1
|
Dabrowski W, Pfortmueller CA, Kotfis K, Jaroszynski A, Gagos M, Plotek W, Malbrain MLNG. Is there a place for natural agents with anti-inflammatory and antioxidative properties in critically ill patients? Potential usefulness of Xanthohumol. Pharmacol Ther 2024; 266:108766. [PMID: 39637948 DOI: 10.1016/j.pharmthera.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Multi-organ dysfunction is a major issue in critically ill patients, where a significant inflammatory response appears to be the primary factor driving the degree of organ impairment, which correlates with the extent of organ injury. The management of inflammation requires a multidisciplinary approach, including antibiotics for infection control, circulatory and respiratory support, and correction of coagulation abnormalities. However, the use of anti-inflammatory treatments is typically restricted to a selected group of medications, with their effectiveness remaining the subject of extensive debate. Xanthohumol (Xn), a natural compound extracted from hops, possesses strong anti-inflammatory and antioxidative properties, with a mild anti-coagulation effect. Its biological activity is related to the inhibition of different inflammatory pathways, reduction in cytokine production and secretion, and an increase in antioxidative enzyme activity. This review examined the potential use of Xn as an adjuvant in the treatment of various pathologies in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland.
| | | | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Care and Pain Management, Pomeranian Medical University of Szczecin, Poland
| | | | - Mariusz Gagos
- Department of Cell Biology, Maria Curie-Sklodowska University of Lublin, Poland
| | - Wlodzimierz Plotek
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland
| | - Manu L N G Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Poland; Medical Data Management, Medaman, Geel, Belgium; International Fluid Academy, Lovenjoel, Belgium
| |
Collapse
|
2
|
Zhong YH, Wu XW, Zhang XY, Zhang SW, Feng Y, Zhang XM, Xu BB, Zhong GY, Huang HL, He JW, Zeng JX, Liang J. Intestinal microbiota-mediated serum pharmacochemistry reveals hepatoprotective metabolites of Platycodonis Radix against APAP-induced liver injury. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1251:124395. [PMID: 39644824 DOI: 10.1016/j.jchromb.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The urgent need for new medications that regulate CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB activities is paramount for the treatment of drug-induced liver injury (DILI), particularly from acetaminophen (APAP). Previous studies have suggested that platycosides of Platycodonis Radix exhibits hepatoprotective properties against APAP-induced liver injury (AILI), and their serum metabolites may be the effective agents. As the identify the serum metabolites of platycosides is a huge challenge, the mechanism whether platycosides exert effects through the serum metabolites regulating those targets still remain unclear. In this study, we propose a novel method termed intestinal microbiota-mediated serum pharmacochemistry (IMSP) to identify the serum metabolite profile of platycosides, using deglycosylated platycosides as template molecules. Our results identified a total of 44 prototype platycosides in the total platycosides fraction of Platycodonis Radix (PF). In rat serum, we identified 12 prototype platycosides and 45 metabolites derived from the 44 platycosides. Furthermore, our findings indicate that all 44 platycosides can enter the serum in the form of metabolites. The presence of these metabolites in serum is closely related to their oral bioavailability and the content of the prototypes. The in vivo animal experiments showed that the PF possessed significant anti-AILI effects and CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65 regulation activities. And the in vitro cell experiments and molecular docking analyses further demonstrated that the hepatoprotective effects were mainly ascribed to the serum metabolites, which regulating targets of CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65. Additionally, the activities of these metabolites are closely associated with their structures. In summary, the IMSP method significantly enhances the ability to identify platycoside metabolites in serum, reveals that all platycosides may contribute to anti-AILI activity through their metabolites, PF and some of these metabolites are promising candidate compounds for developing new medications with anti-AILI effects for the first time.
