1
|
Jacob A, Nina Peralta L, Pegues D, Okamura K, Chang A, McSkimming D, Alexander J. Exercise alleviates symptoms of CNS lupus. Brain Res 2021; 1765:147478. [PMID: 33852888 DOI: 10.1016/j.brainres.2021.147478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (lupus) is a global health problem where 20-80% patients display cognitive problems and central nervous system (CNS) dysfunction. Early diagnosis and treatment of lupus remains a clinical challenge. Exercise improves experimental lupus nephritis. However, the effects of exercise in CNS lupus remains unknown. This study investigates the effects of controlled exercise (CE) that consisted of treadmill walking (5 m/min for 10 min everyday) on experimental CNS lupus using the well-established mouse model, MRL/lpr mice. The MRL/lpr mice were subjected to CE from 8 weeks (preclinical) to 16 weeks (disease). Multiplex gene expression analysis revealed significant upregulation of genes involved in neurite growth, proliferation and synaptic plasticity, and a decrease in inflammatory genes including complement proteins, NFkB, chemokines and cytokines in exercised mice compared to the unmanipulated, age-matched controls. The loss of blood-brain barrier integrity, astrogliosis and edema seen in MRL/lpr mice were reduced with exercise. Exercised mice performed better in behavioral assessments such as open field, nesting, and tail suspension test. For the first time our results show that a supervised, well-regulated and controlled exercise regimen alleviates CNS lupus and could potentially serve as an intervention strategy to improve the quality of life. Exercise could also serve as an adjunct therapy for lupus and other neuroinflammatory diseases, thereby reducing the need for the current therapies with toxic side effects. The validity of the findings and a safe exercise regimen needs to be established by additional studies in patients.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | | | - Deja Pegues
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | - Kazuki Okamura
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Jessy Alexander
- Department of Medicine, University at Buffalo, Buffalo, NY 14086, USA.
| |
Collapse
|
2
|
Stock AD, Der E, Gelb S, Huang M, Weidenheim K, Ben-Zvi A, Putterman C. Tertiary lymphoid structures in the choroid plexus in neuropsychiatric lupus. JCI Insight 2019; 4:124203. [PMID: 31167973 PMCID: PMC6629135 DOI: 10.1172/jci.insight.124203] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
The central nervous system manifestations of systemic lupus erythematosus (SLE) remain poorly understood. Given the well-defined role of autoantibodies in other lupus manifestations, extensive work has gone into the identification of neuropathic autoantibodies. However, attempts to translate these findings to patients with SLE have yielded mixed results. We used the MRL/MpJ-Faslpr/lpr mouse, a well-established, spontaneous model of SLE, to establish the immune effectors responsible for brain disease. Transcriptomic analysis of the MRL/MpJ-Faslpr/lpr choroid plexus revealed an expression signature driving tertiary lymphoid structure formation, including chemokines related to stromal reorganization and lymphocyte compartmentalization. Additionally, transcriptional profiles indicated various stages of lymphocyte activation and germinal center formation. The extensive choroid plexus infiltrate present in MRL/MpJ-Faslpr/lpr mice with overt neurobehavioral deficits included locally proliferating B and T cells, intercellular interactions between lymphocytes and antigen-presenting cells, as well as evidence for in situ somatic hypermutation and class switch recombination. Furthermore, the choroid plexus was a site for trafficking lymphocytes into the brain. Finally, histological evaluation in human lupus patients with neuropsychiatric manifestations revealed increased leukocyte migration through the choroid plexus. These studies identify a potential new pathway underlying neuropsychiatric lupus and support tertiary lymphoid structure formation in the choroid plexus as a novel mechanism of brain-immune interfacing.
