1
|
Wang YR, Zeng XQ, Wang J, Fowler CJ, Li QX, Bu XL, Doecke J, Maruff P, Martins RN, Rowe CC, Masters CL, Wang YJ, Liu YH. Autoantibodies to BACE1 promote Aβ accumulation and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 148:57. [PMID: 39448400 DOI: 10.1007/s00401-024-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
The profile of autoantibodies is dysregulated in patients with Alzheimer's disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET- CN, 169 Aβ-PET+ cognitively normal subjects (preclinical AD), and 31 Aβ-PET+ cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
- Centre of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | | | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - James Doecke
- The Australian E-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- CogState, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
| |
Collapse
|
2
|
Shi J, Touchon J, Middleton LT, Rovira MB, Vassar R, Vellas B, Shen Y. Now and future: Strategies for diagnosis, prevention and therapies for Alzheimer's disease. Sci Bull (Beijing) 2024:S2095-9273(24)00715-1. [PMID: 39443183 DOI: 10.1016/j.scib.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
After a number of failed drug studies on Alzheimer's disease (AD) over the past decade, clinical trials of AD started to show encouraging results and were approved or pending approval for clinical use. However, controversies on the clinically meaningful benefits and risks of brain edema and microhemorrhages have reminded us to think further about monitoring treatment and developing new drug targets. The goal of this review is to find insights from clinical trials that aimed at two key pathological features of AD, i.e., amyloid-β (Aβ) and tau protein, and to explore other targets such as anti-inflammation in AD. The complex pathophysiology of AD may require combination therapies rather than monotherapy. Throughout the course of AD, multiple pathways are disrupted, presenting a multitude of possible therapeutic targets for designing prevention and intervention for AD.
Collapse
Affiliation(s)
- Jiong Shi
- Department of Neurology, Institute on Aging and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Jacques Touchon
- Institute of Neuroscience - University Hospital Gui de Chauliac-Montpellier, Montpellier 34295, France
| | - Lefkos T Middleton
- Ageing Epidemiology (AGE) Research, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Mercé Boada Rovira
- Centro de Investigación Biomédica en Red sobre, Enfermedades Neurodegenerativas (CIBERNED), Universitat International de Catalunya-Barcelona, Barcelona 08028, Spain
| | - Robert Vassar
- Department of Cell Biology, Medical School, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bruno Vellas
- IHU HealthAge, WHO Collaborating Center for Frailty, Clinical & Geoscience Research and Geriatric Training, Toulouse University Hospital, INSERM UMR 1295, University Paul Sabatier, Toulouse 31000, France.
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
4
|
Saraceno C, Cervellati C, Trentini A, Crescenti D, Longobardi A, Geviti A, Bonfiglio NS, Bellini S, Nicsanu R, Fostinelli S, Mola G, Riccetti R, Moretti DV, Zanetti O, Binetti G, Zuliani G, Ghidoni R. Serum Beta-Secretase 1 Activity Is a Potential Marker for the Differential Diagnosis between Alzheimer's Disease and Frontotemporal Dementia: A Pilot Study. Int J Mol Sci 2024; 25:8354. [PMID: 39125924 PMCID: PMC11313328 DOI: 10.3390/ijms25158354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two major neurodegenerative diseases causing dementia. Due to similar clinical phenotypes, differential diagnosis is challenging without specific biomarkers. Beta-site Amyloid Precursor Protein cleaving enzyme 1 (BACE1) is a β-secretase pivotal in AD pathogenesis. In AD and mild cognitive impairment subjects, BACE1 activity is increased in brain/cerebrospinal fluid, and plasma levels appear to reflect those in the brain. In this study, we aim to evaluate serum BACE1 activity in FTD, since, to date, there is no evidence about its role. The serum of 30 FTD patients and 30 controls was analyzed to evaluate (i) BACE1 activity, using a fluorescent assay, and (ii) Glial Fibrillary Acid Protein (GFAP) and Neurofilament Light chain (NfL) levels, using a Simoa kit. As expected, a significant increase in GFAP and NfL levels was observed in FTD patients compared to controls. Serum BACE1 activity was not altered in FTD patients. A significant increase in serum BACE1 activity was shown in AD vs. FTD and controls. Our results support the hypothesis that serum BACE1 activity is a potential biomarker for the differential diagnosis between AD and FTD.
Collapse
Affiliation(s)
- Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.T.); (R.R.)
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (N.S.B.)
| | - Natale Salvatore Bonfiglio
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (N.S.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Silvia Fostinelli
- MAC–Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.F.); (G.B.)
| | - Gianmarco Mola
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Raffaella Riccetti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.T.); (R.R.)
| | - Davide Vito Moretti
- Alzheimer’s Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Orazio Zanetti
- Alzheimer’s Research Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Giuliano Binetti
- MAC–Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.F.); (G.B.)
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| |
Collapse
|
5
|
Shen K, Shi Y, Wang X, Leung SW. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024:AD.202.0424. [PMID: 39122454 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Ws Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
7
|
Gao F, Zhang M, Wang Q, Ni M, Liu C, Deng K, Xie Q, Wang S, Shi J, Shen Y. Associations of CSF BACE1 with amyloid pathology, neurodegeneration, and cognition in Alzheimer's disease. Acta Neuropathol 2024; 147:97. [PMID: 38856925 DOI: 10.1007/s00401-024-02750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-β (Aβ) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPβ that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPβ levels and CSF Aβ40, Aβ42, and Aβ42/Aβ40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPβ levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPβ were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Mengguo Zhang
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiong Wang
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shicung Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jiong Shi
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yong Shen
- Department of Neurology, Institute On Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
8
|
Jung M, Jung JS, Pfeifer J, Hartmann C, Ehrhardt T, Abid CL, Kintzel J, Puls A, Navarrete Santos A, Hollemann T, Riemann D, Rujescu D. Neuronal Stem Cells from Late-Onset Alzheimer Patients Show Altered Regulation of Sirtuin 1 Depending on Apolipoprotein E Indicating Disturbed Stem Cell Plasticity. Mol Neurobiol 2024; 61:1562-1579. [PMID: 37728850 PMCID: PMC10896791 DOI: 10.1007/s12035-023-03633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Late-onset Alzheimer's disease (AD) is a complex multifactorial disease. The greatest known risk factor for late-onset AD is the E4 allele of the apolipoprotein E (APOE), while increasing age is the greatest known non-genetic risk factor. The cell type-specific functions of neural stem cells (NSCs), in particular their stem cell plasticity, remain poorly explored in the context of AD pathology. Here, we describe a new model that employs late-onset AD patient-derived induced pluripotent stem cells (iPSCs) to generate NSCs and to examine the role played by APOE4 in the expression of aging markers such as sirtuin 1 (SIRT1) in comparison to healthy subjects carrying APOE3. The effect of aging was investigated by using iPSC-derived NSCs from old age subjects as healthy matched controls. Transcript and protein analysis revealed that genes were expressed differently in NSCs from late-onset AD patients, e.g., exhibiting reduced autophagy-related protein 7 (ATG7), phosphatase and tensin homolog (PTEN), and fibroblast growth factor 2 (FGF2). Since SIRT1 expression differed between APOE3 and APOE4 NSCs, the suppression of APOE function in NSCs also repressed the expression of SIRT1. However, the forced expression of APOE3 by plasmids did not recover differently expressed genes. The altered aging markers indicate decreased plasticity of NSCs. Our study provides a suitable in vitro model to investigate changes in human NSCs associated with aging, APOE4, and late-onset AD.