Collapse
Affiliation(s)
- Yuan-Han Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xi-Wa Wu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xin-Yu Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shou-Wen Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yan Feng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xue-Mei Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bing-Bing Xu
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330046, China
| | - Guo-Yue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hui-Liang Huang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jin-Xiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
3
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
4
|
Stompor-Gorący M, Włoch A, Sengupta P, Nasulewicz-Goldeman A, Wietrzyk J. Synergistic Proliferation Effects of Xanthohumol and Niflumic Acid on Merkel and Glioblastoma Cancer Cells: Role of Cell Membrane Interactions. Int J Mol Sci 2024; 25:11015. [PMID: 39456799 PMCID: PMC11508127 DOI: 10.3390/ijms252011015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The objective of our research was to determine the effects of xanthohumol (XN), a flavonoid isolated from hops (Humulus lupulus), and the anti-inflammatory drug niflumic acid (NA), separately and in combination with each other, on the proliferation of human cancer cells. Additionally, so as to understand the mechanism underlying the anticancer properties of the tested compounds, their effects on the biophysical parameters of a model membrane were assessed. The cells were incubated with XN and NA at various concentrations, either individually or in combination with each other. Cell proliferation was quantified using the sulforodamine B (SRB) assay. In addition, the IC50 values for niflumic acid and xanthohumol applied separately were determined by cell proliferation tests for the following human cancer cell lines: 5637 (urinary bladder carcinoma), A-431 (epidermoid carcinoma), UM-SCC-17A (head and neck squamous carcinoma), SK-MEL-3 (melanoma), MCC13 (Merkel cell cancer), and A172 (glioblastoma), in comparison with the mouse normal fibroblasts (BALB/3T3 clone A31). The results show that the two-compound combinations of XN and NA significantly decreased the proliferation of cancer cells in a dose-dependent manner, and the effects were stronger than the additive responses to XN and NA individually. The membrane studies revealed a synergistic effect on the membrane rigidity when using the mixture of XN and NA, which may explain the observed increase in anticancer activity for the combined XN and NA. Our results suggest that NSAIDs, such as niflumic acid, may be a promising strategy for co-application with xanthohumol as anticancer drugs.
Collapse
Affiliation(s)
- Monika Stompor-Gorący
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.W.); (P.S.)
| | - Priti Sengupta
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (A.W.); (P.S.)
| | - Anna Nasulewicz-Goldeman
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; (A.N.-G.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; (A.N.-G.); (J.W.)
| |
Collapse
|
5
|
Liu YY, Zhang Y, Shan GY, Cheng JY, Wan H, Zhang YX, Li HJ. Hinokiflavone exerts dual regulation on apoptosis and pyroptosis via the SIX4/Stat3/Akt pathway to alleviate APAP-induced liver injury. Life Sci 2024; 354:122968. [PMID: 39147316 DOI: 10.1016/j.lfs.2024.122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Hinokiflavone (HF), classified as a flavonoid, is a main bioactive compound in Platycladus orientalis and Selaginella. HF exhibits activities including anti-HIV, anti-inflammatory, antiviral, antioxidant and anti-tumor effects. The study aimed to explore the function and the mechanisms of HF on acetaminophen (APAP)-induced acute liver injury. Results indicated that HF treatment mitigated the impact of APAP on viability and restored levels of MDA, GSH and SOD on HepG2 cells. The accumulation of reactive oxygen species (ROS) mitochondrial membrane potential (MMP) in HepG2 cells stimulated by APAP were also blocked by HF. HF reduced the levels of pro-apoptotic and pro-pyroptotic proteins. Flow cytometry analysis and fluorescence staining results were consistent with western blot analysis. Following HF treatment in the APAP-induced cell model, there was observed an augmentation in the phosphorylation of Stat3 and an increase in the expression of SIX4. However, not only silenced the SIX4 protein in HepG2 cells by siRNA, but also adding the Stat3 inhibitor (Stattic), attenuated the anti-apoptotic and anti-pyroptotic effects of HF significantly. Furthermore, HF alleviated liver damage in C57BL/6 mice model. Overall, our study demonstrated that HF mitigates apoptosis and pyroptosis induced by APAP in drug-induced liver injury (DILI) through the SIX4/Akt/Stat3 pathway in vivo and in vitro. HF may have promising potential for for the treatment of DILI.
