1
|
Matusevičiūtė R, Ignatavičiūtė E, Mickus R, Bordel S, Skeberdis VA, Raškevičius V. Evaluation of Cx43 Gap Junction Inhibitors Using a Quantitative Structure-Activity Relationship Model. Biomedicines 2023; 11:1972. [PMID: 37509611 PMCID: PMC10377234 DOI: 10.3390/biomedicines11071972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Gap junctions (GJs) made of connexin-43 (Cx43) are necessary for the conduction of electrical impulses in the heart. Modulation of Cx43 GJ activity may be beneficial in the treatment of cardiac arrhythmias and other dysfunctions. The search for novel GJ-modulating agents using molecular docking allows for the accurate prediction of binding affinities of ligands, which, unfortunately, often poorly correlate with their potencies. The objective of this study was to demonstrate that a Quantitative Structure-Activity Relationship (QSAR) model could be used for more precise identification of potent Cx43 GJ inhibitors. Using molecular docking, QSAR, and 3D-QSAR, we evaluated 16 known Cx43 GJ inhibitors, suggested the monocyclic monoterpene d-limonene as a putative Cx43 inhibitor, and tested it experimentally in HeLa cells expressing exogenous Cx43. The predicted concentrations required to produce 50% of the maximal effect (IC50) for each of these compounds were compared with those determined experimentally (pIC50 and eIC50, respectively). The pIC50ies of d-limonene and other Cx43 GJ inhibitors examined by our QSAR and 3D-QSAR models showed a good correlation with their eIC50ies (R = 0.88 and 0.90, respectively) in contrast to pIC50ies obtained from molecular docking (R = 0.78). However, molecular docking suggests that inhibitor potency may depend on their docking conformation on Cx43. Searching for new potent, selective, and specific inhibitors of GJ channels, we propose to perform the primary screening of new putative compounds using the QSAR model, followed by the validation of the most suitable candidates by patch-clamp techniques.
Collapse
Affiliation(s)
- Ramona Matusevičiūtė
- Faculty of Medicine, Lithuanian University of Health Sciences, 03101 Kaunas, Lithuania; (R.M.); (E.I.)
| | - Eglė Ignatavičiūtė
- Faculty of Medicine, Lithuanian University of Health Sciences, 03101 Kaunas, Lithuania; (R.M.); (E.I.)
| | - Rokas Mickus
- Institute of Cardiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (R.M.); (S.B.); (V.A.S.)
| | - Sergio Bordel
- Institute of Cardiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (R.M.); (S.B.); (V.A.S.)
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (R.M.); (S.B.); (V.A.S.)
| | - Vytautas Raškevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania; (R.M.); (S.B.); (V.A.S.)
| |
Collapse
|
2
|
Hippocampal neuropathology in suicide: Gaps in our knowledge and opportunities for a breakthrough. Neurosci Biobehav Rev 2021; 132:542-552. [PMID: 34906612 DOI: 10.1016/j.neubiorev.2021.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023]
Abstract
Suicide is a major global hazard. There is a need for increasing suicide awareness and effective and evidence-based interventions, targeting both suicidal ideation and conduct. However, anti-suicide pharmacological effects are unsatisfactory. The human hippocampus is vulnerable to neuropsychiatric damages and subsequently releases psychobiological signals. Human hippocampal studies of suicide completers have shown mechanistic changes in neurobiology, which, however, could not reflect the neuropathological 'fingerprints' of fatal suicide ideations and suicide attempts. In this review, we provide several leading theories of suicide, including the serotoninergic system, Wnt pathway and brain-derived neurotrophic factor/tropomyosin receptor kinase B signalling, and discuss the evidence for their roles in suicide and treatment. Moreover, the cognitive dysfunctions associated with suicide risk are discussed, as well as the novel evidence on cognitive therapies that decrease suicidal ideation. We highlight the need to apply multi-omics techniques (including single-nucleus RNA sequencing and mass spectrometry histochemistry) on hippocampal samples from donors who died by suicide or legal euthanasia, to clarify the aetiology of suicide and propose novel therapeutic strategies.
