65000, Thailand
- Centre
of Excellence in Fats and Oils, Naresuan
University Science Park, 99 M 9, Thapho, Muang, Phitsanulok 65000, Thailand
| | - Sudthida Kamchonemenukool
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok 65000, Thailand
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40447, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 41354, Taiwan
| |
Collapse
|