1
|
Quoilin C, Chaise F, Duque J, de Timary P. Relationship between transcranial magnetic stimulation markers of motor control and clinical recovery in obsessive compulsive disorder/Gilles de la Tourette syndrome: a proof of concept case study. Front Psychiatry 2024; 15:1307344. [PMID: 38304284 PMCID: PMC10832049 DOI: 10.3389/fpsyt.2024.1307344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Background Obsessive compulsive disorder (OCD) and Gilles de la Tourette syndrome (GTS) are neurodevelopmental disorders characterized by difficulties in controlling intrusive thoughts (obsessions) and undesired actions (tics), respectively. Both conditions have been associated with abnormal inhibition but a tangible deficit of inhibitory control abilities is controversial in GTS. Methods Here, we examined a 25 years-old male patient with severe OCD symptoms and a mild form of GTS, where impairments in motor control were central. Transcranial magnetic stimulation (TMS) was applied over the primary motor cortex (M1) to elicit motor-evoked potentials (MEPs) during four experimental sessions, allowing us to assess the excitability of motor intracortical circuitry at rest as well as the degree of MEP suppression during action preparation, a phenomenon thought to regulate movement initiation. Results When tested for the first time, the patient presented a decent level of MEP suppression during action preparation, but he exhibited a lack of intracortical inhibition at rest, as evidenced by reduced short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI). Interestingly, the patient's symptomatology drastically improved over the course of the sessions (reduced obsessions and tics), coinciding with feedback given on his good motor control abilities. These changes were reflected in the TMS measurements, with a significant strengthening of intracortical inhibition (SICI and LICI more pronounced than previously) and a more selective tuning of MEPs during action preparation; MEPs became even more suppressed, or selectively facilitated depending on the behavioral condition in which they we probed. Conclusion This study highlights the importance of better understanding motor inhibitory mechanisms in neurodevelopmental disorders and suggests a biofeedback approach as a potential novel treatment.
Collapse
Affiliation(s)
- Caroline Quoilin
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fostine Chaise
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Schmidgen J, Konrad K, Roessner V, Bender S. The external evocation and movement-related modulation of motor cortex inhibition in children and adolescents with Tourette syndrome - a TMS/EEG study. Front Neurosci 2023; 17:1209801. [PMID: 37928740 PMCID: PMC10620315 DOI: 10.3389/fnins.2023.1209801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Objective This study tested the reactivity of motor cortex inhibition to different intensities of external stimulation by transcranial magnetic stimulation (TMS) and its internal modulation during different motor states in children and adolescents with Tourette syndrome. Methods TMS-evoked N100 served as an indirect measure of GABAB receptor function which is related to cortical inhibition. Combined TMS/EEG was used to analyze the TMS-evoked N100 component evoked by different stimulation intensities as well as during resting condition, movement preparation (contingent negative variation task) and movement execution. The study included 18 early adolescents with Tourette syndrome and 15 typically developing control subjects. Results TMS-evoked N100 showed a less steep increase with increasing TMS intensity in Tourette syndrome together with less modulation (disinhibition) over the primary motor cortex during the motor states movement preparation and movement execution. Children with Tourette syndrome showed equally high N100 amplitudes at 110% resting motor threshold (RMT) intensity during resting condition and a parallel decline of RMT and N100 amplitude with increasing age as control subjects. Conclusion Our study yields preliminary evidence that modulation of motor cortical inhibitory circuits, during external direct stimulation by different TMS intensities and during volitional movement preparation and execution is different in children and adolescents with Tourette syndrome compared to controls. These results suggest that a reduced resting motor cortical inhibitory "reserve" could contribute to the production of unwanted movements. Our findings are compatible with increased regulation of motor cortex excitability by perception-action binding in Tourette syndrome instead of top-down / motor regulation and need to be replicated in further studies.
Collapse
Affiliation(s)
- Julia Schmidgen
- Department of Child and Adolescent Psychiatry, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen, Aachen, Germany
- JARA-BRAIN Institute II, Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Jülich, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Custav Carus, TU, Dresden, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Custav Carus, TU, Dresden, Germany
| |
Collapse
|
3
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
4
|
Larsh TR, Huddleston DA, Horn PS, Wu SW, Cecil KM, Jackson HS, Edden RAE, Mostofsky SH, Gilbert DL. From urges to tics in children with Tourette syndrome: associations with supplementary motor area GABA and right motor cortex physiology. Cereb Cortex 2023; 33:3922-3933. [PMID: 35972405 PMCID: PMC10068284 DOI: 10.1093/cercor/bhac316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Tourette syndrome (TS) is a childhood-onset disorder in which tics are often preceded by premonitory sensory urges. More severe urges correlate with worse tics and can render behavioral therapies less effective. The supplementary motor area (SMA) is a prefrontal region believed to influence tic performance. To determine whether cortical physiological properties correlate with urges and tics, we evaluated, in 8-12-year-old right-handed TS children (n = 17), correlations of urge and tic severity scores and compared both to cortical excitability (CE) and short- and long-interval cortical inhibition (SICI and LICI) in both left and right M1. We also modeled these M1 transcranial magnetic stimulation measures with SMA gamma-amino butyric acid (GABA) levels in TS and typically developing control children (n = 16). Urge intensity correlated strongly with tic scores. More severe urges correlated with lower CE and less LICI in both right and left M1. Unexpectedly, in right M1, lower CE and less LICI correlated with less severe tics. We found that SMA GABA modulation of right, but not left, M1 CE and LICI differed in TS. We conclude that in young children with TS, lower right M1 CE and LICI, modulated by SMA GABA, may reflect compensatory mechanisms to diminish tics in response to premonitory urges.
Collapse
Affiliation(s)
- Travis R Larsh
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45267, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, United States
| | - David A Huddleston
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45267, United States
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45267, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, United States
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45267, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, United States
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, United States
| | - Hannah S Jackson
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45267, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, United States
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD 21205, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45267, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, United States
| |
Collapse
|
5
|
van der Veen S, Caviness JN, Dreissen YE, Ganos C, Ibrahim A, Koelman JH, Stefani A, Tijssen MA. Myoclonus and other jerky movement disorders. Clin Neurophysiol Pract 2022; 7:285-316. [PMID: 36324989 PMCID: PMC9619152 DOI: 10.1016/j.cnp.2022.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Myoclonus and other jerky movements form a large heterogeneous group of disorders. Clinical neurophysiology studies can have an important contribution to support diagnosis but also to gain insight in the pathophysiology of different kind of jerks. This review focuses on myoclonus, tics, startle disorders, restless legs syndrome, and periodic leg movements during sleep. Myoclonus is defined as brief, shock-like movements, and subtypes can be classified based the anatomical origin. Both the clinical phenotype and the neurophysiological tests support this classification: cortical, cortical-subcortical, subcortical/non-segmental, segmental, peripheral, and functional jerks. The most important techniques used are polymyography and the combination of electromyography-electroencephalography focused on jerk-locked back-averaging, cortico-muscular coherence, and the Bereitschaftspotential. Clinically, the differential diagnosis of myoclonus includes tics, and this diagnosis is mainly based on the history with premonitory urges and the ability to suppress the tic. Electrophysiological tests are mainly applied in a research setting and include the Bereitschaftspotential, local field potentials, transcranial magnetic stimulation, and pre-pulse inhibition. Jerks due to a startling stimulus form the group of startle syndromes. This group includes disorders with an exaggerated startle reflex, such as hyperekplexia and stiff person syndrome, but also neuropsychiatric and stimulus-induced disorders. For these disorders polymyography combined with a startling stimulus can be useful to determine the pattern of muscle activation and thus the diagnosis. Assessment of symptoms in restless legs syndrome and periodic leg movements during sleep can be performed with different validated scoring criteria with the help of electromyography.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - John N. Caviness
- Department of Neurology, Mayo Clinic Arizona, Movement Neurophysiology Laboratory, Scottsdale, AZ, USA
| | - Yasmine E.M. Dreissen
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christos Ganos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes H.T.M. Koelman
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A.J. Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Corresponding author at: Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
6
|
Kahl CK, Swansburg R, Hai T, Wrightson JG, Bell T, Lemay JF, Kirton A, MacMaster FP. Differences in neurometabolites and transcranial magnetic stimulation motor maps in children with attention-deficit/hyperactivity disorder. J Psychiatry Neurosci 2022; 47:E239-E249. [PMID: 35793906 PMCID: PMC9262400 DOI: 10.1503/jpn.210186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although much is known about cognitive dysfunction in attention-deficit/hyperactivity disorder (ADHD), few studies have examined the pathophysiology of disordered motor circuitry. We explored differences in neurometabolite levels and transcranial magnetic stimulation (TMS)-derived corticomotor representations among children with ADHD and typically developing children. METHODS We used magnetic resonance spectroscopy (MRS) protocols to measure excitatory (glutamate + glutamine [Glx]) and inhibitory (γ-aminobutyric acid [GABA]) neurometabolite levels in the dominant primary motor cortex (M1) and the supplementary motor area (SMA) in children with ADHD and typically developing children. We used robotic neuronavigated TMS to measure corticospinal excitability and create corticomotor maps. RESULTS We collected data from 26 medication-free children with ADHD (aged 7-16 years) and 25 typically developing children (11-16 years). Children with ADHD had lower M1 Glx (p = 0.044, d = 0.6); their mean resting motor threshold was lower (p = 0.029, d = 0.8); their map area was smaller (p = 0.044, d = 0.7); and their hotspot density was higher (p = 0.008, d = 0.9). M1 GABA levels were associated with motor map area (p = 0.036).Limitations: Some TMS data were lost because the threshold of some children exceeded 100% of the machine output. The relatively large MRS voxel required to obtain sufficient signal-to-noise ratio and reliably measure GABA levels encompassed tissue beyond the M1, making this measure less anatomically specific. CONCLUSION The neurochemistry and neurophysiology of key nodes in the motor network may be altered in children with ADHD, and the differences appear to be related to each other. These findings suggest potentially novel neuropharmacological and neuromodulatory targets for ADHD.