Collapse
Affiliation(s)
- Matthias Jung
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Juliane-Susanne Jung
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Jenny Pfeifer
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Carla Hartmann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Toni Ehrhardt
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jenny Kintzel
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Puls
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06118, Halle (Saale), Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry (IPC), Faculty of Medicine, Martin Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Dagmar Riemann
- Department Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Magdeburger Strasse 2, 06112, Halle (Saale), Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
9
|
Yeganeh Markid T, Hosseinpour Feizi MA, Talebi M, Rezazadeh M, Khalaj-Kondori M. Gene expression investigation of four key regulators of polyadenylation and alternative adenylation in the periphery of late-onset Alzheimer's disease patients. Gene 2024; 895:148013. [PMID: 37981081 DOI: 10.1016/j.gene.2023.148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
10
|
Coimbra JRM, Resende R, Custódio JBA, Salvador JAR, Santos AE. BACE1 Inhibitors for Alzheimer's Disease: Current Challenges and Future Perspectives. J Alzheimers Dis 2024; 101:S53-S78. [PMID: 38943390 DOI: 10.3233/jad-240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Disease-modifying therapies (DMT) for Alzheimer's disease (AD) are highly longed-for. In this quest, anti-amyloid therapies take center stage supported by genetic facts that highlight an imbalance between production and clearance of amyloid-β peptide (Aβ) in AD patients. Indeed, evidence from basic research, human genetic and biomarker studies, suggests the accumulation of Aβ as a driver of AD pathogenesis and progression. The aspartic protease β-site AβPP cleaving enzyme (BACE1) is the initiator for Aβ production. Underpinning a critical role for BACE1 in AD pathophysiology are the elevated BACE1 concentration and activity observed in the brain and body fluids of AD patients. Therefore, BACE1 is a prime drug target for reducing Aβ levels in early AD. Small-molecule BACE1 inhibitors have been extensively developed for the last 20 years. However, clinical trials with these molecules have been discontinued for futility or safety reasons. Most of the observed adverse side effects were due to other aspartic proteases cross-inhibition, including the homologue BACE2, and to mechanism-based toxicity since BACE1 has substrates with important roles for synaptic plasticity and synaptic homeostasis besides amyloid-β protein precursor (AβPP). Despite these setbacks, BACE1 persists as a well-validated therapeutic target for which a specific inhibitor with high substrate selectivity may yet to be found. In this review we provide an overview of the evolution in BACE1 inhibitors design pinpointing the molecules that reached advanced phases of clinical trials and the liabilities that precluded adequate trial effects. Finally, we ponder on the challenges that anti-amyloid therapies must overcome to achieve clinical success.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - José B A Custódio
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Gonzalez-Ruiz C, Ortiz-Flores M, Bernal-Hernández J, Mondragon-Lozano R, Palma-Guzman A, Coyoy-Salgado A, Salgado-Ceballos H. Phytochemical Extract from Carica papaya Leaves and Punica granatum Seeds as Therapy Against Cognitive Impairment in a Murine Model. Mol Neurobiol 2024; 61:450-464. [PMID: 37626269 DOI: 10.1007/s12035-023-03547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Mild cognitive impairment (MCI) is defined as inter-stage between normal cognitive aging and major neurocognitive disorder (MND). This state of decay is a crucial factor in treatment to prevent the progression to MND. In this study, our group developed a virtual screening process to evaluate 2568 phytochemical compounds against 5 key proteins associated with MCI and MND. As a result, two potential candidates were identified: carpaine, found in Carica papaya leaves, and punicalagin, present in Punica granatum. A model of cognitive impairment (CI) was developed in 10-month-old male Sprague Dawley rats by administering aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 30 days. After AlCl3 administration period, one of the groups received carpaine and punicalagin in a phytochemical extract (PE) by oral gavage for 30 days. Novel object recognition test (NOR) was assessed at three different time points (T1 - before CI, T2 - after CI, and T3 - after PE treatment). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were identified in the hippocampus of rats at the end of the study period. After administration of AlCl3, a reduction in discrimination index vs control rats (CI = 0.012 ± 0.08 vs Control = 0.076 ± 0.03), was observed. After phytochemical extract treatment, a significant increase in discrimination index values was observed in the PE group 0.4643 ± 0.13 vs CI group 0.012 ± 0.08. Additionally, the evaluation of immunohistochemistry showed an increase in GFAP positivity in the hippocampus of the CI groups, while a slight decrease was observed in the PE group. This work addressed a comprehensive methodology that utilized in silico tools to identify phytochemical compounds (carpaine and punicalagin) as potential candidates for affecting key proteins in CI. The phytochemical extract containing carpaine and punicalagin resulted in a trend in the decrease of GFAP expression in the hippocampus and improved recognition memory in rats with CI induced by age and AlCl3 administration.
Collapse
Affiliation(s)
- Cristian Gonzalez-Ruiz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Miguel Ortiz-Flores
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Miguel Hidalgo, Mexico City, Mexico
| | - Jorge Bernal-Hernández
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico
| | - Rodrigo Mondragon-Lozano
- Researchers for Mexico CONAHCyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Cuauhtémoc, Mexico city, Mexico
| | - Alam Palma-Guzman
- Instituto Mexicano del Seguro Social, Laboratorio de Histología, Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Cuauhtémoc, Mexico City, Mexico
| | - Angélica Coyoy-Salgado
- Researchers for Mexico CONAHCyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Cuauhtémoc, Mexico city, Mexico
| | - Hermelinda Salgado-Ceballos
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de Mexico, Mexico.
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Cuauhtémoc, Mexico City, Mexico.
| |
Collapse
|
12
|
Thakur U, Varma AR. Psychological Problem Diagnosis and Management in the Geriatric Age Group. Cureus 2023; 15:e38203. [PMID: 37252553 PMCID: PMC10224735 DOI: 10.7759/cureus.38203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
The definition of geriatrics is very complex to explain though it can be written as the treatment and care provided by healthcare and medical systems primarily to more venerable and senior citizens group of the population. The age group considered to be entering the old group is believed to be those who have reached their sixth decade of life. However, most of the global geriatric population doesn't need treatment until their seventh decade. Bodily impairment, both physical and mental, due to various reasons, for example, financial or personal reasons or feeling ignored, is reasonable for clinicians to anticipate caring for a growing proportion of older patients with complicated medical and psychosocial concerns. Complex ethical quandaries could develop as a result of these difficulties and problems. Who should anticipate ethical challenges faced by doctors early during management? We offer practical recommendations for improving communication because ineffective patient-clinician communication might result in moral dilemmas. Physical impairment, hopelessness, and cognitive decline are all more prevalent as people age. Politicians and healthcare providers of nations should step in to search for a measure to reduce the uprising of the condition; otherwise, it will lead to an uprising of the cases in an exponential manner. It is necessary to increase the financial challenges faced by the elderly. In addition, awareness should be increased, as well as programs aimed at enhancing their standard of living.
