1
|
De Oliveira Campos A, Harrison MD, Marshall DL, Strong PJ. Distributions of Lanostene-Derived Triterpenoids and Glucan Content in the Fruiting Bodies of the Australian Ganoderma Species. J Fungi (Basel) 2024; 10:723. [PMID: 39452675 PMCID: PMC11509325 DOI: 10.3390/jof10100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Lanostene-derived triterpenoids and β-glucans are important metabolites in Ganoderma mushrooms associated with benefits to human health. The medicinal value of the Australian Ganoderma species remains unclear, with no data on triterpenoid distribution or glucan content. In the present study, 22 Australian Ganoderma specimens were analyzed for triterpenoid and glucan contents. Thirty-two triterpenoids were identified in the fruiting bodies of 19 of the specimens. Distinct patterns in triterpenoid distribution between laccate and matte fruiting bodies were observed, leading to the classification of four groups of Ganoderma. Most of the glucans in the Ganoderma fruiting bodies were β-glucans (~99%), with a nominal α-glucan content (~1%). The β-glucan content ranged from 19.5 to 43.5% (w/w). A range of antioxidant activities was observed for methanol extracts using the ABTS (1.8 to 8.4 mg GAE.g-1), DPPH (1.7 to 9.4 mg GAE/g-1) and FRAP (24.7 to 111.6 mmol FeSO4.g-1) assays, with four specimens presenting relatively high radical scavenging and reducing activities. For the first time, we demonstrated that Australian Ganoderma mushrooms contain medicinal triterpenoids, including ganoderic acid A, and we established a link between its distribution and the fruiting body morphology. However, further research is required to isolate diploid clones and determine factors that impact triterpenoid and glucan synthesis in these strains.
Collapse
Affiliation(s)
- Aline De Oliveira Campos
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Mark D. Harrison
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - David L. Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4000, Australia;
| | - Peter James Strong
- Center for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia; (A.D.O.C.); (M.D.H.)
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
2
|
Șerban AM, Nacu I, Rosca I, Ghilan A, Rusu AG, Niță LE, Darie-Niță RN, Chiriac AP. Preparation and Characterization of Polymeric Microparticles Based on Poly(ethylene brassylate-co-squaric Acid) Loaded with Norfloxacin. Pharmaceutics 2024; 16:550. [PMID: 38675211 PMCID: PMC11053867 DOI: 10.3390/pharmaceutics16040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, increasing interest has been accorded to polyester-based polymer microstructures, driven by their promising potential as advanced drug delivery systems. This study presents the preparation and characterization of new polymeric microparticles based on poly(ethylene brassylate-co-squaric acid) loaded with norfloxacin, a broad-spectrum antibiotic. Polymacrolactone was synthesised in mild conditions through the emulsion polymerization of bio-based and renewable monomers, ethylene brassylate, and squaric acid. The microparticles were obtained using the precipitation technique and subsequently subjected to comprehensive characterization. The impact of the copolymer/drug ratio on various properties of the new system was systematically evaluated, confirming the structure of the copolymer and the encapsulation of norfloxacin. The microspheres are approximately spherical and predominantly homogeneously distributed. The average hydrodynamic diameter of the microparticles falls between 400 and 2000 nm, a decrease that is observed with the increase in norfloxacin content. All samples showed good encapsulation efficiency and drug loading capacity, with the highest values obtained for microparticles synthesised using an equal ratio of copolymer and drug. In vitro drug release results disclose that norfloxacin molecules are released in a sustained biphasic manner for up to 24 h. Antimicrobial activity was also studied, with samples showing very good activity against E. coli and moderate activity against S. aureus and E. faecalis. In addition, HDFA human fibroblast cell cultures demonstrated the cytocompatibility of the microparticles.
Collapse
Affiliation(s)
- Alexandru-Mihail Șerban
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Isabella Nacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Irina Rosca
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Gabriela Rusu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Loredana Elena Niță
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Aurica P Chiriac
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
3
|
Liu W, Zhang T, Hu Z, Li X, Wang F, Peng R. Metabolomics study of graphene nuangong acupoint plaster for primary dysmenorrhea. Heliyon 2024; 10:e25268. [PMID: 38327403 PMCID: PMC10847914 DOI: 10.1016/j.heliyon.2024.e25268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Primary dysmenorrhea is a common gynecological disease with typical clinical symptoms and diverse treatment methods. Acupoint patch therapy is one of the traditional external treatments of traditional Chinese medicine, with a long history, and has been widely used in the treatment of many diseases in China. Graphene nuangong acupoint plaster (GNGAP) developed based on traditional acupoints and new materials have been used in the clinical treatment of primary dysmenorrhea, and satisfactory therapeutic effects have been achieved. However, the underlying mechanisms of GNGAP still need further investigation. In this study, we used estradiol benzoate combined with oxytocin intraperitoneally to establish dysmenorrhea model rats, and observed the torsion response, uterine organ coefficients, prostaglandin levels and metabolite changes of rats with dysmenorrhea model after the intervention of GNGAP, to elucidate the mechanism of the effect of GNGAP. Compared with normal rats, the dysmenorrhea model rats exhibited increased writhing response and latency time, increased uterine organ coefficient, and significant changes in 79 metabolites. Twenty-three significantly enriched pathways were discovered, including amino acid metabolism, arachidonic acid metabolism, pyrimidine metabolism, and ovarian steroidogenesis, which may be involved in the pathogenesis of primary dysmenorrhea. Compared with the model group, the torsion response, latency time and uterine organ coefficient of rats in the acupoint patch group were significantly improved, and nine uterine metabolites were significantly altered, among which metabolites such as 4-pyridoxic acid, d-glucarate and Phenol were identified as potential biomarkers for the therapeutic effects of GNGAP. Vitamin B6 metabolism, Ascorbate and aldarate metabolism and Tyrosine metabolism were enriched in nine metabolic pathways. These findings contribute to the screening study of potential pathological metabolic pathways in primary dysmenorrhea. Additionally, they reveal the biological effects of GNGAP in the treatment of primary dysmenorrhea at the metabolite level.
Collapse
Affiliation(s)
- Wu Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ting Zhang
- Department of Rehabilitation Medicine at Jingzhou Central Hospital, Jingzhou, 434020, China
| | - Zhaoduan Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xin Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fuchun Wang
- Department of Acupuncture, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Rui Peng
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| |
Collapse
|
4
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|