Collapse
Affiliation(s)
- Cynthia K Kahl
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - Rose Swansburg
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - Tasmia Hai
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - James G Wrightson
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - Tiffany Bell
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - Jean-François Lemay
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - Adam Kirton
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| | - Frank P MacMaster
- From the Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, MacMaster); the Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kahl, Swansburg, Lemay, Kirton, MacMaster); the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta. (Kahl, Wrightson, Bell, Kirton, MacMaster); the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alta. (Kahl, Bell, Kirton, MacMaster); the Department of Educational Psychology, University of Alberta, Edmonton, Alta. (Hai); the Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Bell); the Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alta. (Kirton); and the Strategic Clinical Network for Addictions and Mental Health, Calgary, Alta. (MacMaster)
| |
Collapse
|
7
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Pateraki G, Anargyros K, Aloizou AM, Siokas V, Bakirtzis C, Liampas I, Tsouris Z, Ziogka P, Sgantzos M, Folia V, Peristeri E, Dardiotis E. Therapeutic application of rTMS in neurodegenerative and movement disorders: A review. J Electromyogr Kinesiol 2021; 62:102622. [PMID: 34890834 DOI: 10.1016/j.jelekin.2021.102622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive form of brain stimulation that makes use of the magnetic field generated when an electric current passes through a magnetic coil placed over the scalp. It can be applied as a single stimulus at a time, in pairs of stimuli, or repetitively in trains of stimuli (repetitive TMS, rTMS). RTMS can induce changes in brain activity, whose after-effects reflect the processes of long-term potentiation and long-term depression, as certain protocols, namely those using low frequencies (≤1 Hz) seem to suppress cortical excitability, while those using high frequencies (>1 Hz) seem to enhance it. It is a technique with very few and mostly mild side-effects, whose effects can persist for long time periods, and as such, it has been studied as a potential treatment option in a multitude of neurodegenerative diseases, including those affecting movement. Although rTMS has received approval as a treatment strategy of only a few aspects in movement disorders in the latest guidelines, its further use seems to also be promising in their context. In this review, we gathered the available literature on the therapeutic application of rTMS in movement disorders, namely Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Dystonia, Tic disorders and Essential Tremor.
Collapse
Affiliation(s)
- Georgia Pateraki
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Anargyros
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Pinelopi Ziogka
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Markos Sgantzos
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Vasiliki Folia
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
9
|
Dyke K, Jackson G, Jackson S. Non-invasive brain stimulation as therapy: systematic review and recommendations with a focus on the treatment of Tourette syndrome. Exp Brain Res 2021; 240:341-363. [PMID: 34643763 PMCID: PMC8858270 DOI: 10.1007/s00221-021-06229-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/18/2021] [Indexed: 01/06/2023]
Abstract
Tourette syndrome (TS) is a neurodevelopmental condition characterised by tics, which are stereotyped movements and/or vocalisations. Tics often cause difficulties in daily life and many with TS express a desire to reduce and/or gain control over them. No singular effective treatment exists for TS, and while pharmacological and behavioural interventions can be effective, the results are variable, and issues relating to access, availability and side effects can be barriers to treatment. Consequently, over the past decade, there has been increasing interest into the potential benefits of non-invasive brain stimulation (NIBS) approaches. This systematic review highlights work exploring NIBS as a potential treatment for TS. On balance, the results tentatively suggest that multiple sessions of stimulation applied over the supplementary motor area (SMA) may help to reduce tics. However, a number of methodological and theoretical issues limit the strength of this conclusion, with the most problematic being the lack of large-scale sham-controlled studies. In this review, methodological and theoretical issues are discussed, unanswered questions highlighted and suggestions for future work put forward.
Collapse
Affiliation(s)
- Katherine Dyke
- School of Psychology, University of Nottingham, Nottingham, UK.
| | - Georgina Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK.,School of Medicine, The University of Nottingham, Nottingham, UK
| | - Stephen Jackson
- School of Psychology, University of Nottingham, Nottingham, UK.,Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Kleimaker M, Kleimaker A, Weissbach A, Colzato LS, Beste C, Bäumer T, Münchau A. Non-invasive Brain Stimulation for the Treatment of Gilles de la Tourette Syndrome. Front Neurol 2020; 11:592258. [PMID: 33244309 PMCID: PMC7683779 DOI: 10.3389/fneur.2020.592258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Gilles de la Tourette Syndrome is a multifaceted neuropsychiatric disorder typically commencing in childhood and characterized by motor and phonic tics. Its pathophysiology is still incompletely understood. However, there is convincing evidence that structural and functional abnormalities in the basal ganglia, in cortico-striato-thalamo-cortical circuits, and some cortical areas including medial frontal regions and the prefrontal cortex as well as hyperactivity of the dopaminergic system are key findings. Conventional therapeutic approaches in addition to counseling comprise behavioral treatment, particularly habit reversal therapy, oral pharmacotherapy (antipsychotic medication, alpha-2-agonists) and botulinum toxin injections. In treatment-refractory Tourette syndrome, deep brain stimulation, particularly of the internal segment of the globus pallidus, is an option for a small minority of patients. Based on pathophysiological considerations, non-invasive brain stimulation might be a suitable alternative. Repetitive transcranial magnetic stimulation appears particularly attractive. It can lead to longer-lasting alterations of excitability and connectivity in cortical networks and inter-connected regions including the basal ganglia through the induction of neural plasticity. Stimulation of the primary motor and premotor cortex has so far not been shown to be clinically effective. Some studies, though, suggest that the supplementary motor area or the temporo-parietal junction might be more appropriate targets. In this manuscript, we will review the evidence for the usefulness of repetitive transcranial magnetic stimulation and transcranial electric stimulation as treatment options in Tourette syndrome. Based on pathophysiological considerations we will discuss the rational for other approaches of non-invasive brain stimulation including state informed repetitive transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Maximilian Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Hsu CJ, Wong LC, Wang HP, Lee WT. The multimodality neuroimage findings in individuals with Tourette syndrome. Pediatr Neonatol 2020; 61:467-474. [PMID: 32284198 DOI: 10.1016/j.pedneo.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/28/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic tic disorder and Gilles de la Tourette syndrome are very common childhood-onset diseases. However, the pathophysiology underlying these disorders is not yet clear and most studies focus on the disinhibition of the cortico-striatal-thalamo-cortical circuit. Although dysfunction of this circuit is possible, routine clinical neuroimaging studies such as T1-weighted or T2-weighted MRI usually reveal normal results. Therefore, special neuroimaging techniques may be needed to investigate the possible microstructural or functional changes in the brain. Previous structural studies, such as those using diffusion tensor imaging, and volumetric MRI studies, revealed the main abnormalities to be located in the cortico-striatal-thalamo-cortical circuit and to be related to brain regions such as basal ganglion, thalamus, frontal cortex, and motor cortex. Some other potential regions, such as the amygdala, hippocampus or cerebellum, are also occasionally reported. Perfusion studies, such as those using positron emission tomography or functional MRI, also suggest hemodynamic changes over those brain regions related to the cortico-striatal-thalamo-cortical circuit. However, the results can be different in adult and pediatric groups, and neuroimaging findings are also inconsistent between different studies, which may reflect the high diversity of this disease or differences in enrolled patient groups with different comorbidities. Therefore, in this review article, we will focus on the neuroimaging findings relating to Tourette syndrome in different age groups using different imaging techniques.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee Chin Wong