Collapse
Affiliation(s)
- Ariel D. Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Evan Der
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Sivan Gelb
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University, Ein-Kerem, Jerusalem, Israel
| | - Michelle Huang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University, Ein-Kerem, Jerusalem, Israel
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
- Division of Rheumatology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Wen J, Doerner J, Chalmers S, Stock A, Wang H, Gullinello M, Shlomchik MJ, Putterman C. B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus. J Neuroinflammation 2016; 13:73. [PMID: 27055816 PMCID: PMC4823887 DOI: 10.1186/s12974-016-0537-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Background Neuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE. Methods We evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice. Results We found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice. Conclusions Our study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica Doerner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha Chalmers
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Haowei Wang
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Maria Gullinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Rheumatology, Albert Einstein College of Medicine, F701N, 1300 Morris Park Ave, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model. Autoimmun Rev 2014; 13:963-73. [PMID: 25183233 DOI: 10.1016/j.autrev.2014.08.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
Mouse models of autoimmunity, such as (NZB×NZW)F1, MRL/MpJ-Fas(lpr) (MRL-lpr) and BXSB mice, spontaneously develop systemic lupus erythematosus (SLE)-like syndromes with heterogeneity and complexity that characterize human SLE. Despite their inherent limitations, such models have highly contributed to our current understanding of the pathogenesis of SLE as they provide powerful tools to approach the human disease at the genetic, cellular, molecular and environmental levels. They also allow novel treatment strategies to be evaluated in a complex integrated system, a favorable context knowing that very few murine models that adequately mimic human autoimmune diseases exist. As we move forward with more efficient medications to treat lupus patients, certain forms of the disease that requires to be better understood at the mechanistic level emerge. This is the case of neuropsychiatric (NP) events that affect 50-60% at SLE onset or within the first year after SLE diagnosis. Intense research performed at deciphering NP features in lupus mouse models has been undertaken. It is central to develop the first lead molecules aimed at specifically treating NPSLE. Here we discuss how mouse models, and most particularly MRL-lpr female mice, can be used for studying the pathogenesis of NPSLE in an animal setting, what are the NP symptoms that develop, and how they compare with human SLE, and, with a critical view, what are the neurobehavioral tests that are pertinent for evaluating the degree of altered functions and the progresses resulting from potentially active therapeutics.
Collapse
Affiliation(s)
- Hélène Jeltsch-David
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France.
| | - Sylviane Muller
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 67000 Strasbourg, France.
| |
Collapse
|
5
|
Williams S, Stafford P, Hoffman SA. Diagnosis and early detection of CNS-SLE in MRL/lpr mice using peptide microarrays. BMC Immunol 2014; 15:23. [PMID: 24908187 PMCID: PMC4065311 DOI: 10.1186/1471-2172-15-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/20/2014] [Indexed: 12/20/2022] Open
Abstract
Background An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide microarrays (immunosignaturing) can be used for diagnosing and predicting the onset of lupus and its central nervous system (CNS) manifestations. We also tested the techniques for identifying potentially pathogenic autoantibodies in CNS-Lupus. We used the well-characterized MRL/lpr lupus animal model in two studies as a first step to develop and evaluate future studies in humans. Results In study one we identified possible diagnostic peptides for both lupus and altered behavior in the forced swim test. When comparing the results of study one to that of study two (carried out in a similar manner), we further identified potential peptides that may be diagnostic and predictive of both lupus and altered behavior in the forced swim test. We also characterized five potentially pathogenic brain-reactive autoantibodies, as well as suggested possible brain targets. Conclusions These results indicate that immunosignaturing could predict and diagnose lupus and its CNS manifestations. It can also be used to characterize pathogenic autoantibodies, which may help to better understand the underlying mechanisms of CNS-Lupus.
Collapse
Affiliation(s)
- Stephanie Williams
- Neuroimmunology Labs, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
6
|
Blossom SJ, Cooney CA, Melnyk SB, Rau JL, Swearingen CJ, Wessinger WD. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally. Toxicol Appl Pharmacol 2013; 269:263-9. [PMID: 23566951 DOI: 10.1016/j.taap.2013.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 02/07/2023]
Abstract
Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL+/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28mg/kg/day) postnatally from birth until 6weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Curcumin aggravates CNS pathology in experimental systemic lupus erythematosus. Brain Res 2013; 1504:85-96. [DOI: 10.1016/j.brainres.2013.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 11/21/2022]
|
8
|
Blossom SJ, Melnyk S, Cooney CA, Gilbert KM, James SJ. Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus. Neurotoxicology 2012; 33:1518-1527. [PMID: 22421312 DOI: 10.1016/j.neuro.2012.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 12/23/2022]
Abstract
Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, United States.
