1
|
Han Y, Li W, Duan H, Jia N, Liu J, Zhang H, Song W, Li M, He Y, Wu C, He Y. Ligustrazine hydrochloride Prevents Ferroptosis by Activating the NRF2 Signaling Pathway in a High-Altitude Cerebral Edema Rat Model. Int J Mol Sci 2025; 26:1110. [PMID: 39940878 PMCID: PMC11817441 DOI: 10.3390/ijms26031110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
High-altitude cerebral edema (HACE) is a disorder caused by low pressure and hypoxia at high altitudes. Nevertheless, as of now, there is still a scarcity of safe and effective prevention and treatment methods. The active component of Ligusticum Chuanxiong, namely Ligustrazine hydrochloride (LH), has shown potential in the prevention and treatment of HACE due to its anti-inflammatory, antioxidant, and neuroprotective effects in nervous system disorders. Consequently, the potential protective effect of LH on HACE and its mechanism still need to be further explored. Prior to modeling, 90 male Sprague-Dawley rats were pretreated with different doses of drugs, including LH (100 mg/kg and 50 mg/kg), dexamethasone (4 mg/kg), and ML385 (30 mg/kg). Subsequently, the pretreated rats were placed in a low-pressure anoxic chamber simulating a plateau environment to establish the rat HACE model. The effects and mechanisms of LH on HACE rats were further elucidated through determination of brain water content, HE staining, ELISA, immunofluorescence, molecular docking, molecular dynamics simulation, western blot, and other techniques. The results showed, first of all, that LH pretreatment can effectively reduce brain water content; down-regulate the expression of AQP4, HIF-1α, and VEGF proteins; and alleviate damage to brain tissue and nerve cells. Secondly, compared with the HACE group, LH pretreatment can significantly reduce MDA levels and increase GSH and SOD levels. Additionally, LH decreased the levels of inflammatory factors IL-1β, IL-6, and TNF-α; reduced total iron content in brain tissue; increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH1; and alleviated ferroptosis occurrence. Molecular docking and molecular dynamics simulations show that LH has a strong binding affinity for NRF2 signaling. Western blot analysis further confirmed that LH promotes the translocation of NRF2 from the cytoplasm to the nucleus and activates the NRF2 signaling pathway to exert an antioxidant effect. The NRF2 inhibitor ML385 can reverse the anti-oxidative stress effect of LH and its protective effect on HACE rat brain tissue. In summary, LH may have a protective effect on HACE rats by activating the NRF2 signaling pathway, inhibiting ferroptosis, and resisting oxidative stress.
Collapse
Affiliation(s)
- Yue Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenting Li
- Department of Pharmacy, The Eighth Clinical College, Sun Yat-sen University, No. 3025, Shennan Middle Rd., Futian District, Shenzhen 518033, China;
| | - Huxinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Nan Jia
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Junling Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (N.J.); (J.L.)
| | - Hongying Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Wenqian Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Meihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yacong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (H.D.); (H.Z.); (W.S.); (M.L.); (Y.H.)
| |
Collapse
|
2
|
Zeng K, Yuan PR, Xuan JF, Zhao LX, Li XN, Yao J, Zhao D. Characteristics of transcriptome and chromatin accessibility in the peripheral blood after acute hypoxia exposure. BMC Biol 2025; 23:19. [PMID: 39838410 PMCID: PMC11752951 DOI: 10.1186/s12915-025-02123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Human responses and acclimation to the environmental stresses of high altitude and low oxygen are multifaceted and regulated by multiple genes. However, the mechanism of how the body adjusts in a low-oxygen environment is not yet clear. RESULTS Hence, we performed RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) to observe the changes of transcriptome and chromatin accessibility in the peripheral blood of eight individuals at 1 h post adaptation in a simulated plateau environment with 3500 m and 4500 m altitude, respectively. Differential expression analysis and the Boruta algorithm identified differentially expressed genes (DEGs) and differentially accessible regions (DARs) associated with hypoxia adaptation. Specifically, RNA-seq identified 93 and 7 DEGs after 1 h post adaptation with 3500 m altitude and 45 and 8 DEGs after 1 h adaptation with 4500 m. Additionally, ATAC-seq screened 12 and 4 DARs in 3500 m altitude adaption and 15 and 5 DARs in 4500 m altitude adaption. Moreover, the combined analysis of RNA-seq and ATAC-seq revealed that 10 hub genes were independently identified from the protein-protein interaction (PPI) network for each altitude. Gene enrichment analysis displayed that most hub genes were related with hypoxia pathways. CONCLUSIONS Our results can provide the reference for the early response of the organism to hypoxic adaptation.