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Pei Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
Sun Y, Wei H, Lin Y, Wang Y. The Suppressive Effect of the Motor System on the Sensory System in Patients With Tourette Syndrome. Front Neurol 2020; 11:855. [PMID: 32982911 PMCID: PMC7479304 DOI: 10.3389/fneur.2020.00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Tourette syndrome (TS) is a complicated sensorimotor disorder. Some patients with TS relieve their involuntary premonitory urges via tics. However, the effect of the motor system on the sensory system has not yet been elucidated. The purpose of the present study was to investigate changes in the excitability of the sensory cortex following repetitive transcranial magnetic stimulation (rTMS) of the motor cortex in patients with TS. Methods: Twenty-nine patients with TS and 20 healthy, age-matched controls were enrolled in this study. All subjects were divided into four groups: patients with rTMS, patients with sham-rTMS, controls with rTMS, and controls with sham-rTMS. The clinical severity of tics was evaluated using the Yale Global Tic Severity Scale. Single somatosensory evoked potentials (SEPs) and paired SEPs were recorded by stimulating the median nerve at the wrist of all subjects. The resting motor threshold (RMT) was tested in each subject in the rTMS group. Afterwards, all four groups were administered rTMS (1 Hz, 90% RMT) or sham-rTMS for 200 s, followed by a 15-min rest. Finally, single SEPs and paired SEPs were repeated for each subject. Results: No significant differences in RMT, the amplitudes of single SEPs, or the suppression of paired SEPs were observed between patients with TS and controls at baseline. After rTMS, a significant suppression of the peak-to-peak amplitude of the N20–P25 responses of single SEPs was observed in both controls (p = 0.049) and patients (p < 0.0001). The suppression of the N20–P25 peak-to-peak amplitude was more significant in patients than in controls (p = 0.039). A significant difference in the suppression of paired SEPs after rTMS was not observed between groups. Conclusions: The more significant suppression of N20–P25 components of single SEPs with normal suppressed paired SEPs in patients with TS after 1-Hz rTMS of the motor cortex suggests that the suppressive effect of the motor system on the sensory system might originate from the motor-sensory cortical circuits rather than the sensory system itself.
Collapse
Affiliation(s)
- Ying Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Hua Wei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| |
Collapse
|
13
|
Sigurdsson HP, Jackson SR, Kim S, Dyke K, Jackson GM. A feasibility study for somatomotor cortical mapping in Tourette syndrome using neuronavigated transcranial magnetic stimulation. Cortex 2020; 129:175-187. [DOI: 10.1016/j.cortex.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
|
14
|
Jackson GM, Nixon E, Jackson SR. Tic frequency and behavioural measures of cognitive control are improved in individuals with Tourette syndrome by aerobic exercise training. Cortex 2020; 129:188-198. [PMID: 32492517 DOI: 10.1016/j.cortex.2020.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/19/2019] [Accepted: 03/13/2020] [Indexed: 02/05/2023]
Abstract
Previous observations of improvements in cognition in typically developing children following moderate to vigorous exercise (e.g., Budde, Voelcker-Rehage, Pietrabyk-Kendziorra, Ribeiro, & Tidow, 2008; Hillman et al., 2009) have led to increased interest in the potential benefits of exercise for children with neurodevelopmental disorders, involving difficulties in self-regulation (e.g., Halperin & Healey, 2011; Archer & Kostrzewa, 2012). Using a within-sample design, the current study looked at the beneficial effects of non-aerobic movement training (Tai Chi), compared to aerobic movement training (Kick Boxing), on behavioural measures of cognitive control and clinical measures of tic severity in a group of young people with Tourette Syndrome (TS). We demonstrate that Kick Boxing, but not Tai Chi, led to a significant enhancement in cognitive control task performance. Furthermore, while tic frequency (tics per minute) was reduced during both types of exercise, this reduction was significantly greater, and sustained for longer, following Kick Boxing. Importantly, the magnitude of the increase in cognitive control following Kick Boxing predicted the degree of reduction in tic frequency. These findings suggest that aerobic exercise may be a useful intervention for improving self-regulation of tics in young people with TS, probably through enhancements in associated cognitive control circuits.
Collapse
Affiliation(s)
- Georgina M Jackson
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, UK
| | - Elena Nixon
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, UK.
| | | |
Collapse
|
15
|
Sigurdsson HP, Jackson SR, Jolley L, Mitchell E, Jackson GM. Alterations in cerebellar grey matter structure and covariance networks in young people with Tourette syndrome. Cortex 2020; 126:1-15. [DOI: 10.1016/j.cortex.2019.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/15/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023]
|
16
|
Herszage J, Dayan E, Sharon H, Censor N. Explaining Individual Differences in Motor Behavior by Intrinsic Functional Connectivity and Corticospinal Excitability. Front Neurosci 2020; 14:76. [PMID: 32116520 PMCID: PMC7025558 DOI: 10.3389/fnins.2020.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/20/2020] [Indexed: 01/09/2023] Open
Abstract
Motor performance varies substantially between individuals. This variance is rooted in individuals' innate motor abilities, and should thus have a neural signature underlying these differences in behavior. Could these individual differences be detectable with neural measurements acquired at rest? Here, we tested the hypothesis that motor performance can be predicted by resting motor-system functional connectivity and motor-evoked-potentials (MEPs) induced by non-invasive brain stimulation. Twenty healthy right handed subjects performed structural and resting-state fMRI scans. On a separate day, MEPs were measured using transcranial magnetic stimulation (TMS) over the contrateral primary motor cortex (M1). At the end of the session, participants performed a finger-tapping task using their left non-dominant hand. Resting-state functional connectivity between the contralateral M1 and the supplementary motor area (SMA) predicted motor task performance, indicating that individuals with stronger resting M1-SMA functional connectivity exhibit better motor performance. This prediction was neither improved nor reduced by the addition of corticospinal excitability to the model. These results confirm that motor behavior can be predicted from neural measurements acquired prior to task performance, primarily relying on resting functional connectivity rather than corticospinal excitability. The ability to predict motor performance from resting neural markers, provides an opportunity to identify the extent of successful rehabilitation following neurological damage.