Collapse
Affiliation(s)
- Ujwall Thakur
- Psychiatry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Anuj R Varma
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
13
|
Leclerc M, Bourassa P, Tremblay C, Caron V, Sugère C, Emond V, Bennett DA, Calon F. Cerebrovascular insulin receptors are defective in Alzheimer's disease. Brain 2023; 146:75-90. [PMID: 36280236 PMCID: PMC9897197 DOI: 10.1093/brain/awac309] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 01/11/2023] Open
Abstract
Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined. Here, we show that human and murine cerebral insulin receptors (INSRs), particularly the long isoform INSRα-B, are concentrated in microvessels rather than in the parenchyma. Vascular concentrations of INSRα-B were lower in the parietal cortex of subjects diagnosed with Alzheimer's disease, positively correlating with cognitive scores, leading to a shift towards a higher INSRα-A/B ratio, consistent with cerebrovascular insulin resistance in the Alzheimer's disease brain. Vascular INSRα was inversely correlated with amyloid-β plaques and β-site APP cleaving enzyme 1, but positively correlated with insulin-degrading enzyme, neprilysin and P-glycoprotein. Using brain cerebral intracarotid perfusion, we found that the transport rate of insulin across the blood-brain barrier remained very low (<0.03 µl/g·s) and was not inhibited by an insulin receptor antagonist. However, intracarotid perfusion of insulin induced the phosphorylation of INSRβ that was restricted to microvessels. Such an activation of vascular insulin receptor was blunted in 3xTg-AD mice, suggesting that Alzheimer's disease neuropathology induces insulin resistance at the level of the blood-brain barrier. Overall, the present data in post-mortem Alzheimer's disease brains and an animal model of Alzheimer's disease indicate that defects in the insulin receptor localized at the blood-brain barrier strongly contribute to brain insulin resistance in Alzheimer's disease, in association with β-amyloid pathology.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Camille Sugère
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Hampel H, Caruso G, Nisticò R, Piccioni G, Mercuri NB, Giorgi FS, Ferrarelli F, Lemercier P, Caraci F, Lista S, Vergallo A. Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model. Curr Neuropharmacol 2023; 21:31-53. [PMID: 34852743 PMCID: PMC10193755 DOI: 10.2174/1570159x19666211201095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaia Piccioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Simone Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
15
|
Yin W, Wan K, Zhu W, Zhou X, Tang Y, Zheng W, Cao J, Song Y, Zhao H, Zhu X, Sun Z. Bilateral Hippocampal Volume Mediated the Relationship Between Plasma BACE1 Concentration and Memory Function in the Early Stage of Alzheimer's Disease: A Cross-Sectional Study. J Alzheimers Dis 2023; 92:1001-1013. [PMID: 36847009 DOI: 10.3233/jad-221174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key enzyme in the formation of amyloid-β (Aβ) protein. Increasing evidence suggests that BACE1 concentration is a potential biomarker for Alzheimer's disease (AD). OBJECTIVE To evaluate the correlations between plasma BACE1 concentration, cognition, and hippocampal volume at different stages of the AD continuum. METHODS Plasma BACE1 concentrations were measured in 32 patients with probable dementia due to AD (ADD), 48 patients with mild cognitive impairment (MCI) due to AD, and 40 cognitively unimpaired (CU) individuals. Memory function was evaluated using the auditory verbal learning test (AVLT), and voxel-based morphometry was used to analyze bilateral hippocampal volumes. Correlation and mediation analyses were performed to investigate the associations between plasma BACE1 concentration, cognition, and hippocampal atrophy. RESULTS The MCI and ADD groups exhibited elevated BACE1 concentrations compared with the CU group after adjusting for age, sex, and apolipoprotein E (APOE) genotype. Increased BACE1 concentration was found in AD continuum patients who were APOE ɛ4 carriers (p < 0.05). BACE1 concentration was negatively associated with the scores of the subitems of the AVLT and hippocampal volume (p < 0.05, false discovery rate correction) in the MCI group. Moreover, bilateral hippocampal volume mediated the relationship between BACE1 concentration and recognition in the MCI group. CONCLUSION BACE1 expression increased in the AD continuum, and bilateral hippocampal volume mediated the effect of BACE1 concentration on memory function in patients with MCI. Research has indicated that the plasma BACE1 concentration might be a biomarker at the early stage of AD.
Collapse
Affiliation(s)
- Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhui Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jing Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
16
|
Herman D, Andrea V, Pablo L, Simone L, Andrea B, Nicholas A, Enrica C, Henrik Z, Kaj B, Eugeen V, Harald H. Menopause hormone therapy significantly alters pathophysiological biomarkers of Alzheimer's disease. Alzheimers Dement 2022; 19:1320-1330. [PMID: 36218064 DOI: 10.1002/alz.12759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION This increasing body of literature indicates that menopause hormonal replacement therapy (MHT) may substantially mitigate the risk of developing late-life cognitive decline due to progressive Alzheimer's disease (AD) pathophysiology. For the first time, we investigated the question whether MHT impacts AD biomarker-informed pathophysiological dynamics in de-novo diagnosed menopausal women. METHODS We analyzed baseline and longitudinal differences between MHT-taking and -not women in terms of concentrations of core pathophysiological AD plasma biomarkers, validated in symptomatic and cognitively healthy individuals, including biomarkers of (1) the amyloid-β (Aβ) pathway, (2) tau pathophysiology, (3) neuronal loss, and (4) axonal damage and neurodegeneration. RESULTS We report a prominent and significant treatment response at the Aβ pathway biomarker level. Women at genetic risk for AD (APOE e4 allele carriers) have particularly shown favorable results from treatment. DISCUSSION To our knowledge, we present first prospective clinical evidence on effects of MHT on AD pathophysiology during menopause.
Collapse
Affiliation(s)
- Depypere Herman
- Department of Gynecology, Breast and Menopause Clinic University Hospital, Coupure Menopause Centre Ghent Belgium
| | - Vergallo Andrea
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Lemercier Pablo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Lista Simone
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Benedet Andrea
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Ashton Nicholas
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- King's College London, Institute of Psychiatry, Psychology & Neuroscience Maurice Wohl Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation London UK
| | - Cavedo Enrica
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | - Zetterberg Henrik
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology Queen Square London UK
- UK Dementia Research Institute at UCL London UK
- Hong Kong Center for Neurodegenerative Diseases Hong Kong China
| | - Blennow Kaj
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology the Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | | | - Hampel Harald
- Sorbonne University, Alzheimer Precision Medicine (APM), AP‐HP, Pitié‐Salpêtrière Hospital Boulevard de l'hôpital Paris France
| | | |
Collapse
|
17
|
Valiukas Z, Ephraim R, Tangalakis K, Davidson M, Apostolopoulos V, Feehan J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines (Basel) 2022; 10:vaccines10091527. [PMID: 36146605 PMCID: PMC9503401 DOI: 10.3390/vaccines10091527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the umbrella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments for AD have consisted of medications that can slow the progression of symptoms but not halt or reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effective approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront of these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condition, with common immunotherapies for AD consisting of the use of monoclonal antibodies or vaccines. Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, but treatments specifically targeting tau protein are being researched as well. These treatments have had great variance in their efficacy and safety, leading to a constant need for the research and development of new safe and effective treatments.