Collapse
Affiliation(s)
- Yi-Ying Liu
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China; Department of Biopharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China
| | - Yang Zhang
- Department of Biopharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China
| | - Guan-Yue Shan
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Jun-Ya Cheng
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China; Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province, 130021, China
| | - Hui Wan
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Yu-Xin Zhang
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Hai-Jun Li
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China.
| |
Collapse
|
6
|
Park SY, Kim MW, Kang JH, Hwang JH, Choi H, Park J, Seong JK, Yoon YS, Oh SH. Loss of Ninjurin1 alleviates acetaminophen-induced liver injury via enhancing AMPKα-NRF2 pathway. Life Sci 2024; 350:122782. [PMID: 38848941 DOI: 10.1016/j.lfs.2024.122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Acetaminophen (APAP), a widely used pain and fever reliever, is a major contributor to drug-induced liver injury, as its toxic metabolites such as NAPQI induce oxidative stress and hepatic necrosis. While N-acetylcysteine serves as the primary treatment for APAP-induced liver injury (AILI), its efficacy is confined to a narrow window of 8-24 h post-APAP overdose. Beyond this window, liver transplantation emerges as the final recourse, prompting ongoing research to pinpoint novel therapeutic targets aimed at enhancing AILI treatment outcomes. Nerve injury-induced protein 1 (Ninjurin1; Ninj1), initially recognized as an adhesion molecule, has been implicated in liver damage stemming from factors like TNFα and ischemia-reperfusion. Nonetheless, its role in oxidative stress-related liver diseases, including AILI, remains unexplored. In this study, we observed up-regulation of Ninj1 expression in the livers of both human DILI patients and the AILI mouse model. Through the utilization of Ninj1 null mice, hepatocyte-specific Ninj1 KO mice, and myeloid-specific Ninj1 KO mice, we unveiled that the loss of Ninj1 in hepatocytes, rather than myeloid cells, exerts alleviative effects on AILI irrespective of sex dependency. Further in vitro experiments demonstrated that Ninj1 deficiency shields hepatocytes from APAP-induced oxidative stress, mitochondrial dysfunctions, and cell death by bolstering NRF2 stability via activation of AMPKα. In summary, our findings imply that Ninj1 likely plays a role in AILI, and its deficiency confers protection against APAP-induced hepatotoxicity through the AMPKα-NRF2 pathway.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Hoon Choi
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Jiwon Park
- College of Pharmacy, Gachon University, Incheon 21963, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Sung Yoon
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Oh
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Zhang Q, Guo J, Shi C, Zhang D, Wang Y, Wang L, Gong Z. The SIRT2-AMPK axis regulates autophagy induced by acute liver failure. Sci Rep 2024; 14:16278. [PMID: 39009648 PMCID: PMC11251177 DOI: 10.1038/s41598-024-67102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
This study explores the role of SIRT2 in regulating autophagy and its interaction with AMPK in the context of acute liver failure (ALF). This study investigated the effects of SIRT2 and AMPK on autophagy in ALF mice and TAA-induced AML12 cells. The results revealed that the liver tissue in ALF model group had a lot of inflammatory cell infiltration and hepatocytes necrosis, which were reduced by SIRT2 inhibitor AGK2. In comparison to normal group, the level of SIRT2, P62, MDA, TOS in TAA group were significantly increased, which were decreased in AGK2 treatment. Compared with normal group, the expression of P-PRKAA1, Becilin1 and LC3B-II was decreased in TAA group. However, AGK2 enhanced the expression of P-PRKAA1, Becilin1 and LC3B-II in model group. Overexpression of SIRT2 in AML12 cell resulted in decreased P-PRKAA1, Becilin1 and LC3B-II level, enhanced the level of SIRT2, P62, MDA, TOS. Overexpression of PRKAA1 in AML12 cell resulted in decreased SIRT2, TOS and MDA level and triggered more autophagy. In conclusion, the data suggested the link between AMPK and SIRT2, and reveals the important role of AMPK and SIRT2 in autophagy on acute liver failure.