Collapse
Affiliation(s)
- Kuo Zeng
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China
| | - Pei-Ru Yuan
- College of Law, Hunan University of Technology, Zhuzhou, China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Lai-Xi Zhao
- School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xiao-Na Li
- School of Forensic Medicine, China Medical University, Shenyang, China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| | - Dong Zhao
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Zhang S, Wang N, Ma H, Jing L. A stable rat model of high altitude pulmonary edema established by hypobaric hypoxia combined diurnal temperature fluctuation and exercise. Biochem Biophys Res Commun 2025; 744:151193. [PMID: 39706055 DOI: 10.1016/j.bbrc.2024.151193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Hypobaric hypoxia (HH) is regarded as the main cause of high-altitude pulmonary edema (HAPE), however, the effect of diurnal temperature fluctuation and exercise has been overlooked. The aim of current study was to elucidate the role of diurnal temperature fluctuation and exercise in the development of HAPE and establish a reliable experimental rat model. Male SPF Wistar rats were assigned to control group (1400 m, 25 °C) and five model groups: Model Ⅰ group (6000 m, 25 °C), Model Ⅱ group (6000 m, 2 °C), Model Ⅲ group (6000 m, 12 °C/2 °C light/dark cycle), Model IV group (6000 m, 2 °C, and exercise) and Model V group (6000 m, 12 °C/2 °C light/dark cycle, and exercise). After exposure for 72 h, the blood and lung tissues were collected for further research. The rats in Model I group did not show signs of HAPE. Compared with Model I group, the rats in Model II and Model III groups were suffered from more damage, evidence by enhanced oxidative stress and inflammatory reaction, but still did not show signs of HAPE. Model IV and Model V could induce HAPE, display the obvious pathological changes and edema, more serious oxidative stress and inflammatory reaction in lung tissues, suggesting that the key role of exercise in the development of HAPE. The rats in the Model V group showed the best performance in terms of modeling indicators, indicating that diurnal temperature fluctuation could further aggravate the degree of lung edema. In summary, HH combined with diurnal temperature fluctuation and exercise is a stable and reliable modeling method for HAPE, which can be used for subsequent research on the prevention and treatment of HAPE.
Collapse
Affiliation(s)
- Shuyu Zhang
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China
| | - Ning Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China
| | - Huiping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China.
| | - Linlin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China; Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
4
|
Ge YL, Li PJ, Bu YR, Zhang B, Xu J, He SY, Cao QL, Bai YG, Ma J, Zhang L, Zhou J, Xie MJ. TNF-α and RPLP0 drive the apoptosis of endothelial cells and increase susceptibility to high-altitude pulmonary edema. Apoptosis 2024; 29:1600-1618. [PMID: 39110356 PMCID: PMC11416372 DOI: 10.1007/s10495-024-02005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 09/25/2024]
Abstract
High-altitude pulmonary edema (HAPE) is a fatal threat for sojourners who ascend rapidly without sufficient acclimatization. Acclimatized sojourners and adapted natives are both insensitive to HAPE but have different physiological traits and molecular bases. In this study, based on GSE52209, the gene expression profiles of HAPE patients were compared with those of acclimatized sojourners and adapted natives, with the common and divergent differentially expressed genes (DEGs) and their hub genes identified, respectively. Bioinformatic methodologies for functional enrichment analysis, immune infiltration, diagnostic model construction, competing endogenous RNA (ceRNA) analysis and drug prediction were performed to detect potential biological functions and molecular mechanisms. Next, an array of in vivo experiments in a HAPE rat model and in vitro experiments in HUVECs were conducted to verify the results of the bioinformatic analysis. The enriched pathways of DEGs and immune landscapes for HAPE were significantly different between sojourners and natives, and the common DEGs were enriched mainly in the pathways of development and immunity. Nomograms revealed that the upregulation of TNF-α and downregulation of RPLP0 exhibited high diagnostic efficiency for HAPE in both sojourners and natives, which was further validated in the HAPE rat model. The addition of TNF-α and RPLP0 knockdown activated apoptosis signaling in endothelial cells (ECs) and enhanced endothelial permeability. In conclusion, TNF-α and RPLP0 are shared biomarkers and molecular bases for HAPE susceptibility during the acclimatization/adaptation/maladaptation processes in sojourners and natives, inspiring new ideas for predicting and treating HAPE.