Collapse
Affiliation(s)
- Zachary Valiukas
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
| | - Kathy Tangalakis
- First Year College, Victoria University, Melbourne, VIC 3011, Australia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3011, Australia
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
18
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
19
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
20
|
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79:101654. [PMID: 35636691 DOI: 10.1016/j.arr.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and cases are rising worldwide. The effort to fight this disease is hampered by a lack of disease-modifying treatments and the absence of an early, accurate diagnostic tool. Neuropathology begins years or decades before symptoms occur and, upon onset of symptoms, diagnosis can take a year or more. Such delays postpone treatment and make research into the early stages of the disease difficult. Ideally, clinicians require a minimally invasive test that can detect AD in its early stages, before cognitive symptoms occur. Advances in proteomic technologies have facilitated the study of promising biomarkers of AD. Over the last two years (2019-2021) studies have identified and validated many species which can be measured in cerebrospinal fluid (CSF), plasma, or in both fluids, and which have a high predictive value for AD. We herein discuss proteins which have been highlighted as promising biomarkers of AD in the last two years, and consider implications for future research within the research framework of the amyloid (A), tau (T), neurodegeneration (N) scoring system. We review recently identified species of amyloid and tau which may improve diagnosis when used in combination with current measures such as amyloid-beta-42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau). In addition, several proteins have been identified as likely proxies for neurodegeneration, including neurofilament light (NfL), synaptosomal-associated protein 25 (SNAP-25) and neurogranin (NRGN). Finally, proteins originating from diverse processes such as neuroinflammation, lipid transport and mitochondrial dysfunction could aid in both AD diagnosis and patient stratification.
Collapse
|
21
|
Liu H, Li Q, Zhang X, Shi Y, Li J. Effect of ginkgolide K on calcium channel activity in Alzheimer's disease. Exp Ther Med 2022; 23:426. [PMID: 35607377 PMCID: PMC9121205 DOI: 10.3892/etm.2022.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative dementia with the key pathological hallmark of amyloid deposits that may induce mitochondrial dysfunction. Ginkgolide K (GK) has been proven to have neuroprotective effects. The present study sought to explore the neuroprotective effect of GK through regulation of the expression of mitochondrial Ca2+ uniporter (MCU) in the pathology of AD. SH-SY5Y cells were cultured and the expression of MCU was enhanced by transfection of MCU recombinant vectors or knockdown by MCU small interfering RNA. The cells were treated with GK and amyloid β (Aβ). Thereafter, the effects of GK, MCU expression and Aβ on viability and apoptosis of SH-SY5Y cells were examined via a WST-1 assay, flow cytometry and Caspase-3/8 activity assays, respectively. The effects of GK, MCU expression and Aβ on the calcium levels in mitochondria were also examined. The regulatory effect of GK on MCU expression was examined by reverse transcription-quantitative PCR and western blot analysis. Furthermore, APP/PS1 mice received supplementation with GK and their cognitive ability was then examined through water maze tests, while the expression of MCU was examined using immunohistochemistry. The results indicated that enhancing the expression of MCU inhibited cell viability and promoted apoptosis. GK protected cells from amyloid-induced cytotoxicity by promoting cell viability and preventing cell apoptosis. The neuroprotective effect of GK was abolished when MCU expression was knocked down. GK decreased the expression of MCU in vitro and downregulation of MCU decreased the calcium level in mitochondria. Treatment with GK in APP/PS1 mice downregulated the expression of MCU in the brains and alleviated cognitive impairment. In conclusion, the present study demonstrated that the administration of GK protected neurons by preventing apoptosis. Furthermore, the neuroprotective effect of GK in neuronal cells was indicated to be related to the inhibition of MCU expression. Therefore, administration of GK may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Hongbin Liu
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Qinyun Li
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Xiaodan Zhang
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Yun Shi
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Jinyi Li
- Dolu Health Consultant Co., Ltd., Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
22
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
23
|
Dey J, Roberts A, Mahari S, Gandhi S, Tripathi PP. Electrochemical Detection of Alzheimer’s Disease Biomarker, β-Secretase Enzyme (BACE1), With One-Step Synthesized Reduced Graphene Oxide. Front Bioeng Biotechnol 2022; 10:873811. [PMID: 35402415 PMCID: PMC8987718 DOI: 10.3389/fbioe.2022.873811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/14/2023] Open
Abstract
β-Secretase1 (BACE1) catalyzes the rate-limiting step in the generation of amyloid-β peptides, that is, the principal component involved in the pathology of Alzheimer’s disease (AD). Recent research studies show correlation between blood and cerebrospinal fluid (CSF) levels of BACE1 with the pathophysiology of AD. In this study, we report one-step synthesized reduced graphene oxide (rGO), activated via carbodiimide chemistry, conjugated with BACE1 antibody (Ab), and immobilized on fluorine-doped tin oxide (FTO) electrodes for rapid detection of BACE1 antigen (Ag) for AD diagnosis. The synthesis and fabrication steps were characterized using different types of spectroscopic, X-ray analytic, microscopic, and voltametric techniques. Various parameters including nanomaterial/Ab concentration, response time, pH, temperature, and rate of scan were standardized for maximum current output using the modified electrode. Final validation was performed via detection of BACE1 Ag ranging from 1 fM to 1 µM, with a detection limit of 0.64 fM in buffer samples and 1 fM in spiked serum samples, as well as negligible cross-reactivity with neurofilament Ag in buffer, spiked serum, and spiked artificial CSF. The proposed immunosensor gave a quick result in 30 s, and good repeatability and storage stability for a month, making it a promising candidate for sensitive, specific, and early diagnosis of AD. Thus, the fabricated electrochemical biosensor for BACE-1 detection improves detection performance compared to existing sensors as well as reduces detection time and cost, signifying its potential in early diagnosis of AD in clinical samples.
Collapse
Affiliation(s)
- Jhilik Dey
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| | - Prem Prakash Tripathi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| |
Collapse
|
24
|
Nicsanu R, Cervellati C, Benussi L, Squitti R, Zanardini R, Rosta V, Trentini A, Ferrari C, Saraceno C, Longobardi A, Bellini S, Binetti G, Zanetti O, Zuliani G, Ghidoni R. Increased Serum Beta-Secretase 1 Activity is an Early Marker of Alzheimer's Disease. J Alzheimers Dis 2022; 87:433-441. [PMID: 35275540 PMCID: PMC9198762 DOI: 10.3233/jad-215542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Beta-site APP cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in amyloid-β (Aβ) plaques formation. BACE1 activity is increased in brains of patients with AD and mild cognitive impairment (MCI) and plasma levels of BACE1 appears to reflect those in the brains. OBJECTIVE In this work, we investigated the role of serum BACE1 activity as biomarker for AD, estimating the diagnostic accuracy of the assay and assessing the correlation of BACE1 activity with levels of Aβ 1 - 40, Aβ 1 - 42, and Aβ 40/42 ratio in serum, known biomarkers of brain amyloidosis. METHODS Serum BACE1 activity and levels of Aβ 1 - 40, Aβ 1 - 42, were assessed in 31 AD, 28 MCI, diagnosed as AD at follow-up (MCI-AD), and 30 controls. The BACE1 analysis was performed with a luciferase assay, where interpolation of relative fluorescence units with a standard curve of concentration reveals BACE1 activity. Serum levels of Aβ 1 - 40, Aβ 1 - 42 were measured with the ultrasensitive Single Molecule Array technology. RESULTS BACE1 was increased (higher than 60%) in AD and MCI-AD: a cut-off of 11.04 kU/L discriminated patients with high sensitivity (98.31%) and specificity (100%). Diagnostic accuracy was higher for BACE1 than Aβ 40/42 ratio. High BACE1 levels were associated with worse cognitive performance and earlier disease onset, which was anticipated by 8 years in patients with BACE1 values above the median value (> 16.67 kU/L). CONCLUSION Our results provide new evidence supporting serum/plasma BACE1 activity as an early biomarker of AD.