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, United States
| | - Craig A Cooney
- Department of Research and Development, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, United States
| | - S Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, United States
| |
Collapse
|
9
|
Evaluating fatigue in lupus-prone mice: preliminary assessments. Pharmacol Biochem Behav 2011; 100:392-7. [PMID: 21989254 DOI: 10.1016/j.pbb.2011.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/20/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022]
Abstract
Fatigue is a debilitating condition suffered by many as the result of chronic disease, yet relatively little is known about its biological basis or how to effectively manage its effects. This study sought to evaluate chronic fatigue by using lupus-prone mice and testing them at three different time periods. Lupus-prone mice were chosen because fatigue affects over half of patients with Systemic Lupus Erythematosus. Eleven MLR⁺/(+) (genetic controls) and twelve MLR/MpJ-Fas<lpr>/J (MRL/lpr; lupus-prone) mice were tested three times: once at 12, 16 and 20 weeks of age. All mice were subjected to a variety of behavioral tests including: forced swim, post-swim grooming, running wheel, and sucrose consumption; five of the MLR⁺/(+) and five of the MLR/lpr mice were also tested on a fixed ratio-25 operant conditioning task. MRL/lpr mice showed more peripheral symptoms of lupus than controls, particularly lymphadenopathy and proteinuria. Lupus mice spent more time floating during the forced swim test and traveled less distance in the running wheel at each testing period. There were no differences between groups in post-swim grooming or in number of reinforcers earned in the operant conditioning task indicating the behavioral changes were not likely due simply to muscle weakness or motivation. Correlations between performance in the running wheel, forced swim test and sucrose consumption were conducted and distance traveled in the running wheel was consistently negatively correlated with time spent floating. Based on these data, we conclude that the lupus-prone mice were experiencing chronic fatigue and that running wheel activity and floating during a forced swim test can be used to evaluate fatigue, although these data cannot rule out the possibility that both fatigue and a depressive-like state were mediating these effects.
Collapse
|
10
|
Gulinello M, Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:207504. [PMID: 21331367 PMCID: PMC3038428 DOI: 10.1155/2011/207504] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/28/2010] [Indexed: 12/20/2022] Open
Abstract
To date, CNS disease and neuropsychiatric symptoms of systemic lupus erythematosus (NP-SLE) have been understudied compared to end-organ failure and peripheral pathology. In this review, we focus on a specific mouse model of lupus and the ways in which this model reflects some of the most common manifestations and potential mechanisms of human NP-SLE. The mouse MRL lymphoproliferation strain (a.k.a. MRL/lpr) spontaneously develops the hallmark serological markers and peripheral pathologies typifying lupus in addition to displaying the cognitive and affective dysfunction characteristic of NP-SLE, which may be among the earliest symptoms of lupus. We suggest that although NP-SLE may share common mechanisms with peripheral organ pathology in lupus, especially in the latter stages of the disease, the immunologically privileged nature of the CNS indicates that early manifestations of particularly mood disorders maybe derived from some unique mechanisms. These include altered cytokine profiles that can activate astrocytes, microglia, and alter neuronal function before dysregulation of the blood-brain barrier and development of clinical autoantibody titres.
Collapse
Affiliation(s)
- Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Pkwy S Kennedy 925, Bronx, NY 10461, USA.
| | | |
Collapse
|
11
|
Loheswaran G, Stanojcic M, Xu L, Sakic B. Autoimmunity as a principal pathogenic factor in the refined model of neuropsychiatric lupus. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1759-1961.2010.00014.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Lu XY, Chen XX, Huang LD, Zhu CQ, Gu YY, Ye S. Anti-alpha-internexin autoantibody from neuropsychiatric lupus induce cognitive damage via inhibiting axonal elongation and promote neuron apoptosis. PLoS One 2010; 5:e11124. [PMID: 20559547 PMCID: PMC2886066 DOI: 10.1371/journal.pone.0011124] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/15/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) is a major complication for lupus patients, which often leads to cognitive disturbances and memory loss and contributes to a significant patient morbidity and mortality. The presence of anti-neuronal autoantibodies (aAbs) has been identified; as examples, anti-NMDA receptors and anti-Ribsomal P aAbs have been linked to certain pathophysiological features of NPSLE. METHODS AND FINDINGS In the current study, we used a proteomic approach to identify an intermediate neurofilament alpha-internexin (INA) as a pathogenetically relevant autoantigen in NPSLE. The significance of this finding was then validated in an expanded of a cohort of NPSLE patients (n = 67) and controls (n = 270) by demonstrating that high titers of anti-INA aAb was found in both the serum and cerebrospinal fluid (CSF) of approximately 50% NPSLE. Subsequently, a murine model was developed by INA immunization that resulted in pronounced cognitive dysfunction that mimicked features of NPSLE. Histopathology in affected animals displayed cortical and hippocampal neuron apoptosis. In vitro studies further demonstrated that anti-INA Ab mediated neuronal damage via inhibiting axonal elongation and eventually driving the cells to apoptosis. CONCLUSIONS Taken together, this study identified a novel anti-neurofilament aAb in NPSLE, and established a hitherto undescribed mechanism of aAb-mediated neuron damage that could have relevance to the pathophysiology of NPSLE.