Collapse
Affiliation(s)
- Jasmine Herszage
- School of Psychological Sciences - Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Haggai Sharon
- Center for Brain Functions, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Censor
- School of Psychological Sciences - Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Kurvits L, Martino D, Ganos C. Clinical Features That Evoke the Concept of Disinhibition in Tourette Syndrome. Front Psychiatry 2020; 11:21. [PMID: 32161555 PMCID: PMC7053490 DOI: 10.3389/fpsyt.2020.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/09/2020] [Indexed: 01/14/2023] Open
Abstract
The capacity to efficiently control motor output, by either refraining from prepotent actions or disengaging from ongoing motor behaviors, is necessary for our ability to thrive in a stimulus-rich and socially complex environment. Failure to engage in successful inhibitory motor control could lead to aberrant behaviors typified by an excess of motor performance. In tic disorders and Tourette syndrome (TS) - the most common tic disorder encountered in clinics - surplus motor output is rarely the only relevant clinical sign. A range of abnormal behaviors is often encountered which are historically viewed as "disinhibition phenomena". Here, we present the different clinical features of TS from distinct categorical domains (motor, sensory, complex behavioral) that evoke the concept of disinhibition and discuss their associations. We also present evidence for their consideration as phenomena of inhibitory dysfunction and provide an overview of studies on TS pathophysiology which support this view. We then critically dissect the concept of disinhibition in TS and illuminate other salient aspects, which should be considered in a unitary pathophysiological approach. We briefly touch upon the dangers of oversimplification and emphasize the necessity of conceptual diversity in the scientific exploration of TS, from disinhibition and beyond.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology, Charité University Hospital, Berlin, Germany
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Christos Ganos
- Department of Neurology, Charité University Hospital, Berlin, Germany
| |
Collapse
|
18
|
Stenner MP, Baumgaertel C, Heinze HJ, Ganos C, Müller-Vahl KR. Intact automatic motor inhibition in patients with tourette syndrome. Mov Disord 2019; 33:1800-1804. [PMID: 30485912 DOI: 10.1002/mds.27493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Behavioral disinhibition has been proposed as a key mechanism in Tourette syndrome. Yet classic inhibition tasks have yielded inconsistent results, likely reflecting interference by strategies compensating for tic release. METHODS We examined a core inhibitory function that is immune to such interference because it suppresses movements automatically. We measured automatic motor inhibition behaviorally in 21 adults with Tourette syndrome and 21 healthy controls via the negative compatibility effect. When a motor response is activated, for example, by a subliminal prime stimulus, but execution is delayed, activation turns into inhibition, increasing reaction time and error. Diminished automatic inhibition could underlie tic release. RESULTS Both controls and patients showed strong automatic motor inhibition with no significant group difference. Bayesian statistics, allowing inference on the absence of effects, favored intact inhibition in patients. Our study was well powered. CONCLUSIONS Automatic motor inhibition in Tourette syndrome is neither impaired nor harnessed by compensation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Charlotte Baumgaertel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christos Ganos
- Department of Neurology, Charité, University Medicine Berlin, Berlin, Germany
| | - Kirsten R Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Zapparoli L, Macerollo A, Joyce EM, Martino D, Kilner JM. Voluntary tic suppression and the normalization of motor cortical beta power in Gilles de la Tourette syndrome: an
EEG
study. Eur J Neurosci 2019; 50:3944-3957. [DOI: 10.1111/ejn.14548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Antonella Macerollo
- School of Psychology Faculty of Health and Life Sciences University of Liverpool Liverpool UK
- The Walton Centre NHS Foundation Trust Fazakerley UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neurosciences UCL Institute of Neurology London UK
| | - Davide Martino
- Department of Clinical Neurosciences University of Calgary Calgary Canada
- Hotchkiss Brain Institute University of Calgary Calgary Canada
| | - James M. Kilner
- Department of Clinical and Movement Neurosciences UCL Institute of Neurology London UK
| |
Collapse
|
20
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
21
|
Versace V, Campostrini S, Sebastianelli L, Soda M, Saltuari L, Lun S, Nardone R, Kofler M. Adult-Onset Gilles de la Tourette Syndrome: Psychogenic or Organic? The Challenge of Abnormal Neurophysiological Findings. Front Neurol 2019; 10:461. [PMID: 31130912 PMCID: PMC6509948 DOI: 10.3389/fneur.2019.00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is characterized by multiple motor and vocal tics. Adult-onset cases are rare and may be due to "reactivation" of childhood tics, or secondary to psychiatric or genetic diseases, or due to central nervous system lesions of different etiologies. Late-onset psychogenic motor/vocal tics resembling GTS have been described. Neurophysiology may serve to differentiate organic from functional GTS. Altered blink reflex pre-pulse inhibition (BR-PPI), blink reflex excitability recovery (BR-ERC), and short-interval intracortical inhibition (SICI) have been described in GTS. We report a 48-years-old male, who developed numerous motor/vocal tics 2 months after sustaining non-commotional craniofacial trauma in a car accident. Both his father and brother had died earlier in car crashes. He presented with blepharospasm-like forced lid closure, forceful lip pursing, noisy suction movements, and deep moaning sounds, occurring in variable combinations, without warning symptoms or internal "urge." Tics showed low distractibility and these increased with attention. Standard magnetic resonance imaging, electroencephalography, and evoked potentials were unremarkable. Neuropsychology diagnosed moderately impaired intellect, attention, and executive functions. Psychiatric assessment revealed somatization disorder and generalized anxiety. BR-PPI was unremarkable, while BR-ERC was enhanced, even showing facilitation at short intervals. SICI was markedly reduced at 1 and 3 ms and intracortical facilitation (ICF) was enhanced at 10 ms. The patient fulfilled Fahn and Williams' diagnostic criteria for a psychogenic movement disorder. Neurophysiology, however, documented hyperexcitability of motor cortex and brainstem. We suggest that-similar to what has been reported in psychogenic dystonia-a pre-existing predisposition may have led to the functional hyperkinetic disorder in response to severe psychic stress.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Stefania Campostrini
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Mirco Soda
- Department of Neuropsychology, Hospital of Bressanone, Bressanone, Italy
| | - Leopold Saltuari
- Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy.,Department of Neurology, State Hospital Hochzirl, Zirl, Austria
| | - Sigrid Lun
- Department of Psychiatry, Hospital of Bressanone, Bressanone, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus Private Medical University of Salzburg, Salzburg, Austria
| | - Markus Kofler
- Department of Neurology, State Hospital Hochzirl, Zirl, Austria
| |
Collapse
|
22
|
Ganos C, Rocchi L, Latorre A, Hockey L, Palmer C, Joyce EM, Bhatia KP, Haggard P, Rothwell J. Motor cortical excitability during voluntary inhibition of involuntary tic movements. Mov Disord 2018; 33:1804-1809. [DOI: 10.1002/mds.27479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023] Open
Affiliation(s)
- Christos Ganos
- Department of Neurology, Charité; University Medicine; Berlin Germany
- Institute of Cognitive Neuroscience; University College London; London UK
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Anna Latorre
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
- Department of Neurology and Psychiatry, Sapienza; University of Rome; Rome Italy
| | - Leanne Hockey
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Clare Palmer
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience; University College London; London UK
| | - John Rothwell
- Department of Clinical and Movement Neuroscience; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
23
|
Grados M, Huselid R, Duque-Serrano L. Transcranial Magnetic Stimulation in Tourette Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in Treatment Response. Brain Sci 2018; 8:brainsci8070129. [PMID: 29986411 PMCID: PMC6071080 DOI: 10.3390/brainsci8070129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background. Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder consisting of impairing motor and vocal tics which often persists adolescent and adult years. In this older refractory group, standard treatments such as pharmacotherapy and psychotherapeutic interventions may only have limited effects. Based on electrical cortical dysregulation in individuals with TS, a novel approach has employed brain stimulation strategies to modulate the putative aberrant neural electrical activity in pathways that may underlie tics, such as insula-supplementary motor area (SMA) connectivity. Methods. This review will examine all published clinical trials employing transcranial magnetic stimulation (TMS) to ameliorate tics, and discuss a framework for the pathophysiology of TS in relation to electrical brain activity. A framework for future research in tic disorders using TMS and imaging targeting neuroplasticity will be discussed. Results. Therapeutic electrical brain activity modulation with TMS has been carried out in stroke neuro-rehabilitation and neuropsychiatry, including trials in TS. Eleven trials document the use of TMS in TS targeting several brain areas, a positive effect is seen for those trials targeting the SMA. In particular, it appears that younger individuals with concurrent attention-deficit hyperactivity disorder (ADHD) benefit the most. Conclusions. TMS can be used as an effective tool to explore the psychophysiology of TS and potentially provide a therapeutic option. Ultimately, translational research using TMS in TS needs to explore connectivity differences pre- and post-treatment in individuals with TS that are linked to improvement in tic symptoms, with an emphasis on approaches using functional neuroimaging as well as other probes of neuroplasticity.