Collapse
Affiliation(s)
- Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Italy
| | - Clarissa Ferrari
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Orazio Zanetti
- Alzheimer's Research Unit and MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
25
|
Hardy-Sosa A, León-Arcia K, Llibre-Guerra JJ, Berlanga-Acosta J, Baez SDLC, Guillen-Nieto G, Valdes-Sosa PA. Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci 2022; 14:683689. [PMID: 35360215 PMCID: PMC8963375 DOI: 10.3389/fnagi.2022.683689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Because of high prevalence of Alzheimer's disease (AD) in low- and middle-income countries (LMICs), there is an urgent need for inexpensive and minimally invasive diagnostic tests to detect biomarkers in the earliest and asymptomatic stages of the disease. Blood-based biomarkers are predicted to have the most impact for use as a screening tool and predict the onset of AD, especially in LMICs. Furthermore, it has been suggested that panels of markers may perform better than single protein candidates. Methods Medline/Pubmed was searched to identify current relevant studies published from January 2016 to December 2020. We included all full-text articles examining blood-based biomarkers as a set of protein markers or panels to aid in AD's early diagnosis, prognosis, and characterization. Results Seventy-six articles met the inclusion criteria for systematic review. Majority of the studies reported plasma and serum as the main source for biomarker determination in blood. Protein-based biomarker panels were reported to aid in AD diagnosis and prognosis with better accuracy than individual biomarkers. Conventional (amyloid-beta and tau) and neuroinflammatory biomarkers, such as amyloid beta-42, amyloid beta-40, total tau, phosphorylated tau-181, and other tau isoforms, were the most represented. We found the combination of amyloid beta-42/amyloid beta-40 ratio and APOEε4 status to be most represented with high accuracy for predicting amyloid beta-positron emission tomography status. Conclusion Assessment of Alzheimer's disease biomarkers in blood as a non-invasive and cost-effective alternative will potentially contribute to early diagnosis and improvement of therapeutic interventions. Given the heterogeneous nature of AD, combination of markers seems to perform better in the diagnosis and prognosis of the disease than individual biomarkers.
Collapse
Affiliation(s)
- Anette Hardy-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | - Saiyet de la C. Baez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Neurociencias de Cuba, La Habana, Cuba
| |
Collapse
|
26
|
Li Y, Han X, Fan H, Sun J, Ni M, Zhang L, Fang F, Zhang W, Ma P. Circular RNA AXL increases neuron injury and inflammation through targeting microRNA-328 mediated BACE1 in Alzheimer’s disease. Neurosci Lett 2022; 776:136531. [DOI: 10.1016/j.neulet.2022.136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
27
|
Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies. Cells 2022; 11:cells11030479. [PMID: 35159288 PMCID: PMC8833923 DOI: 10.3390/cells11030479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Ginkgo biloba extract (GBE) has been widely used to treat central nervous system and cardiovascular diseases. Accumulating evidence has revealed the therapeutic potential of GBE against AD; however, no systematic evaluation has been performed; (2) Methods: a total of 17 preclinical studies and 20 clinical trials assessing the therapeutic effects of GBE against AD were identified from electronic databases. The data in the reports were extracted to conduct a meta-analysis of the AD-related pathological features or symptoms; (3) Results: For the preclinical reports, 45 animals treated with GBE, in six studies, were subjected to cognitive function assessments by the Morris water maze. GBE was shown to reduce the escape latencies in several studies, in both rats and mice (I2 > 70%, p < 0.005). For the clinical trials, eight trials, including 2100 individuals, were conducted. The results show that GBE improved the SKT and ADAS-Cog scores in early-stage AD patients after high doses and long-term administration; (4) Conclusions: GBE displayed generally consistent anti-AD effects in animal experiments, and it might improve AD symptoms in early-stage AD patients after high doses and long-term administration. A lack of sample size calculations and the poor quality of the methods are two obvious limitations of the studies. Nevertheless, the preclinical and clinical data suggest that further large-scale clinical trials may be needed in order to examine the effects of long-term GEB administration on early-stage AD.
Collapse
|
28
|
Lan Z, Chen Y, Jin J, Xu Y, Zhu X. Long Non-coding RNA: Insight Into Mechanisms of Alzheimer's Disease. Front Mol Neurosci 2022; 14:821002. [PMID: 35095418 PMCID: PMC8795976 DOI: 10.3389/fnmol.2021.821002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- *Correspondence: Xiaolei Zhu
| |
Collapse
|
29
|
Cervellati C, Valacchi G, Zuliani G. BACE1 role in Alzheimer's disease and other dementias: from the theory to the practice. Neural Regen Res 2021; 16:2407-2408. [PMID: 33907020 PMCID: PMC8374572 DOI: 10.4103/1673-5374.313041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Science Department, NC State University, Kannapolis, NC, USA
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Dai L, Shen Y. Insights into T-cell dysfunction in Alzheimer's disease. Aging Cell 2021; 20:e13511. [PMID: 34725916 PMCID: PMC8672785 DOI: 10.1111/acel.13511] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cells, the critical immune cells of the adaptive immune system, are often dysfunctional in Alzheimer's disease (AD) and are involved in AD pathology. Reports highlight neuroinflammation as a crucial modulator of AD pathogenesis, and aberrant T cells indirectly contribute to neuroinflammation by secreting proinflammatory mediators via direct crosstalk with glial cells infiltrating the brain. However, the mechanisms underlying T‐cell abnormalities in AD appear multifactorial. Risk factors for AD and pathological hallmarks of AD have been tightly linked with immune responses, implying the potential regulatory effects of these factors on T cells. In this review, we discuss how the risk factors for AD, particularly Apolipoprotein E (ApoE), Aβ, α‐secretase, β‐secretase, γ‐secretase, Tau, and neuroinflammation, modulate T‐cell activation and the association between T cells and pathological AD hallmarks. Understanding these associations is critical to provide a comprehensive view of appropriate therapeutic strategies for AD.
Collapse
Affiliation(s)
- Linbin Dai
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| | - Yong Shen
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| |
Collapse
|
31
|
Dai L, Wang Q, Lv X, Gao F, Chen Z, Shen Y. Elevated β-secretase 1 expression mediates CD4 + T cell dysfunction via PGE2 signalling in Alzheimer's disease. Brain Behav Immun 2021; 98:337-348. [PMID: 34500034 DOI: 10.1016/j.bbi.2021.08.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 01/06/2023] Open
Abstract
Circulating CD4+ T cells are dysfunctional in Alzheimer's disease (AD), however, the underlying molecular mechanisms are not clear. In this study, we demonstrate that CD4+ T cells from AD patients and 5xFAD transgenic mice exhibit elevated levels of β-secretase 1 (BACE1). Overexpression of BACE1 in CD4+ T cells potentiated CD4+ T-cell activation and T-cell-dependent immune responses. Mechanistically, BACE1 modulates prostaglandin E2 (PGE2) synthetase-microsomal prostaglandin E synthase 2 (mPGES2)-to promote mPGES2 maturation and PGE2 production, which increases T-cell receptor (TCR) signalling. Moreover, administration of peripheral PGE2 signalling antagonists partially ameliorates CD4+ T cell overactivation and AD pathology in 5xFAD mice. Overall, our results reveal a potential role for BACE1 in mediating CD4+ T-cell dysfunction in AD.