Collapse
Affiliation(s)
- Xiao-ye Lu
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao-xiang Chen
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Li-dong Huang
- Department of Neurobiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-qing Zhu
- Department of Emergency Medicine, Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue-ying Gu
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shuang Ye
- Department of Rheumatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Stanojcic M, Loheswaran G, Xu L, Hoffman SA, Sakic B. Intrathecal antibodies and brain damage in autoimmune MRL mice. Brain Behav Immun 2010; 24:289-97. [PMID: 19853033 DOI: 10.1016/j.bbi.2009.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/12/2009] [Accepted: 10/18/2009] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric (NP) manifestations and brain pathology are poorly understood and potentially fatal concomitants of systemic lupus erythematosus (SLE). For many years, autoantibodies to brain tissue (i.e., brain-reactive antibodies, BRA) were proposed as a key factor in pathogenesis of CNS manifestations. Recent evidence suggests that intrathecal BRA, rather than serum autoantibodies, are a better predictor of disturbed brain morphology and function. We presently test this hypothesis by examining the relationship among BRA in cerebrospinal fluid (CSF), behavioral deficits, and brain pathology in a well-established animal model of CNS lupus. We showed earlier that significant diversity in disease manifestations within genetically homogenous MRL-lpr mice allows for constructive and informative correlational analysis. Therefore, levels of CSF antibodies were presently correlated with behavioral, neuropathological and immune measures in a cohort of diseased MRL-lpr males (N=40). ELISA, Western Blotting, standardized behavioral battery, digital planimetry, HE staining, and immunohistochemistry were employed in overall data collection. The IgG antibodies from CSF were binding to different regions of brain parenchyma, with dentate gyrus, amygdale, and subventricular zones showing enhanced immunoreactivity. High levels of CSF antibodies correlated with increased immobility in the forced-swim test and density of HE(+) cells in the paraventricular nucleus. Peripheral measures of autoimmunity were associated with other deficits in behavior and neuropathology. This correlation pattern suggests that etiology of brain damage in lupus-prone mice is multifactorial. Intrathecal BRA may be important in altering motivated responses and activity of major neuroendocrine axes at the onset of SLE-like disease.
Collapse
Affiliation(s)
- Mile Stanojcic
- Department of Psychiatry and Behavioural Neurosciences, The Brain-Body Institute, McMaster University, Hamilton, Ontario, Canada L8N 4A6
| | | | | | | | | |
Collapse
|
14
|
Williams S, Sakic B, Hoffman SA. Circulating brain-reactive autoantibodies and behavioral deficits in the MRL model of CNS lupus. J Neuroimmunol 2009; 218:73-82. [PMID: 19919882 DOI: 10.1016/j.jneuroim.2009.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/16/2009] [Accepted: 10/13/2009] [Indexed: 12/25/2022]
Abstract
Brain-reactive autoantibodies (BRAA) are hypothesized to play a role in the neuropsychiatric manifestations that accompany systemic lupus erythematosus (SLE). The present study tests the proposed relation between circulating BRAA and behavioral deficits in lupus-prone MRL/lpr mice. Two age-matched cohorts born at different times were used to test the relationship in the context of altered disease severity. Significant correlations between autoimmunity and behavior were detected in both cohorts. These results are the first to report correlations between behavior and autoantibodies to integral membrane proteins of brain, supporting the hypothesis that BRAA contribute to the behavioral dysfunction seen in lupus.