Collapse
Affiliation(s)
- Yi-Ling Ge
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Pei-Jie Li
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Ying-Rui Bu
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Jin Xu
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Si-Yuan He
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Qing-Lin Cao
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Lin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| | - Jie Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, No. 127 Changle West Road, Xi'an, 710032, China.
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
5
|
Wu Z, Wang Y, Gao R, Chen J, Chen Y, Li M, Gao Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: pathogenesis, mechanisms and future directions. Front Pharmacol 2024; 15:1393209. [PMID: 38895636 PMCID: PMC11183292 DOI: 10.3389/fphar.2024.1393209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Background and objectives Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.
Collapse
Affiliation(s)
- Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Hematology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Rong Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Junru Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingfan Chen
- Department of Traditional Chinese Medicine, The Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Maoxing Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Hu C, Liao Z, Zhang L, Ma Z, Xiao C, Shao S, Gao Y. Alleviation of Splenic Injury by CB001 after Low-Dose Irradiation Mediated by NLRP3/Caspase-1-BAX/Caspase-3 Axis. Radiat Res 2024; 201:126-139. [PMID: 38154483 DOI: 10.1667/rade-22-00053.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Low-dose radiation has been extensively employed in clinical practice, including tumor immunotherapy, chronic inflammation treatment and nidus screening. However, the damage on the spleen caused by low-dose radiation significantly increases the risk of late infection-related mortality, and there is currently no corresponding protective strategy. In the present study, a novel compound preparation named CB001 mainly constituted of Acanthopanax senticosus (AS) and Oldenlandia diffusa (OD) was developed to alleviate splenic injury caused by fractionated low-dose exposures. As our results show that, white pulp atrophy and the excessive apoptosis in spleen tissue induced by radiation exposure were significantly ameliorated by CB001. Mechanistically, BAX-caspase-3 signaling and nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome signaling were demonstrated to be involved in the radio-protective activity of CB001 with the selective activators. Furthermore, the crosstalk between apoptosis signaling and NLRP3 inflammasome signaling in mediating the radio-protective activity of CB001 was clarified, in which the pro-apoptotic protein BAX but not the anti-apoptotic protein Bcl2 was found to be downstream of NLRP3. Our study demonstrated that the use of a novel drug product CB001 can potentially facilitate the alleviation of radiation-induced splenic injury for patients receiving medical imaging diagnosis or fractionated radiation therapy.
Collapse
Affiliation(s)
- Changkun Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zebin Liao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Liangliang Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Shuai Shao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yue Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
7
|
Zhang T, Zhou Y, Zhang Y, Wang DG, Lv QY, Wang W, Bai YP, Hua Q, Guo LQ. Sesamin ameliorates nonalcoholic steatohepatitis through inhibiting hepatocyte pyroptosis in vivo and in vitro. Front Pharmacol 2024; 15:1347274. [PMID: 38362146 PMCID: PMC10867836 DOI: 10.3389/fphar.2024.1347274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Sesamin (Ses) is a natural lignan abundantly present in sesame and sesame oil. Pyroptosis, a newly identified type of pro-inflammatory programmed necrosis, contributes to the development of non-alcoholic steatohepatitis (NASH) when hepatocyte pyroptosis is excessive. In this study, Ses treatment demonstrated an improvement in hepatic damage in mice with high-fat, high-cholesterol diet-induced NASH and palmitate (PA)-treated mouse primary hepatocytes. Notably, we discovered, for the first time, that Ses could alleviate hepatocyte pyroptosis both in vivo and in vitro. Furthermore, treatment with phorbol myristate acetate, a protein kinase Cδ (PKCδ) agonist, increased PKCδ phosphorylation and attenuated the protective effects of Ses against pyroptosis in PA-treated mouse primary hepatocytes. Mechanistically, Ses treatment alleviated hepatocyte pyroptosis in NASH, which was associated with the regulation of the PKCδ/nod-like receptor family CARD domain-containing protein 4/caspase-1 axis. This study introduces a novel concept and target, suggesting the potential use of functional factors in food to alleviate liver damage caused by NASH.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yong Zhou
- Department of Cardiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Yan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - De-Guo Wang
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Qiu-Yue Lv
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, China
| | - Wen Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qiang Hua
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Li-Qun Guo
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|