Collapse
Affiliation(s)
- Linbin Dai
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Xinyi Lv
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Zuolong Chen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Neurodegenerative Disorder Research Centre, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China; Centre for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
Puigoriol-Illamola D, Companys-Alemany J, McGuire K, Homer NZM, Leiva R, Vázquez S, Mole DJ, Griñán-Ferré C, Pallàs M. Inhibition of 11β-HSD1 Ameliorates Cognition and Molecular Detrimental Changes after Chronic Mild Stress in SAMP8 Mice. Pharmaceuticals (Basel) 2021; 14:ph14101040. [PMID: 34681264 PMCID: PMC8540242 DOI: 10.3390/ph14101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired glucocorticoid (GC) signaling is a significant factor in aging, stress, and neurodegenerative diseases such as Alzheimer's disease. Therefore, the study of GC-mediated stress responses to chronic moderately stressful situations, which occur in daily life, is of huge interest for the design of pharmacological strategies toward the prevention of neurodegeneration. To address this issue, SAMP8 mice were exposed to the chronic mild stress (CMS) paradigm for 4 weeks and treated with RL-118, an 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor. The inhibition of this enzyme is linked with a reduction in GC levels and cognitive improvement, while CMS exposure has been associated with reduced cognitive performance. The aim of this project was to assess whether RL-118 treatment could reverse the deleterious effects of CMS on cognition and behavioral abilities and to evaluate the molecular mechanisms that compromise healthy aging in SAMP8 mice. First, we confirmed the target engagement between RL-118 and 11β-HSD1. Additionally, we showed that DNA methylation, hydroxymethylation, and histone phosphorylation were decreased by CMS induction, and increased by RL-118 treatment. In addition, CMS exposure caused the accumulation of reactive oxygen species (ROS)-induced damage and increased pro-oxidant enzymes-as well as pro-inflammatory mediators-through the NF-κB pathway and astrogliosis markers, such as GFAP. Of note, these modifications were reversed by 11β-HSD1 inhibition. Remarkably, although CMS altered mTORC1 signaling, autophagy was increased in the SAMP8 RL-118-treated mice. We also showed an increase in amyloidogenic processes and a decrease in synaptic plasticity and neuronal remodeling markers in mice under CMS, which were consequently modified by RL-118 treatment. In conclusion, 11β-HSD1 inhibition through RL-118 ameliorated the detrimental effects induced by CMS, including epigenetic and cognitive disturbances, indicating that GC-excess attenuation shows potential as a therapeutic strategy for age-related cognitive decline and AD.
Collapse
Affiliation(s)
- Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Kris McGuire
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (K.M.); (D.J.M.)
| | - Natalie Z. M. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK;
| | - Rosana Leiva
- Medicinal Chemistry Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.L.); (S.V.)
| | - Santiago Vázquez
- Medicinal Chemistry Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.L.); (S.V.)
| | - Damian J. Mole
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (K.M.); (D.J.M.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (D.P.-I.); (J.C.-A.); (C.G.-F.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Passeig Vall d’Hebron 171, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-4024531
| |
Collapse
|
33
|
Zuliani G, Trentini A, Brombo G, Rosta V, Guasti P, Romagnoli T, Polastri M, Marabini L, Pedrini D, Pistolesi C, Pacifico S, Guerrini R, Seripa D, Cervellati C. Serum beta-secretase 1 (BACE1) activity increases in patients with mild cognitive impairment. J Neurochem 2021; 159:629-637. [PMID: 34534363 DOI: 10.1111/jnc.15513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/23/2021] [Accepted: 09/12/2021] [Indexed: 02/04/2023]
Abstract
Beta-secretase 1 (BACE1) is considered as the key enzyme in amyloid-β formation. Previous works suggest that high BACE1 activity may be present in brain, cerebrospinal fluid and serum of patients with late-onset Alzheimer's disease (LOAD) as well as mild cognitive impairment (MCI). Therefore, we evaluated whether serum BACE1 activity increases in MCI patients and is associated with the progression from MCI to dementia. BACE1 activity was measured in the serum of 259 MCI patients (162 amnestic-aMCI, 97 non-amnestic-naMCI) and 204 healthy Controls. After a median follow-up of 32 months (range: 10-153), 116 MCI progressed to dementia (87 aMCI and 29 naMCI). Serum BACE1 activity was higher in MCI compared with Controls (p < 0.001), and in aMCI with brain atrophy compared with naMCI without brain atrophy (p = 0.04). No difference in BACE1 activity emerged between converter and non-converter MCI, and this was true for both aMCI and naMCI. However, among aMCI with better cognitive performance (n. 163, MMSE score ≥24/30) those converting to dementia had higher BACE1 activity compared to stable ones (p = 0.05). This was not associated with an increased risk to develop dementia (hazard ratio: 1.65; 95% confidence interval: 0.67-4.01). In conclusion, serum BACE1 activity significantly increased in MCI patients (both amnestic and non-amnestic) compared with Controls. Moreover, higher serum BACE1 activity was observed only among aMCI with a better cognitive performance who progressed to dementia, suggesting that a dysregulation of this enzyme might be an early event primarily associated with neurodegeneration.
Collapse
Affiliation(s)
- Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gloria Brombo
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Patrizia Guasti
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Tommaso Romagnoli
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Michele Polastri
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Lisa Marabini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Dario Pedrini
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Chiara Pistolesi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Zhang M, Zhong X, Shi H, Vanmechelen E, De Vos A, Liu S, Chen B, Mai N, Peng Q, Chen X, Wu Z, Hou L, Zhou H, Ouyang C, Zhang W, Liang W, Dai C, Ning Y. BACE1 and Other Alzheimer's-Related Biomarkers in Cerebrospinal Fluid and Plasma Distinguish Alzheimer's Disease Patients from Cognitively-Impaired Neurosyphilis Patients. J Alzheimers Dis 2021; 77:313-322. [PMID: 32804135 DOI: 10.3233/jad-200362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients with spirochetal infection, which causes neurosyphilis (NS) and at a later stage general paresis of the insane (GPI), present with brain pathology features of Alzheimer's disease (AD). However, the relationships among these illnesses regarding biomarker levels are still unclear. OBJECTIVE To explore biomarker levels in NS and GPI compared with those in AD and the relationship between biomarker levels and cognitive function in NS and GPI. METHODS Levels of neurogranin (NGRN) and β-amyloid precursor protein cleaving enzyme (BACE1) in cerebrospinal fluid (CSF)/plasma, together with amyloid-β 1-40 (Aβ40), Aβ42, and total tau in the CSF of 23 AD patients, 55 GPI patients, and 13 NS patients were measured. Patients were classified into none-to-mild, moderate, and severe stages of cognitive impairment. RESULTS Levels of CSF NGRN, BACE1, and tau as well as plasma BACE1 levels were significantly different among groups. In the none-to-mild stage, plasma BACE1 levels correlated with the protein levels in CSF and were significantly increased in AD patients versus GPI patients. The CSF tau levels in AD patients were significantly increased versus GPI patients in the moderate and severe stages. Pooling data from GPI and NS patients, both CSF tau and plasma NGRN levels correlated with cognitive scale scores. CONCLUSION GPI and NS patients might have different biomarker level patterns compared to AD patients. While plasma BACE1 could be a promising early biomarker for distinguishing AD from GPI, CSF tau and plasma NGRN levels might be valuable in indications of cognitive function in pooled NS populations.