Collapse
Affiliation(s)
- S Williams
- Neuroimmunology Labs, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501 USA
| | | | | |
Collapse
|
15
|
Stanojcic M, Burstyn-Cohen T, Nashi N, Lemke G, Sakic B. Disturbed distribution of proliferative brain cells during lupus-like disease. Brain Behav Immun 2009; 23:1003-13. [PMID: 19501646 PMCID: PMC2894939 DOI: 10.1016/j.bbi.2009.05.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 01/19/2023] Open
Abstract
Brain atrophy and neuronal degeneration of unknown etiology are frequent and severe concomitants of the systemic autoimmune disease lupus erythematosus (SLE). Using the murine MRL/lpr model, we examined populations of proliferative brain cells during the development of SLE-like disease and brain atrophy. The disease onset was associated with reduced expression of Ki67 and BrdU proliferation markers in the dorsal part of the rostral migratory stream, enhanced Fluoro Jade C staining in the subgranular zone of the dentate gyrus, and paradoxical increase in density of Ki67(+)/BrdU(-) cells in the paraventricular nucleus. Protuberances containing clusters of BrdU(+) cells were frequent along the lateral ventricles and in some cases were bridging ventricular walls. Cells infiltrating the choroid plexus were Ki67(+)/BrdU(+), suggesting proliferative leukocytosis in this cerebrospinal fluid-producing organ. The above results further support the hypothesis that systemic autoimmune disease induces complex CNS pathology, including impaired neurogenesis in the hippocampus. Moreover, changes in the paraventricular nucleus implicate a metabolic dysfunction in the hypothalamus-pituitary-adrenal axis, which may account for altered hormonal status and psychiatric manifestations in SLE.
Collapse
Affiliation(s)
- Mile Stanojcic
- Department of Psychiatry and Behavioural Neurosciences, McMaster University and The Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Ontario, CANADA
| | | | | | | | - Boris Sakic
- Department of Psychiatry and Behavioural Neurosciences, McMaster University and The Brain-Body Institute, St. Joseph’s Healthcare Hamilton, Ontario, CANADA
| |
Collapse
|
16
|
Sled JG, Spring S, van Eede M, Lerch JP, Ullal S, Sakic B. Time course and nature of brain atrophy in the MRL mouse model of central nervous system lupus. ACTA ACUST UNITED AC 2009; 60:1764-74. [DOI: 10.1002/art.24523] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Chun S, McEvilly R, Foster JA, Sakic B. Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system. Mol Psychiatry 2008; 13:1043-53. [PMID: 17768421 DOI: 10.1038/sj.mp.4002078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic lupus erythematosus is frequently accompanied by psychiatric manifestations of unknown origin. Although damage of central neurons had been documented, little is known about neurotransmitter systems affected by the autoimmune/inflammatory process. Recent studies on lupus-prone MRL-lpr mice point to imbalanced dopamine function and neurodegeneration in dopamine-rich brain regions. We follow up on anecdotal observations of singly housed mice developing chest wounds. Compulsive grooming and/or skin biting accounted for open lesions, lending itself to the operational term 'self-injurious behavior' (SIB). Low incidence of spontaneous SIB increased significantly after repeated injections of dopamine-2/3 receptor (D2/D3R) agonist quinpirole (QNP). To further probe the dopaminergic circuitry and examine whether SIB is associated with development of lupus-like disease, we compared behavioral responses among cohorts that differed in the immune status. Two-week treatment with QNP (intraperitoneal, 0.5 mg kg(-1) body weight per day) induced SIB in 60% of diseased MRL-lpr mice, and exacerbated their splenomegaly. Although increased grooming and stereotypy were observed in less symptomatic MRL+/+ controls, only one mouse (10%) developed SIB. Similarly, SIB was not seen in young, asymptomatic groups despite dissimilar ambulatory responses to QNP. In situ hybridization revealed treatment-independent upregulation of D2R mRNA in substantia nigra of diseased MRL-lpr mice. The above results suggest that development of systemic autoimmunity alters sensitivity of the dopaminergic system and renders MRL-lpr mice prone to SIB. Although pathogenic factors were not examined, we hypothesize that immune and endocrine mechanisms jointly contribute to early neuronal damage, which underlies behavioral deficiency in the adulthood.