Collapse
Affiliation(s)
- Marco Grados
- Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Rachel Huselid
- Johns Hopkins University Krieger School of Arts & Sciences, Baltimore, MD 21205, USA.
| | | |
Collapse
|
24
|
Ganos C, Rothwell J, Haggard P. Voluntary inhibitory motor control over involuntary tic movements. Mov Disord 2018; 33:937-946. [DOI: 10.1002/mds.27346] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Christos Ganos
- Department of Neurology, Charité; University Medicine; Berlin Germany
- Institute of Cognitive Neuroscience; University College London; London UK
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology; University College London; London UK
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology; University College London; London UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience; University College London; London UK
| |
Collapse
|
25
|
Edemann-Callesen H, Habelt B, Wieske F, Jackson M, Khadka N, Mattei D, Bernhardt N, Heinz A, Liebetanz D, Bikson M, Padberg F, Hadar R, Nitsche MA, Winter C. Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit. Transl Psychiatry 2018; 8:11. [PMID: 29317605 PMCID: PMC5802458 DOI: 10.1038/s41398-017-0059-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/19/2023] Open
Abstract
Involuntary movements as seen in repetitive disorders such as Tourette Syndrome (TS) results from cortical hyperexcitability that arise due to striato-thalamo-cortical circuit (STC) imbalance. Transcranial direct current stimulation (tDCS) is a stimulation procedure that changes cortical excitability, yet its relevance in repetitive disorders such as TS remains largely unexplored. Here, we employed the dopamine transporter-overexpressing (DAT-tg) rat model to investigate behavioral and neurobiological effects of frontal tDCS. The outcome of tDCS was pathology dependent, as anodal tDCS decreased repetitive behavior in the DAT-tg rats yet increased it in wild-type (wt) rats. Extensive deep brain stimulation (DBS) application and computational modeling assigned the response in DAT-tg rats to the sensorimotor pathway. Neurobiological assessment revealed cortical activity changes and increase in striatal inhibitory properties in the DAT-tg rats. Our findings show that tDCS reduces repetitive behavior in the DAT-tg rat through modulation of the sensorimotor STC circuit. This sets the stage for further investigating the usage of tDCS in repetitive disorders such as TS.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- International Graduate Program Medical Neurosciences, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Franziska Wieske
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mark Jackson
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, USA
| | - Daniele Mattei
- Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Goettingen, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, USA
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University, Munich, Germany
| | - Ravit Hadar
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
26
|
Murgai AA, Kumar N, Jog MS. Tourette-Like Syndrome in a Patient with RBFOX1 Deletion. Mov Disord Clin Pract 2017; 5:86-88. [PMID: 30746397 DOI: 10.1002/mdc3.12549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aditya A Murgai
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Niraj Kumar
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Mandar S Jog
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| |
Collapse
|
27
|
Comparing GABA-dependent physiological measures of inhibition with proton magnetic resonance spectroscopy measurement of GABA using ultra-high-field MRI. Neuroimage 2017; 152:360-370. [PMID: 28284797 PMCID: PMC5440178 DOI: 10.1016/j.neuroimage.2017.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Imbalances in glutamatergic (excitatory) and GABA (inhibitory) signalling within key brain networks are thought to underlie many brain and mental health disorders, and for this reason there is considerable interest in investigating how individual variability in localised concentrations of these molecules relate to brain disorders. Magnetic resonance spectroscopy (MRS) provides a reliable means of measuring, in vivo, concentrations of neurometabolites such as GABA, glutamate and glutamine that can be correlated with brain function and dysfunction. However, an issue of much debate is whether the GABA observed and measured using MRS represents the entire pool of GABA available for measurement (i.e., metabolic, intracellular, and extracellular) or is instead limited to only some portion of it. GABA function can also be investigated indirectly in humans through the use of non-invasive transcranial magnetic stimulation (TMS) techniques that can be used to measure cortical excitability and GABA-mediated physiological inhibition. To investigate this issue further we collected in a single session both types of measurement, i.e., TMS measures of cortical excitability and physiological inhibition and ultra-high-field (7 T) MRS measures of GABA, glutamate and glutamine, from the left sensorimotor cortex of the same group of right-handed individuals. We found that TMS and MRS measures were largely uncorrelated with one another, save for the plateau of the TMS IO curve that was negatively correlated with MRS-Glutamate (Glu) and intra-cortical facilitation (10ms ISI) that was positively associated with MRS-Glutamate concentration. These findings are consistent with the view that the GABA concentrations measured using the MRS largely represent pools of GABA that are linked to tonic rather than phasic inhibition and thus contribute to the inhibitory tone of a brain area rather than GABAergic synaptic transmission.
Collapse
|
28
|
Buse J, Beste C, Herrmann E, Roessner V. Neural correlates of altered sensorimotor gating in boys with Tourette Syndrome: A combined EMG/fMRI study. World J Biol Psychiatry 2016; 17:187-97. [PMID: 26624257 DOI: 10.3109/15622975.2015.1112033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES It has been hypothesised that altered sensorimotor gating might be a core problem in Tourette Syndrome (TS). However, the underlying neurophysiological mechanisms are elusive. METHODS We applied functional magnetic resonance imaging (fMRI) to investigate the neural correlates of altered sensorimotor gating by means of prepulse inhibition (PPI) in 22 boys with TS and 22 healthy boys using tactile PPI. The electromyography of the startle response was recorded simultaneously to the acquisition of the fMRI images. RESULTS As expected, PPI of the startle response was reduced in boys with TS compared to the healthy boys. We found decreased PPI-related blood oxygen level-dependent (BOLD) activity in boys with TS in the middle frontal gyrus, postcentral gyrus, superior parietal cortex, cingulate gyrus and caudate body. In boys with TS PPI of the startle response was positively correlated to PPI-related BOLD activity in the superior parietal cortex. CONCLUSIONS Our findings indicate that deficient sensorimotor gating in boys with TS is associated with reduced recruitment of brain regions responsible for the higher-order integration of somatosensory stimuli. Due to our strict sample selection we were able to reduce confounding by neural adaptation processes, long-term medication, gender or comorbidities.
Collapse
Affiliation(s)
- Judith Buse
- a Department of Child and Adolescent Psychiatry , Faculty of Medicine of the TU Dresden , Dresden , Germany
| | - Christian Beste
- a Department of Child and Adolescent Psychiatry , Faculty of Medicine of the TU Dresden , Dresden , Germany
| | - Elisabeth Herrmann
- a Department of Child and Adolescent Psychiatry , Faculty of Medicine of the TU Dresden , Dresden , Germany
| | - Veit Roessner
- a Department of Child and Adolescent Psychiatry , Faculty of Medicine of the TU Dresden , Dresden , Germany
| |
Collapse
|
29
|
Thibeault M, Lemay M, Chouinard S, Lespérance P, Rouleau GA, Richer F. Response Inhibition in Tic Disorders: Waiting to Respond Is Harder When ADHD Is Present. J Atten Disord 2016; 20:251-9. [PMID: 24305059 DOI: 10.1177/1087054713513638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Tic disorders such as Gilles-de-la-Tourette syndrome (TS) are associated with difficulties in withholding movements and sometimes inappropriate actions. The present study examined whether these disorders lead to a specific difficulty in withholding preprogrammed voluntary movements irrespective of decisions on whether or not to move. METHOD Children with TS with or without attention-deficit hyperactivity disorder (ADHD) and controls performed a fast-paced simple reaction time task involving responses to a target in a rapid letter stream (9 letters/s, average foreperiod 332 ms) with feedback on response speed. RESULTS The ADHD group showed more premature responses and more variable response time than other groups, whether the timing of the target was predictable or not. CONCLUSION The data indicate that in tic disorders, the presence of ADHD is associated with difficulties in waiting to initiate preprogrammed movements independently of response selection or response timing difficulties.
Collapse
Affiliation(s)
| | | | | | - Paul Lespérance
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | | | - Francois Richer
- Université du Québec à Montréal, Canada Centre Hospitalier de l'Université de Montréal, Montréal, Canada Sainte-Justine Hospital, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Pépés SE, Draper A, Jackson GM, Jackson SR. Effects of age on motor excitability measures from children and adolescents with Tourette syndrome. Dev Cogn Neurosci 2016; 19:78-86. [PMID: 26934638 PMCID: PMC6988104 DOI: 10.1016/j.dcn.2016.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/01/2016] [Accepted: 02/12/2016] [Indexed: 12/27/2022] Open
Abstract
Tourette syndrome (TS) is a neurological disorder characterised by vocal and motor tics. It is associated with cortical-striatal-thalamic-cortical circuit [CSTC] dysfunction and hyper-excitability of cortical motor regions. TS follows a developmental time course, in which tics often become increasingly more controlled during adolescence. Importantly, however, a substantial minority of patients continue to have debilitating tics into adulthood. This indicates that there may be important differences between adult TS patients and children and adolescents with the disorder. We use TMS to examine cortical motor excitability in a sample of children, adolescents and young adults with TS. We demonstrate that, in contrast to studies of adult patients, resting motor threshold and the variability of MEP responses are increased in children with TS, while the gain of motor excitability in reduced. Importantly, we demonstrate that these differences normalise with age over adolescence. We conclude that these effects are likely due to a developmental delay in the maturation of key brain networks in TS, consistent with recent brain imaging studies of structural and functional brain connectivity. Importantly, these findings suggest that the alterations in brain network structure and function associated with TS may be quite different in children and adult patients with the condition.