Collapse
Affiliation(s)
- Min Zhang
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Zhong
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haishan Shi
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Sen Liu
- Beijing Seven Dimension Neuroscience Research Center, Beijing, China
| | - Ben Chen
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Naikeng Mai
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Peng
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinru Chen
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangying Wu
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Le Hou
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huarong Zhou
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Ouyang
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiru Zhang
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyuan Liang
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunying Dai
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Neurology, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,The first School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
35
|
Tian S, Huang R, Guo D, Lin H, Wang J, An K, Wang S. Associations of Plasma BACE1 Level and BACE1 C786G Gene Polymorphism with Cognitive Functions in Patients with Type 2 Diabetes: A Cross- Sectional Study. Curr Alzheimer Res 2021; 17:355-364. [PMID: 32442083 DOI: 10.2174/1567205017666200522210957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND β-Site APP-cleaving enzyme 1 (BACE1) is a key enzyme involved in the pathophysiology of Type 2 Diabetes Mellitus (T2DM) and Mild Cognitive Impairment (MCI). We aimed to investigate the potential associations of plasma BACE1 levels and BACE1 gene polymorphism with different cognitive performances in T2DM patients with MCI. METHODS The recruited 186 T2DM subjects were divided into 92 MCI group and 94 healthy-cognition controls, according to the Montreal Cognitive Assessment (MoCA) scores. Sociodemographic characteristics, clinical parameters and neuropsychological tests were assessed. BACE1 C786G gene polymorphism and plasma BACE1 level were determined. RESULTS Compared to controls, MCI patients exhibited higher plasma BACE1 levels. Plasma BACE1 levels were negatively associated with MoCA, Clock Drawing Test and Logical Memory Test scores, whereas positively associated with Trail Making Test-B time in the MCI group (all p<0.05), after adjusting fasting blood glucose, glycosylated hemoglobin, and homeostasis model assessment of insulin resistance by C-peptide. Multivariable logistic regression analysis showed a significant trend towards increased MCI risk with high plasma BACE1 level in T2DM patients (OR = 1.492, p = 0.027). The plasma BACE1 levels of GG and GC genotypes were obviously higher than that of CC genotype in T2DM-MCI patients (p = 0.035; p = 0.026, respectively). CONCLUSION Increased plasma BACE1 levels were associated with poor overall cognition functions, especially visuospatial abilities, visual/logical memory and executive functions in T2DM-MCI patients. Additionally, elevated plasma BACE1 level was a risk factor for MCI in T2DM patients, and might be influenced by BACE1 C786G gene mutations.
Collapse
Affiliation(s)
- Sai Tian
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Dan Guo
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Hongyan Lin
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Jiaqi Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ke An
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, China
| |
Collapse
|
36
|
Peng Q, Zhang Z. The fluid biomarkers of Alzheimer’s disease. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. However, it still has no available disease‐modifying therapies. Its pathology cascade begins decades before symptomatic presentation. For these reasons, highly sensitive and highly specific fluid biomarkers should be developed for the early diagnosis of AD. In this study, the well‐established and emerging fluid biomarkers of AD are summarized, and recent advances on their role in early diagnosis and progression monitoring as well as their correlations with AD pathology are highlighted. Future prospects and related research directions are also discussed.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
37
|
Melatonin protects against methamphetamine-induced Alzheimer's disease-like pathological changes in rat hippocampus. Neurochem Int 2021; 148:105121. [PMID: 34224806 DOI: 10.1016/j.neuint.2021.105121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023]
Abstract
Methamphetamine (METH) is a psychostimulant drug of abuse. METH use is associated with cognitive impairments and neurochemical abnormalities comparable to pathological changes observed in Alzheimer's disease (AD). These observations have stimulated the idea that METH abusers might be prone to develop AD-like signs and symptoms. Melatonin, the pineal hormone, is considered as a potential therapeutic intervention against AD. We thus conducted the present study to explore potential protective roles of melatonin against METH-induced deficits in learning and memory as well as in the appearance of AD-like pathological changes in METH-treated male Wistar rats. We found that melatonin ameliorated METH-induced cognitive impairments in those rats. Melatonin prevented METH-induced decrease in dopamine transporter (DAT) expression in rat hippocampus. Melatonin reversed METH-induced activation of β-arrestin2, reduction of phosphorylation of protein kinase B (Akt) and METH-induced excessive activity of glycogen synthase kinase-3β (GSK3β). Importantly, melatonin inhibited METH-induced changes in the expression of β-site APP cleaving enzyme (BACE1), disintegrin and metalloproteinase 10 (ADAM10), and presenilin 1 (PS1), as well as the reduction of amyloid beta (Aβ)42 production. Immunofluorescence double-labeling demonstrated that melatonin not only prevented the METH-induced loss of DAT but also prevented METH-induced Aβ42 overexpression in the dentate gyrus, CA1, and CA3. Furthermore, melatonin also suppressed METH-induced increase in phosphorylated tau. Significantly, melatonin attenuated METH-induced increase in N-methyl-D-aspartate receptor subtype 2 B (NR2B) protein expression and restored METH-induced reduction of Ca2+/calmodulin-dependent protein kinase II (CaMKII). This suggested that melatonin attenuated the toxic effect of METH on the hippocampus involving the amyloidogenic pathway. Taken together, our data suggest that METH abuse may be a predisposing risk factor for AD and that melatonin could serve as a potential therapeutic agent to prevent METH-induced AD like pathology.
Collapse
|
38
|
Shi Y, Gao F, Yang X, Liu D, Han Q, Liu Z, Zhu H, Shen Y. Increase of BACE1, Brain-Renal Risk Factor, Contributes to Kidney Damage in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2021; 76:237-248. [PMID: 32444547 DOI: 10.3233/jad-200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is believed that there is a certain correlation between the brain and kidneys, but it is poorly understood. Many findings suggested that there were previously unknown signaling pathways involving AβPP and BACE1 in the kidney. OBJECTIVE Exploring the changes of BACE1 activity in APP23 mouse kidneys, providing evidence for the function of AβPP and BACE1 activity in the kidney. METHODS The activity and expression of BACE1 were detected in the kidney of APP23 mice by enzymatic assay and western blotting. The protein expression levels of AβPP, claudin1, occludin, VE-cadherin, and Klotho (membrane-form klotho) were examined by using western blotting. The renal pathological changes of APP23 mice were examined by the routine renal pathological procedures. RESULTS In this study, we found that the AβPP protein level was increased in kidneys of APP23 mice compared with wild-type (WT) mice. Additionally, the activity and expression of BACE1 were increased in kidneys of APP23 mice compared to that of WT. BACE1 was predominantly distributed on the lumen side of renal tubular epithelial cells. The protein levels of Klotho and VE-cadherin were decreased, occludin expression was also decreased, and claudin-1 expression was increased. Renal pathological damage which observed in kidneys of APP23 mice was more serious than that in kidneys of WT mice. CONCLUSION Our findings suggest that the increase of AβPP protein levels under Thy-1 neuron promoter in the APP23 mice promoted the increase of renal BACE1 expression and enzymatic activity in the kidneys. Moreover, certain pathological damage in the kidneys of APP23 mice were observed. APP23 mice are easily affected by external risk factors compared with WT mice.