Collapse
Affiliation(s)
- S Chun
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
18
|
Puliyath N, Ray S, Milton J, Mage RG. Genetic contributions to the autoantibody profile in a rabbit model of Systemic Lupus Erythematosus (SLE). Vet Immunol Immunopathol 2008; 125:251-67. [PMID: 18602165 DOI: 10.1016/j.vetimm.2008.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/16/2008] [Accepted: 05/19/2008] [Indexed: 12/29/2022]
Abstract
For the development of rabbit models of Systemic Lupus Erythematosus (SLE), immunoglobulin allotype-defined pedigreed rabbits from the National Institute of Allergy and Infectious Diseases rabbit resource more closely approximate human populations due to their non-inbred pedigreed structure. In an initial study from this laboratory, peptides (SM and GR) from the spliceosomal Smith (Sm) and the NMDA glutamate receptor NR2b, on branched polylysine backbones (BB) elicited antinuclear and anti-dsDNA autoantibodies typical of SLE, as well as seizures and nystagmus sometimes observed as neurological manifestations in SLE patients. This suggested the feasibility of further selective breeding to develop a more reproducible rabbit model for investigations of SLE. Here we report the results of GR-MAP-8 and control BB immunization on autoantibody responses in a group of 24 rabbits specifically bred and developed from parents and ancestors tested for autoantibody responses. The changes in hematological profile and blood chemistry in the experimental rabbits were evaluated along with autoantibody responses. Elevations of total white blood cell (WBC), monocyte, eosinophil and basophil counts that developed following immunizations were moderately influenced by litter and presence of the antibody heavy chain allotype VH1a1. Autoantibody development followed a sequential pattern with anti-nuclear antibodies (ANA) followed by anti-dsDNA and subsequently anti-Sm and anti-RNP similar to SLE patients. High autoantibody levels to one autoantigen were not always associated with antibody response to another. Female rabbits had higher prevalence and levels of autoantibodies similar to human SLE. Higher autoantibody levels of anti-dsDNA and -ANA were observed among some full sibs and the presence of high responder ancestors in the pedigree was associated the augmented responses. We observed significant association between highest antibody responses to GR-MAP-8 and highest anti-dsDNA levels. Naturally occurring autoantibodies were found in some pre-immune sera and some unique ANA fluorescent staining patterns within the experimental group were observed. Background immunofluorescence in pre-immune sera, distinct patterns of programmed autoantibody responses unique among individual rabbits may have been modulated by genetic constitution, gender and environmental factors including exposure to antigens. The high incidence and intensity of autoantibody responses among descendants of high responders suggest that there may be an additive mode of inheritance with high heritability. It is conceivable that further rigorous pedigree selection for autoantibody responses could lead to development of rabbit models with spontaneous occurrence of SLE like serology and disease phenotypes.
Collapse
Affiliation(s)
- Nandakumar Puliyath
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | |
Collapse
|
19
|
Alexander JJ, Jacob A, Vezina P, Sekine H, Gilkeson GS, Quigg RJ. Absence of functional alternative complement pathway alleviates lupus cerebritis. Eur J Immunol 2007; 37:1691-701. [PMID: 17523212 DOI: 10.1002/eji.200636638] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The complement inhibitor, Crry, which blocks both the classical and alternative pathways, alleviates CNS disease in the lupus model, MRL/MpJ-Tnfrsf6lpr (MRL/lpr) mice. To understand the role of the alternative pathway, we studied mice deficient in a key alternative pathway protein, complement factor B (fB). Immune deposits (IgG and C3) were reduced in the brains of MRL/lpr fB-deficient (fB-/-MRL/lpr) compared to fB-sufficient (MRL/lpr) mice, indicating reduced complement activation. Reduced neutrophil infiltration (22% of MRL/lpr mice) and apoptosis (caspase-3 activity was reduced to 33% of MRL/lpr mice) in these mice indicates that the absence of the alternative pathway was neuroprotective. Furthermore, expression of phospho (p)-Akt (0.16+/-0.02 vs. 0.35+/-0.13, p<0.03) was increased, while expression of p-PTEN (0.40+/-0.06 vs. 0.11+/-0.07, p<0.05) was decreased in fB-/-MRL/lpr mice compared to their MRL/lpr counterparts. The expression of fibronectin, laminin and collagen IV was significantly decreased in fB-/-MRL/lpr mice compared to MRL/lpr mice, indicating that in the lupus setting, tissue integrity was maintained in the absence of the alternative pathway. Absence of fB reduced behavioral alterations in MRL/lpr mice. Our results suggest that in lupus, the alternative pathway may be the key mechanism through which complement activation occurs in brain, and therefore it might serve as a therapeutic target for lupus cerebritis.