Collapse
Affiliation(s)
| | | | - Georgina M Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, UK
| | | |
Collapse
|
31
|
Zhang W, Wei L, Yu W, Cui X, Liu X, Wang Q, Wang S. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome. Neuropsychiatr Dis Treat 2016; 12:1233-42. [PMID: 27279743 PMCID: PMC4878666 DOI: 10.2147/ndt.s106330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Jian-Pi-Zhi-Dong Decoction (JPZDD) is a dedicated treatment of Tourette syndrome (TS). The balance of neurotransmitters in the cortico-striato-pallido-thalamo-cortical network is crucial to the occurrence of TS and related to its severity. This study evaluated the effect of JPZDD on glutamate (Glu) and γ-aminobutyric acid (GABA) and their receptors in a TS rat model. MATERIALS AND METHODS Rats were divided into four groups (n=12 each). TS was induced in three of the groups by injecting them with 3,3'-iminodipropionitrile for 7 consecutive days. Two model groups were treated with tiapride (Tia) or JPZDD, while the control and the remaining model group were gavaged with saline. Behavior was assessed by stereotypic score and autonomic activity. Striatal Glu and GABA contents were detected using microdialysis. Expressions of N-methyl-D-aspartate receptor 1 and GABAA receptor (GABAAR) were observed using Western blot and real-time polymerase chain reaction. RESULTS Tia and JPZDD groups had decreased stereotypy compared with model rats; however, the JPZDD group showed a larger decrease in stereotypy than the Tia group at a 4-week time point. In a spontaneous activity test, the total distance of the JPZDD and Tia groups was significantly decreased compared with the model group. The Glu levels of the model group were higher than the control group and decreased with Tia or JPZDD treatment. The GABA level was higher in the model group than the control group. Expressions of GABAAR protein in the model group were higher than in the control group. Treatment with Tia or JPZDD reduced the expression of GABAAR protein. In the case of the mRNA expression, only Tia reduced the expression of N-methyl-D-aspartate receptor 1, compared with the model group. CONCLUSION JPZDD could alleviate impairments in behavior and dysfunctional signaling by downregulating GABAAR in the striatum. We suggest that this acts to maintain the balance of Glu and GABA.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Wei
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wenjing Yu
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xia Cui
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiaofang Liu
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qian Wang
- Department of Pediatrics, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sumei Wang
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
32
|
Zapparoli L, Porta M, Gandola M, Invernizzi P, Colajanni V, Servello D, Zerbi A, Banfi G, Paulesu E. A functional magnetic resonance imaging investigation of motor control in Gilles de la Tourette syndrome during imagined and executed movements. Eur J Neurosci 2015; 43:494-508. [DOI: 10.1111/ejn.13130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMI-Milan Center for Neuroscience; Piazza dell'Ateneo Nuovo 1 Milan Italy
- IRCCS Galeazzi; Milan Italy
| | | | - Martina Gandola
- Department of Brain and Behavioural Sciences; University of Pavia; Pavia Italy
| | - Paola Invernizzi
- Psychology Department and NeuroMI-Milan Center for Neuroscience; Piazza dell'Ateneo Nuovo 1 Milan Italy
| | - Valeria Colajanni
- Psychology Department and NeuroMI-Milan Center for Neuroscience; Piazza dell'Ateneo Nuovo 1 Milan Italy
| | | | | | - Giuseppe Banfi
- IRCCS Galeazzi; Milan Italy
- University Vita e Salute San Raffaele; Milan Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMI-Milan Center for Neuroscience; Piazza dell'Ateneo Nuovo 1 Milan Italy
- IRCCS Galeazzi; Milan Italy
| |
Collapse
|
33
|
Israelashvili M, Bar-Gad I. Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics. J Neurosci 2015; 35:16340-51. [PMID: 26674861 PMCID: PMC4679818 DOI: 10.1523/jneurosci.2770-15.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/11/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022] Open
Abstract
Striatal disinhibition leads to the formation of motor tics resembling those expressed during Tourette syndrome and other tic disorders. The spatial properties of these tics are dependent on the location of the focal disinhibition within the striatum; however, the factors affecting the temporal properties of tic expression are still unknown. Here, we used microstimulation within the motor cortex of freely behaving rats before and after striatal disinhibition to explore the factors underlying the timing of individual tics. Cortical activation determined the timing of individual tics via an accumulation process of inputs that was dependent on the frequency and amplitude of the inputs. The resulting tics and their neuronal representation within the striatum were highly stereotypic and independent of the cortical activity properties. The generation of tics was limited by absolute and relative tic refractory periods that were derived from an internal striatal state. Thus, the precise time of the tic expression depends on the interaction between the summation of incoming excitatory inputs to the striatum and the timing of the previous tic. A data-driven computational model of corticostriatal function closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. These converging experimental and computational findings suggest a clear functional dichotomy within the corticostriatal network, pointing to disparate temporal (cortical) versus spatial (striatal) encoding. Thus, the abnormal striatal inhibition typical of Tourette syndrome and other tic disorders results in tics due to cortical activation of the abnormal striatal network. SIGNIFICANCE STATEMENT The factors underlying the temporal properties of tics expressed in Tourette syndrome and other tic disorders have eluded clinicians and scientists for decades. In this study, we highlight the key role of corticostriatal activity in determining the timing of individual tics. We found that cortical activation determined the timing of tics but did not determine their form. A data-driven computational model of the corticostriatal network closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. This study thus shows that, although tics originate in the striatum, their timing depends on the interplay between incoming excitatory corticostriatal inputs and the internal striatal state.
Collapse
Affiliation(s)
- Michal Israelashvili
- The Leslie and Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
34
|
Niccolai V, van Dijk H, Franzkowiak S, Finis J, Südmeyer M, Jonas M, Thomalla G, Siebner HR, Müller-Vahl K, Münchau A, Schnitzler A, Biermann-Ruben K. Increased beta rhythm as an indicator of inhibitory mechanisms in tourette syndrome. Mov Disord 2015; 31:384-92. [DOI: 10.1002/mds.26454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Affiliation(s)
- Valentina Niccolai
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| | - Hanneke van Dijk
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| | - Stephanie Franzkowiak
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| | - Jennifer Finis
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| | - Melanie Jonas
- Department of Psychology; Hamburg University; Hamburg Germany
| | - Götz Thomalla
- Department of Neurology; University Medical Center Hamburg-Eppendorf (UKE); Hamburg Germany
| | - Hartwig Roman Siebner
- Danish Research Center for Magnetic Resonance; Copenhagen University Hospital; Copenhagen Denmark
- Department of Neurology; Copenhagen University Hospital Bispebjerg
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School; Hannover Germany
| | - Alexander Münchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry; University of Lübeck
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| | - Katja Biermann-Ruben
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty; Düsseldorf University; Düsseldorf Germany
| |
Collapse
|
35
|
Jackson GM, Draper A, Dyke K, Pépés SE, Jackson SR. Inhibition, Disinhibition, and the Control of Action in Tourette Syndrome. Trends Cogn Sci 2015; 19:655-665. [PMID: 26440120 DOI: 10.1016/j.tics.2015.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/06/2023]
Abstract
Tourette syndrome (TS) is a neurological disorder characterized by vocal and motor tics. TS is associated with impairments in behavioral inhibition, dysfunctional signaling of the inhibitory neurotransmitter GABA, and alterations in the balance of excitatory and inhibitory influences within brain networks implicated in motor learning and the selection of actions. We review evidence that increased control over motor outputs, including the suppression of tics, may develop during adolescence in TS and be accompanied by compensatory, neuromodulatory, alterations in brain structure and function. In particular, we argue that increased control over motor outputs in TS is brought about by local increases in 'tonic' inhibition that lead to a reduction in the 'gain' of motor excitability.