Collapse
Affiliation(s)
- Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Deng Y, Chu X, Li Q, Zhu G, Hu J, Sun J, Zeng H, Huang J, Ge G. Xanthohumol ameliorates drug-induced hepatic ferroptosis via activating Nrf2/xCT/GPX4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155458. [PMID: 38394733 DOI: 10.1016/j.phymed.2024.155458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND As a canonical iron-dependent form of regulated cell death (RCD), ferroptosis plays a crucial role in chemical-induced liver injuries. Previous studies have demonstrated that xanthohumol (Xh), a natural prenylflavonoid isolated from hops, exhibits anti-inflammatory, anti-antioxidative and hepatoprotective properties. However, the regulatory effects of Xh on hepatic ferroptosis and the underlying mechanism have not yet been fully elucidated. PURPOSE To investigate the hepatoprotective effects of Xh against drug-induced liver injury (DILI) and the regulatory effects of Xh on hepatic ferroptosis, as well as to reveal the underlying molecular mechanisms. METHODS/STUDY DESIGN The hepatoprotective benefits of Xh were investigated in APAP-induced liver injury (AILI) mice and HepaRG cells. Xh was administered intraperitoneally to assess its in vivo effects. Histological and biochemical studies were carried out to evaluate liver damage. A series of ferroptosis-related markers, including intracellular Fe2+ levels, ROS and GSH levels, the levels of MDA, LPO and 4-HNE, as well as the expression levels of ferroptosis-related proteins and modulators were quantified both in vivo and in vitro. The modified peptides of Keap1 by Xh were characterized utilizing nano LC-MS/MS. RESULTS Xh remarkably suppresses hepatic ferroptosis and ameliorates AILI both in vitro and in vivo, via suppressing Fe2+ accumulation, ROS formation, MDA generation and GSH depletion, these observations could be considerably mitigated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, Xh could significantly activate the Nrf2/xCT/GPX4 signaling pathway to counteract AILI-induced hepatocyte ferroptosis. Further investigations showed that Xh could covalently modify three functional cysteine residues (cys151, 273, 288) of Keap1, which in turn, reduced the ubiquitination rates of Nrf2 and prolonged its degradation half-life. CONCLUSIONS Xh evidently suppresses hepatic ferroptosis and ameliorates AILI via covalent modifying three key cysteines of Keap1 and activating Nrf2/xCT/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Yanyan Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Xiayan Chu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Qian Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China
| | - Jing Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Jianming Sun
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Hairong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China.
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine. Shanghai 201203, China.
| |
Collapse
|
9
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
10
|
Percaccio E, De Angelis M, Acquaviva A, Nicotra G, Ferrante C, Mazzanti G, Di Giacomo S, Nencioni L, Di Sotto A. ECHOPvir: A Mixture of Echinacea and Hop Extracts Endowed with Cytoprotective, Immunomodulatory and Antiviral Properties. Nutrients 2023; 15:4380. [PMID: 37892456 PMCID: PMC10609862 DOI: 10.3390/nu15204380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections continue to pose significant challenges, particularly for more susceptible and immunocompromised individuals. Nutraceutical strategies have been proposed as promising strategies to mitigate their impact and improve public health. In the present study, we developed a mixture of two hydroalcoholic extracts from the aerial parts of Echinacea purpurea (L.) Moench (ECP) and the cones of Humulus lupulus L. (HOP) that can be harnessed in the prevention and treatment of viral respiratory diseases. The ECP/HOP mixture (named ECHOPvir) was characterized for the antioxidant and cytoprotective properties in airway cells. Moreover, the immunomodulating properties of the mixture in murine macrophages against antioxidant and inflammatory stimuli and its antiviral efficacy against the PR8/H1N1 influenza virus were assayed. The modulation of the Nrf2 was also investigated as a mechanistic hypothesis. The ECP/HOP mixture showed a promising multitarget bioactivity profile, with combined cytoprotective, antioxidant, immunomodulating and antiviral activities, likely due to the peculiar phytocomplexes of both ECP and HOP, and often potentiated the effect of the single extracts. The Nrf2 activation seemed to trigger these cytoprotective properties and suggest a possible usefulness in counteracting the damage caused by different stressors, including viral infection. Further studies may strengthen the interest in this product and underpin its future nutraceutical applications.
Collapse
Affiliation(s)
- Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.D.A.); (L.N.)
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (A.A.); (C.F.)
| | | | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; (A.A.); (C.F.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy;
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.D.A.); (L.N.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (G.M.)
| |
Collapse
|