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled JG, Henkelman RM. Mouse behavioral mutants have neuroimaging abnormalities. Hum Brain Mapp 2007; 28:567-75. [PMID: 17437292 PMCID: PMC6871448 DOI: 10.1002/hbm.20408] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Impaired cognitive, memory, or motor performance is a distinguishing characteristic of neurological diseases. Although these symptoms are frequently the most evident in human patients, additional markers of disease are critical for proper diagnosis and staging. Noninvasive neuroimaging methods have become essential in this capacity and provide means of evaluating disease and tracking progression. These imaging methods are also becoming available to scientists in the research laboratory for assessment of animal models of neurological disease. Imaging in mouse models of neurological disease is of particular interest, owing to the availability of inbred strains and genetic manipulation tools that permit detailed investigation of the roles of various genes and gene products in disease pathogenesis. However, the relative prevalence of neuroimaging abnormalities in mice exhibiting neurological symptoms has not been reported. This prevalence has both theoretical and practical value because it is influenced by both the sensitivity of macroscopic anatomical measures to underlying genetic and disease processes and by the efficiency of neuroimaging in detecting and characterizing these effects. In this paper, we describe a meta-analysis of studies involving behavioral mouse mutants at our laboratory. In summary, we have evaluated 15 different mutant genotypes, of which 13 showed abnormal neuroimaging findings. This indicates a surprisingly high prevalence of neuroimaging abnormalities (87%) and suggests that disease processes affecting behavior generally alter neuroanatomy as well. As a consequence, neuroimaging provides a highly sensitive marker of neurological disease in mice exhibiting abnormal behavior.
Collapse
Affiliation(s)
- Brian J. Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Nicholas A. Bock
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Cerebral Microcirculation Unit/Laboratory of Functional and Molecular Imaging, NINDS/NIH, Bethesda, MD
| | - X. Josette Chen
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Ballok DA. Neuroimmunopathology in a murine model of neuropsychiatric lupus. ACTA ACUST UNITED AC 2006; 54:67-79. [PMID: 17223198 PMCID: PMC2577581 DOI: 10.1016/j.brainresrev.2006.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 12/09/2006] [Accepted: 12/11/2006] [Indexed: 01/18/2023]
Abstract
Animal models are extremely useful tools in defining pathogenesis and treatment of human disease. For many years researchers believed that structural damage to the brain of neuropsychiatric (NP) patients lead to abnormal mental function, but this possibility was not extensively explored until recently. Imaging studies of NP-systemic lupus erythematosus (SLE) support the notion that brain cell death accounts for the emergence of neurologic and psychiatric symptoms, and evidence suggests that it is an autoimmunity-induced brain disorder characterized by profound metabolic alterations and progressive neuronal loss. While there are a number of murine models of SLE, this article reviews recent literature on the immunological connections to neurodegeneration and behavioral dysfunction in the Fas-deficient MRL model of NP-SLE. Probable links between spontaneous peripheral immune activation, the subsequent central autoimmune/inflammatory responses in MRL/MpJ-Tnfrsf6(lpr) (MRL-lpr) mice and the sequential mode of events leading to Fas-independent neurodegenerative autoimmune-induced encephalitis will be reviewed. The role of hormones, alternative mechanisms of cell death, the impact of central dopaminergic degeneration on behavior, and germinal layer lesions on developmental/regenerative capacity of MRL-lpr brains will also be explored. This model can provide direction for future therapeutic interventions in patients with this complex neuroimmunological syndrome.