Collapse
|
3
|
Kumar A, Ghosh DK, Ranjan A. Mefloquine binding to human acyl-CoA binding protein leads to redox stress-mediated apoptotic death of human neuroblastoma cells. Neurotoxicology 2020; 77:169-180. [PMID: 31987860 DOI: 10.1016/j.neuro.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is an infectious disease that is caused by different species of Plasmodium. Several antimalarial drugs are used to counter the spread and infectivity of Plasmodium species. However, humans are also vulnerable to many of the antimalarial drugs, including the quinoline-based drugs. In particular, the antimalarial mefloquine has been reported to show adverse neuropsychiatric effects in humans. Though mefloquine is known to be neurotoxic, the molecular mechanisms associated with this phenomenon are still obscure. In this study, we show that mefloquine binds to and inactivates the human acyl-CoA binding protein (hACBP), potentially inducing redox stress in human neuroblastoma cells (IMR-32). Mefloquine occupies the acyl-CoA binding pocket of hACBP by interacting with several of the critical acyl-CoA binding amino acids. This leads to the competitive inhibition of acyl-CoA(s) binding to hACBP and to the accumulation of lipid droplets inside the IMR-32 cells. The accumulation of cytosolic lipid globules and oxidative stress finally correlates with the apoptotic death of cells. Taken together, our study deciphers a mechanistic detail of how mefloquine leads to the death of human cells by perturbing the activity of hACBP and lipid homeostasis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India; Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India.
| |
Collapse
|
4
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
5
|
Tickell-Painter M, Saunders R, Maayan N, Lutje V, Mateo-Urdiales A, Garner P. Deaths and parasuicides associated with mefloquine chemoprophylaxis: A systematic review. Travel Med Infect Dis 2017; 20:5-14. [DOI: 10.1016/j.tmaid.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022]
|
6
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
7
|
Adermark L, Bowers MS. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin Exp Res 2016; 40:1802-16. [PMID: 27476876 PMCID: PMC5407469 DOI: 10.1111/acer.13168] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/02/2016] [Indexed: 01/29/2023]
Abstract
Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol (EtOH) exposure in both humans and animal models, as even brief EtOH exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of EtOH and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder (AUD), astrocytes might be an important target for the development of next-generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long-term EtOH exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of AUD.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Box 410, SE-405 30 Gothenburg, Sweden
| | - M. Scott Bowers
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298, USA
- Faulk Center for Molecular Therapeutics, Northwestern University; Aptinyx,, Evanston, Il 60201, USA
| |
Collapse
|
8
|
Gigout S, Deisz R, Dehnicke C, Turak B, Devaux B, Pumain R, Louvel J. Role of gap junctions on synchronization in human neocortical networks. Brain Res 2016; 1637:14-21. [DOI: 10.1016/j.brainres.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
9
|
McCarthy S. Malaria Prevention, Mefloquine Neurotoxicity, Neuropsychiatric Illness, and Risk-Benefit Analysis in the Australian Defence Force. J Parasitol Res 2015; 2015:287651. [PMID: 26793391 PMCID: PMC4697095 DOI: 10.1155/2015/287651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/13/2015] [Indexed: 11/17/2022] Open
Abstract
The Australian Defence Force (ADF) has used mefloquine for malaria chemoprophylaxis since 1990. Mefloquine has been found to be a plausible cause of a chronic central nervous system toxicity syndrome and a confounding factor in the diagnosis of existing neuropsychiatric illnesses prevalent in the ADF such as posttraumatic stress disorder and traumatic brain injury. Overall health risks appear to have been mitigated by restricting the drug's use; however serious risks were realised when significant numbers of ADF personnel were subjected to clinical trials involving the drug. The full extent of the exposure, health impacts for affected individuals, and consequences for ADF health management including mental health are not yet known, but mefloquine may have caused or aggravated neuropsychiatric illness in large numbers of patients who were subsequently misdiagnosed and mistreated or otherwise failed to receive proper care. Findings in relation to chronic mefloquine neurotoxicity were foreseeable, but this eventuality appears not to have been considered during risk-benefit analyses. Thorough analysis by the ADF would have identified this long-term risk as well as other qualitative risk factors. Historical exposure of ADF personnel to mefloquine neurotoxicity now also necessitates ongoing risk monitoring and management in the overall context of broader health policies.