Collapse
Affiliation(s)
- Georgina M Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Amelia Draper
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Katherine Dyke
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Sophia E Pépés
- School of Psychology, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
36
|
Martín‐Rodríguez JF, Ruiz‐Rodríguez MA, Palomar FJ, Cáceres‐Redondo MT, Vargas L, Porcacchia P, Gómez‐Crespo M, Huertas‐Fernández I, Carrillo F, Madruga‐Garrido M, Mir P. Aberrant cortical associative plasticity associated with severe adult Tourette syndrome. Mov Disord 2015; 30:431-5. [DOI: 10.1002/mds.26151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 11/08/2022] Open
Affiliation(s)
- Juan Francisco Martín‐Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - María Adilia Ruiz‐Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Francisco J. Palomar
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - María Teresa Cáceres‐Redondo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Laura Vargas
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Paolo Porcacchia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Mercedes Gómez‐Crespo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Ismael Huertas‐Fernández
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Marcos Madruga‐Garrido
- Sección de Neuropediatría, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSeville Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Spain
| |
Collapse
|
37
|
Draper A, Stephenson MC, Jackson GM, Pépés S, Morgan PS, Morris PG, Jackson SR. Increased GABA contributes to enhanced control over motor excitability in Tourette syndrome. Curr Biol 2014; 24:2343-7. [PMID: 25264251 PMCID: PMC4188813 DOI: 10.1016/j.cub.2014.08.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 11/27/2022]
Abstract
Tourette syndrome (TS) is a developmental neurological disorder characterized by vocal and motor tics and associated with cortical-striatal-thalamic-cortical circuit dysfunction, hyperexcitability within cortical motor areas, and altered intracortical inhibition. TS often follows a developmental time course in which tics become increasingly more controlled during adolescence in many individuals, who exhibit enhanced control over their volitional movements. Importantly, control over motor outputs appears to be brought about by a reduction in the gain of motor excitability. Here we present a neurochemical basis for a localized gain control mechanism. We used ultra-high-field (7 T) magnetic resonance spectroscopy to investigate in vivo concentrations of γ-aminobutyric acid (GABA) within primary and secondary motor areas of individuals with TS. We demonstrate that GABA concentrations within the supplementary motor area (SMA)--a region strongly associated with the genesis of motor tics in TS--are paradoxically elevated in individuals with TS and inversely related to fMRI blood oxygen level-dependent activation. By contrast, GABA concentrations in control sites do not differ from those of a matched control group. Importantly, we also show that GABA concentrations within the SMA are inversely correlated with cortical excitability in primary motor cortex and are predicted by motor tic severity and white-matter microstructure (FA) within a region of the corpus callosum that projects to the SMA within each hemisphere. Based upon these findings, we propose that extrasynaptic GABA contributes to a form of control, based upon localized tonic inhibition within the SMA, that may lead to the suppression of tics.
Collapse
Affiliation(s)
- Amelia Draper
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mary C Stephenson
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Georgina M Jackson
- Division of Psychiatry and Applied Psychology, Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham NG7 2TU, UK
| | - Sophia Pépés
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul S Morgan
- Medical Physics and Clinical Engineering, Queen's Medical Centre, Nottingham NG7 2RD, UK
| | - Peter G Morris
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
38
|
Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: A review. Parkinsonism Relat Disord 2014; 20:695-707. [DOI: 10.1016/j.parkreldis.2014.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
39
|
Brandt VC, Niessen E, Ganos C, Kahl U, Bäumer T, Münchau A. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning. PLoS One 2014; 9:e98417. [PMID: 24878665 PMCID: PMC4039486 DOI: 10.1371/journal.pone.0098417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18–39) and 15 healthy controls (12 male; age 18–33). Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover, synaptic plasticity appears to be related to symptom severity.
Collapse
Affiliation(s)
- Valerie Cathérine Brandt
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University Clinic Hamburg-Eppendorf, Hamburg, Hamburg, Germany
- * E-mail:
| | - Eva Niessen
- Institute of Neuroscience & Medicine, Research Centre Jülich, Jülich, Nordrhein-Westfalen, Germany
| | - Christos Ganos
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
- Department of Neurology, University Clinic Hamburg-Eppendorf, Hamburg, Hamburg, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, United Kingdom
| | - Ursula Kahl
- Department of Neurology, University Clinic Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
| | - Alexander Münchau
- Institute of Neurogenetics, University of Lübeck, Lübeck, Schleswig-Holstein, Germany
| |
Collapse
|
40
|
Abstract
Tourette's syndrome (TS) consists of chronic motor and phonic tics and characteristically begins in childhood. The tics can be disabling and commonly associated behavioral comorbities such as attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD), can also cause problems in daily functioning. The underlying etiology and neurobiology of TS remain unknown although genetic factors appear to be important, cortical control of basal ganglia motor function appears to be disturbed and neurochemical abnormalities, particularly involving dopamine neurotransmission, are likely present. The treatment of TS involves appropriate education and support. Tics can be treated with habit reversal cognitive behavioral therapy, medications (most commonly alpha agonists and antipsychotics), local intramuscular injections of botulinum toxin and some severe, refractory cases have responded to deep brain stimulation surgery (DBS). It is important to appropriately diagnose and treat comorbid behavioral disorders that are disrupting function. OCD can be treated with cognitive behavioral therapy, selective serotonin reuptake inhibitors, and atypical antipsychotics. DBS has become a treatment option for patients with disabling OCD despite other therapies. ADHD is treated with appropriate classroom accommodations, behavioral therapy, alpha agonists, atomoxetine or methylphenidate-containing stimulant drugs.
Collapse
Affiliation(s)
- Roger M Kurlan
- Movement Disorders Program, Atlantic Neuroscience Institute, Overlook Medical Center, 99 Beauvoir Avenue, Summit, NJ, 07902, USA,
| |
Collapse
|
41
|
Draper A, Jude L, Jackson GM, Jackson SR. Motor excitability during movement preparation in Tourette syndrome. J Neuropsychol 2013; 9:33-44. [PMID: 24283505 PMCID: PMC4374703 DOI: 10.1111/jnp.12033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/18/2013] [Indexed: 11/28/2022]
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterized by the occurrence of motor and vocal tics. TS has been linked to the impaired operation of cortical-striatal-thalamic-cortical circuits that give rise to hyper-excitability of cortical motor areas, which may be exacerbated by dysfunctional intra-cortical inhibitory mechanisms. That said, many individuals gain control over their tics during adolescence and it has been suggested that this increased control arises as a result of the development of mechanisms that operate to suppress corticospinal excitability (CSE) ahead of volitional movements. Here we used single-pulse transcranial magnetic stimulation (TMS) in conjunction with a manual Go/NoGo task to investigate alterations in CSE ahead of volitional movements in a group of adolescents with TS (N = 10). Our study demonstrated that CSE, as measured by TMS-induced motor-evoked potentials (MEPs), was significantly reduced in the TS group in the period immediately preceding a finger movement. More specifically, we show that individuals with TS, unlike their age-matched controls, do not exhibit the predicted increase in mean MEP amplitude and decrease in MEP variability that immediately precede the execution of volitional movements in typically developing young adults. Finally, we report that the magnitude of the rise in MEP amplitude across the movement preparation period in TS is significantly negatively correlated with clinical measures of motor tic severity, suggesting that individuals with severe motor tics are least able to modulate motor cortical excitability.
Collapse
|
42
|
Du X, Summerfelt A, Chiappelli J, Holcomb HH, Hong LE. Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav 2013; 46:39-48. [PMID: 24246068 DOI: 10.1080/00222895.2013.850401] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) are generated from paired-pulse transcranial magnetic stimulations (ppTMS) using certain interstimulus intervals (ISIs). ppTMS provides an accessible technique to evaluate inhibitory and facilitatory motor neural circuits. However, SICI and ICF are highly variable such that individual variability is not captured by any one static ISI. The authors hypothesized that individuals may have individualized and relatively stable pattern of SICI-ICF profiles. They tested SICI and ICF profiles using ISIs from 1 to 500 ms, on 2 occasions about 3 weeks apart, and the test-retest reliability, in 23 healthy controls. Moderate-to-good test-retest reliabilities were found at ppTMS with 1 and 3 ms ISIs (SICI) and with 12, 15, 18, and 21 ms ISIs (ICF), but not with other control ISIs. A similar pattern of results was obtained for men and women. Interestingly, the peak facilitation, peak inhibition, and maximum inhibition and facilitation ranges were individualized, such that they varied considerably across individuals but had high repeatability within individual (Cronbach's α = 0.76 to 0.85). Therefore, individuals appear to have unique inhibition-facilitation profiles that are relatively stable. Although the functional implications of individualized profiles are currently unknown, the relatively stable profiles may index underlying neural inhibition and excitation traits.