Collapse
Affiliation(s)
- David A Ballok
- Department of Psychiatry and Behavioral Neurosciences, HSC Rm 4N4, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5.
| |
Collapse
|
22
|
Ma X, Foster J, Sakic B. Distribution and prevalence of leukocyte phenotypes in brains of lupus-prone mice. J Neuroimmunol 2006; 179:26-36. [PMID: 16904195 DOI: 10.1016/j.jneuroim.2006.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 11/13/2022]
Abstract
Autoantibody-mediated compromise of central neurotransmission is a pathogenic mechanism proposed in etiology of neuropsychiatric lupus (NP-SLE). Recent experimental data support the hypothesis that intrathecally-synthesized antibodies play a key role in brain damage and behavioral dysfunction. However, autoantibody-producing plasma cells have not yet been detected in brain tissue. We presently use contemporary immunohistochemical markers and flow cytometry to assess distribution and prevalence of plasma cells and other phenotypes, which infiltrate brains of lupus-prone MRL-lpr mice. The functional status of infiltrates was confirmed by in situ hybridization for TNF-alpha mRNA. Consistent with the notion of breached blood-CSF and blood-brain barriers, CD3+ T-cells (approximately 20% of the mononuclear cell infiltrate) were plentiful in choroid plexuses and commonly seen around blood vessels. The CD138+ plasma cells were restricted to the choroid plexus and stria medullaris of diseased MRL-lpr mice. Although accounting for less than 1% of the total cell infiltrate, CD19+IgM+ B-cells increased with age in brains of MRL-lpr mice. Severe mononuclear cell infiltration was accompanied by splenomegaly and retarded brain growth. The results obtained support the hypothesis of progressive neurodegeneration as a consequence of leukocyte infiltration and intrathecal autoantibody synthesis. Further characterization of neuroactive antibodies and their targets may contribute to a better understanding of brain atrophy and behavioral dysfunction in the MRL model, and potentially in NP-SLE.
Collapse
Affiliation(s)
- Xiaoxing Ma
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
23
|
Anderson KK, Ballok DA, Prasad N, Szechtman H, Sakic B. Impaired response to amphetamine and neuronal degeneration in the nucleus accumbens of autoimmune MRL-lpr mice. Behav Brain Res 2005; 166:32-8. [PMID: 16183144 PMCID: PMC1634760 DOI: 10.1016/j.bbr.2005.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/12/2005] [Accepted: 07/13/2005] [Indexed: 12/25/2022]
Abstract
Spontaneous development of lupus-like disease in MRL-lpr mice is accompanied by a constellation of behavioral deficits, including blunted responsiveness to sucrose. Although autoimmunity-induced damage of limbic areas is proposed to underlie this deficit, the systemic nature of the disease precludes inference of a causal relationship between CNS damage and functional loss. Based on the stimulatory effects of d-amphetamine sulfate (AMPH) on sucrose intake, the present study pharmacologically probes the functional status of central dopaminergic circuits involved in control of behavioral reward. The response rates were compared between diseased MRL-lpr mice and congenic MRL +/+ controls tested in the sucrose preference paradigm. Neuronal loss was assessed by Fluoro Jade B (FJB) staining of nucleus accumbens and the CA2/CA3 region. While control mice significantly increased intake of sucrose solutions 60 min after administration of AMPH (i.p., 0.5 mg/kg), the intake in drugged MRL-lpr mice was comparable to those given saline injection. Increased FJB staining was detected in the nucleus accumbens and hippocampus of diseased mice, and AMPH treatment neither altered this nor other measures of organ pathology. The results obtained are consistent with previously observed changes in the mesolimbic dopamine system of MRL-lpr mice and suggest that the lesion in the nucleus accumbens and deficits in dopamine release underlie impaired responsiveness to palatable stimulation during the progress of systemic autoimmune disease. As such, they point to a neurotransmitter-specific regional brain damage which may account for depressive behaviors in neuropsychiatric lupus erythematosus.
Collapse
Affiliation(s)
- Kelly K. Anderson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada
| | - David A. Ballok
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada
| | - Neena Prasad
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada
| | - Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada
| | - Boris Sakic
- The Brain-Body Institute, McMaster University, Hamilton, Ont., Canada
- * Corresponding author at: Department of Psychiatry and Behavioural Neurosciences, HSC Rm 4N81, McMaster University, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5. Tel.: +1 905 525 9140x22850; fax: +1 905 522 8804. E-mail address: (B. Sakic)
| |
Collapse
|