Collapse
Affiliation(s)
- Stuart McCarthy
- Headquarters 2nd Division, Australian Army, Randwick Barracks, Randwick, NSW 2031, Australia
| |
Collapse
|
10
|
Holden JM, Slivicki R, Dahl R, Dong X, Dwyer M, Holley W, Knott C. Behavioral effects of mefloquine in tail suspension and light/dark tests. SPRINGERPLUS 2015; 4:702. [PMID: 26609504 PMCID: PMC4648841 DOI: 10.1186/s40064-015-1483-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
|
11
|
Les jonctions gap : une nouvelle cible thérapeutique pour le traitement des troubles dépressifs majeurs ? Rev Neurol (Paris) 2015; 171:762-7. [DOI: 10.1016/j.neurol.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 01/04/2023]
|
12
|
Quinn JC. Complex Membrane Channel Blockade: A Unifying Hypothesis for the Prodromal and Acute Neuropsychiatric Sequelae Resulting from Exposure to the Antimalarial Drug Mefloquine. J Parasitol Res 2015; 2015:368064. [PMID: 26576290 PMCID: PMC4630403 DOI: 10.1155/2015/368064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
The alkaloid toxin quinine and its derivative compounds have been used for many centuries as effective medications for the prevention and treatment of malaria. More recently, synthetic derivatives, such as the quinoline derivative mefloquine (bis(trifluoromethyl)-(2-piperidyl)-4-quinolinemethanol), have been widely used to combat disease caused by chloroquine-resistant strains of the malaria parasite, Plasmodium falciparum. However, the parent compound quinine, as well as its more recent counterparts, suffers from an incidence of adverse neuropsychiatric side effects ranging from mild mood disturbances and anxiety to hallucinations, seizures, and psychosis. This review considers how the pharmacology, cellular neurobiology, and membrane channel kinetics of mefloquine could lead to the significant and sometimes life-threatening neurotoxicity associated with mefloquine exposure. A key role for mefloquine blockade of ATP-sensitive potassium channels and connexins in the substantia nigra is considered as a unifying hypothesis for the pathogenesis of severe neuropsychiatric events after mefloquine exposure in humans.
Collapse
Affiliation(s)
- Jane C. Quinn
- Plant and Animal Toxicology Group, School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovation, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
13
|
Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 2013; 109:1-27. [PMID: 23827972 PMCID: PMC4827340 DOI: 10.1016/j.pneurobio.2013.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023]
Abstract
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
Collapse
Affiliation(s)
- Igor Elman
- Providence VA Medical Center and Cambridge Health Alliance, Harvard Medical School, 26 Central Street, Somerville, MA 02143, USA.
| | | | | |
Collapse
|
14
|
Pharmacokinetic considerations in the repositioning of mefloquine for treatment of progressive multifocal leukoencephalopathy. Clin Neurol Neurosurg 2012; 114:1204-5. [DOI: 10.1016/j.clineuro.2012.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/19/2012] [Indexed: 11/23/2022]
|
15
|
Nevin RL. Investigating channel blockers for the treatment of multiple sclerosis: considerations with mefloquine and carbenoxolone. J Neuroimmunol 2012; 243:106-7. [PMID: 22236373 DOI: 10.1016/j.jneuroim.2011.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|