Collapse
Affiliation(s)
- Xiaoming Du
- a Maryland Psychiatric Research Center, Department of Psychiatry , University of Maryland School of Medicine , Baltimore
| | | | | | | | | |
Collapse
|
43
|
Grundey J, Freznosa S, Klinker F, Lang N, Paulus W, Nitsche MA. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology (Berl) 2013; 229:653-64. [PMID: 23644914 DOI: 10.1007/s00213-013-3125-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
RATIONAL Activation of nicotinic acetylcholine receptors has a major neuromodulatory impact on central nervous system function. Beyond acute activation, chronic nicotine intake has long-lasting effects on cortical excitability in animal experiments, caused by receptor up- or down-regulation. Knowledge about the impact of nicotine on cortical excitability in humans, however, is limited. OBJECTIVES We therefore aimed to explore the effect of nicotine intake on cortical excitability in healthy human smokers and non-smokers. METHODS The primary motor cortex served as model, and cortical excitability was monitored via transcranial magnetic stimulation (TMS). Corticospinal excitability and intracortical excitability were recorded before and after application of nicotine patch in both groups. Corticospinal excitability was explored by motor threshold and input/output curve (I/O curve), and intracortical excitability was explored by means of paired-pulse TMS techniques (intracortical facilitation (ICF), short-latency intracortical inhibition (SICI), I-wave facilitation and short-latency afferent inhibition (SAI)). RESULTS The results show that smokers during nicotine withdrawal display increased corticospinal excitability with regard to the I/O curve (TMS intensity 150 % of resting motor threshold) compared to non-smokers and furthermore enhanced SAI and diminished ICF at the intracortical circuit level. After administration of nicotine, intracortical facilitation in smokers increased, while in non-smokers, inhibition (SICI, SAI) was enhanced. CONCLUSION Our results show that chronic nicotine consumption in smokers alters cortical excitability independent from acute nicotine consumption and that acute nicotine has different effects on motor cortical excitability in both groups.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
44
|
Cognitive control over motor output in Tourette syndrome. Neurosci Biobehav Rev 2013; 37:1016-25. [DOI: 10.1016/j.neubiorev.2012.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022]
|
45
|
Busan P, D'Ausilio A, Borelli M, Monti F, Pelamatti G, Pizzolato G, Fadiga L. Motor excitability evaluation in developmental stuttering: A transcranial magnetic stimulation study. Cortex 2013; 49:781-92. [DOI: 10.1016/j.cortex.2011.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 07/15/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022]
|
46
|
Ganos C, Roessner V, Münchau A. The functional anatomy of Gilles de la Tourette syndrome. Neurosci Biobehav Rev 2012; 37:1050-62. [PMID: 23237884 DOI: 10.1016/j.neubiorev.2012.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/23/2012] [Accepted: 11/05/2012] [Indexed: 01/18/2023]
Abstract
Gilles de la Tourette syndrome (GTS) holds a prime position as a disorder transgressing the brittle boundaries of neurology and psychiatry with an entangling web of motor and behavioral problems. With tics as the disorder's hallmark and myriads of related signs such as echo-, pali- and coprophenomena, paralleled by a broad neuropsychiatric spectrum of comorbidities encompassing attention deficit hyperactivity disorder, obsessive-compulsive disorder and self-injurious behavior and depression, GTS pathophysiology remains enigmatic. In this review, in the light of GTS phenomenology, we will focus on current theories of tic-emergence related to aberrant activity in the basal ganglia and abnormal basal ganglia-cortex interplay through cortico-striato-thalamocortical loops from an anatomical, neurophysiological and functional-neuroimaging perspective. We will attempt a holistic view to the countless major and minor drawbacks of the GTS brain and comment on future directions of neuroscientific research to elucidate this common and complex neuropsychiatric syndrome, which merits scientific understanding and social acceptance.
Collapse
Affiliation(s)
- Christos Ganos
- Department of Neurology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg 20246, Germany.
| | | | | |
Collapse
|
47
|
Ganos C, Ogrzal T, Schnitzler A, Münchau A. The pathophysiology of echopraxia/echolalia: relevance to Gilles de la Tourette syndrome. Mov Disord 2012; 27:1222-9. [PMID: 22807284 DOI: 10.1002/mds.25103] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/10/2012] [Accepted: 06/11/2012] [Indexed: 11/09/2022] Open
Abstract
Echopraxia and echolalia are subsets of imitative behavior. They are essential developmental elements in social learning. Their persistence or reemergence after a certain age, though, can be a sign of underlying brain dysfunction. Although echophenomena have been acknowledged as a typical sign in Gilles de la Tourette syndrome (GTS) since its first description, their clinical significance and neural correlates are largely unknown. Here, we review the course of their scientific historical development and focus on their clinical phenomenology and differential diagnosis with a particular view to GTS. The neural basis of echophenomena will also be addressed. © 2012 Movement Disorder Society.
Collapse
Affiliation(s)
- Christos Ganos
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | | | | | | |
Collapse
|
48
|
Jackson SR, Parkinson A, Manfredi V, Millon G, Hollis C, Jackson GM. Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. J Neuropsychol 2012; 7:29-44. [PMID: 22804795 PMCID: PMC3618371 DOI: 10.1111/j.1748-6653.2012.02033.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tourette syndrome (TS) is a neuro-developmental disorder characterized by the occurrence of motor and vocal tics: involuntary, repetitive, stereotyped behaviours that occur with a limited duration, often typically many times in a single day. Previous studies suggest that children and adolescents with TS may undergo compensatory, neuroplastic changes in brain structure and function that help them gain control over their tics. In the current study we used single-pulse and dual-site paired-pulse transcranial magnetic stimulation (TMS), in conjunction with a manual choice reaction time task that induces high levels of inter-manual conflict, to investigate this conjecture in a group of children and adolescents with TS, but without co-morbid Attention Deficit Hyperactivity Disorder (ADHD). We found that performance on the behavioural response-conflict task did not differ between the adolescents with TS and a group of age-matched typically developing individuals. By contrast, our study demonstrated that cortical excitability, as measured by TMS-induced motor-evoked potentials (MEPs), was significantly reduced in the TS group in the period immediately preceding a finger movement. This effect is interpreted as consistent with previous suggestions that the cortical hyper-excitability that may give rise to tics in TS is actively suppressed by cognitive control mechanisms. Finally, we found no reliable evidence for altered patterns of functional inter-hemispheric connectivity in TS. These results provide evidence for compensatory brain reorganization that may underlie the increased self-regulation mechanisms that have been hypothesized to bring about the control of tics during adolescence.
Collapse
|
49
|
Finis J, Moczydlowski A, Pollok B, Biermann-Ruben K, Thomalla G, Heil M, Krause H, Jonas M, Schnitzler A, Münchau A. Echoes from childhood-imitation in Gilles de la Tourette Syndrome. Mov Disord 2012; 27:562-5. [PMID: 22278950 DOI: 10.1002/mds.24913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/18/2011] [Accepted: 12/26/2011] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jennifer Finis
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Franzkowiak S, Pollok B, Biermann-Ruben K, Südmeyer M, Paszek J, Thomalla G, Jonas M, Orth M, Münchau A, Schnitzler A. Motor-cortical interaction in Gilles de la Tourette syndrome. PLoS One 2012; 7:e27850. [PMID: 22238571 PMCID: PMC3251574 DOI: 10.1371/journal.pone.0027850] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/26/2011] [Indexed: 12/13/2022] Open
Abstract
Background In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. Methodology/Principal Findings 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. Conclusions/Significance The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.
Collapse
Affiliation(s)
- Stephanie Franzkowiak
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, University of Dusseldorf, Duesseldorf, Germany
- Department of Neurology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Bettina Pollok
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, University of Dusseldorf, Duesseldorf, Germany
- Department of Neurology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
- * E-mail:
| | - Katja Biermann-Ruben
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, University of Dusseldorf, Duesseldorf, Germany
- Department of Neurology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Martin Südmeyer
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, University of Dusseldorf, Duesseldorf, Germany
- Department of Neurology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Jennifer Paszek
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, University of Dusseldorf, Duesseldorf, Germany
- Department of Neurology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Jonas
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Orth
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Alexander Münchau
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alfons Schnitzler
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, University of Dusseldorf, Duesseldorf, Germany
- Department of Neurology, Medical Faculty, University of Dusseldorf, Dusseldorf, Germany
| |
Collapse
|