Collapse
Affiliation(s)
- Yan Shi
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Qiuxia Han
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Hanyu Zhu
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
39
|
Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sánchez-López E, García ML, Camins A, Souto EB, Ruiz A, Marquié M, Boada M. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. J Nanobiotechnology 2021; 19:122. [PMID: 33926475 PMCID: PMC8086346 DOI: 10.1186/s12951-021-00864-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Umberto Veronesi Foundation, 20121, Milano, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
40
|
Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nisticò R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Tahami Monfared AA, Irizarry M, Albala B, Koyama A, Watanabe N, Kimura T, Yarenis L, Lista S, Kramer L, Vergallo A. The β-Secretase BACE1 in Alzheimer's Disease. Biol Psychiatry 2021; 89:745-756. [PMID: 32223911 PMCID: PMC7533042 DOI: 10.1016/j.biopsych.2020.02.001] [Citation(s) in RCA: 348] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) was initially cloned and characterized in 1999. It is required for the generation of all monomeric forms of amyloid-β (Aβ), including Aβ42, which aggregates into bioactive conformational species and likely initiates toxicity in Alzheimer's disease (AD). BACE1 concentrations and rates of activity are increased in AD brains and body fluids, thereby supporting the hypothesis that BACE1 plays a critical role in AD pathophysiology. Therefore, BACE1 is a prime drug target for slowing down Aβ production in early AD. Besides the amyloidogenic pathway, BACE1 has other substrates that may be important for synaptic plasticity and synaptic homeostasis. Indeed, germline and adult conditional BACE1 knockout mice display complex neurological phenotypes. Despite BACE1 inhibitor clinical trials conducted so far being discontinued for futility or safety reasons, BACE1 remains a well-validated therapeutic target for AD. A safe and efficacious compound with high substrate selectivity as well as a more accurate dose regimen, patient population, and disease stage may yet be found. Further research should focus on the role of Aβ and BACE1 in physiological processes and key pathophysiological mechanisms of AD. The functions of BACE1 and the homologue BACE2, as well as the biology of Aβ in neurons and glia, deserve further investigation. Cellular and molecular studies of BACE1 and BACE2 knockout mice coupled with biomarker-based human research will help elucidate the biological functions of these important enzymes and identify their substrates and downstream effects. Such studies will have critical implications for BACE1 inhibition as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Harald Hampel
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey; Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France.
| | - Robert Vassar
- Department of Neurology, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bart De Strooper
- Department of Neurosciences, KU Leuven, Leuven, Belgium; Centre for Brain and Disease Research, VIB (Flanders Institute for Biotechnology), Leuven, Belgium; Dementia Research Institute, University College London, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lilla Weston Laboratories, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Michael Willem
- Chair of Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Neeraj Singh
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut
| | - John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut
| | | | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy; School of Pharmacy, Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; UCB Biopharma SPRL, Braine-l'Alleud, Belgium
| | - Iryna Voytyuk
- Department of Neurosciences, KU Leuven, Leuven, Belgium; Centre for Brain and Disease Research, VIB (Flanders Institute for Biotechnology), Leuven, Belgium; ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Janssen Research and Development, a division of Janssen Pharmaceutica, Beerse, Belgium
| | - Amir Abbas Tahami Monfared
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Michael Irizarry
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Bruce Albala
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Akihiko Koyama
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | | | | | - Lisa Yarenis
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Simone Lista
- Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France; Institute of Memory and Alzheimer's Disease, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute, INSERM U 1127, CNRS UMR 7225, Paris, France
| | - Lynn Kramer
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Andrea Vergallo
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey; Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France; Institute of Memory and Alzheimer's Disease, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute, INSERM U 1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
41
|
Jin X, Yang L, Yan X, Wang Q. Screening Platform Based on Inductively Coupled Plasma Mass Spectrometry for β-Site Amyloid Protein Cleaving Enzyme 1 (BACE1) Inhibitors. ACS Chem Neurosci 2021; 12:1093-1099. [PMID: 33764738 DOI: 10.1021/acschemneuro.0c00816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β-Site amyloid protein cleaving enzyme 1 (BACE1) is a promising therapeutic target for developing inhibitors to alleviate Alzheimer's disease (AD). Herein, we established an inductively coupled plasma mass spectrometry (ICPMS)-based inhibitor screening platform. A biotin-labeled lanthanide-coded peptide probe (LCPP; biotin-PEG2-EVNLDAEC-DOTA-Ln) was designed to determine the activity of BACE1 and evaluate the degree of inhibition of inhibitors. The platform was first validated with two commercially available inhibitors (BSI I and BSI IV) in terms of IC50 values and then applied to two newly designed inhibitors (inhibitors II and III) based on the crystal structure of BACE1 interacting with inhibitor I, and each of them contained an acylguanidine core structure. We found that their inhibition effects were improved as evaluated by the sensitive and accurate LCPP-ICPMS platform, demonstrating its ability for new drug screening.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
42
|
Hajjari SN, Sadigh-Eteghad S, Shanehbandi D, Teimourian S, Shahbazi A, Mehdizadeh M. MicroRNA-4422-5p as a Negative Regulator of Amyloidogenic Secretases: A Potential Biomarker for Alzheimer's Disease. Neuroscience 2021; 463:108-115. [PMID: 33836245 DOI: 10.1016/j.neuroscience.2021.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Beta-secretase (BACE1) and gamma-secretase activating protein (GSAP) are pivotal enzymes in the cleavage of amyloid precursor protein (APP). Beta-amyloid (Aß) formation is considered one of the main reasons for Alzheimer's disease (AD) pathology. In our preliminary study, a series of microRNAs (miRs) with possible interaction with BACE1 and/or GSAP was selected using computational analysis. Our results showed that miR-4422-5p had a reduced level in the serum of AD patients. In this study, the effect of miR-4422-5p using miR-4422-5p mimic and inhibitor on BACE1 and GSAP were investigated, and a probable novel early diagnostic marker for AD was introduced. The effect of miR-4422-5p interaction with BACE1 and GSAP was evaluated via in vitro experiments using dual-luciferase assays, western blotting, and Immunocytochemistry. Luciferase assay demonstrated that miR-4422-5p mimic suppresses BACE1 and GSAP expression by directly targeting the 3'UTR of BACE1 and GSAP mRNA in HEK293T cells. Also, western blotting and immunocytochemistry confirmed the regulatory role of miR-4422-5p mimic on BACE1 and GSAP genes. miR-4422-5p mimic significantly decreased BACE1 and GSAP protein expression in SH-SY5Y and A549 cells, respectively. Moreover, miR-4422-5p-inhibitor reversed the expression processes in both cell lines. Our data suggest that miR-4422-5p may be an important regulator of both BACE1 and GSAP genes and can represent a novel potential biomarker or therapeutic target in AD.
Collapse
Affiliation(s)
- Seyedeh Nazanin Hajjari
- Department of Neurosciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neurosciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Li M, Li R, Lyu JH, Chen JH, Wang W, Gao ML, Li WJ, De J, Mu HY, Pan WG, Mao PX, Ma X. Relationship Between Alzheimer's Disease and Retinal Choroidal Thickness: A Cross-Sectional Study. J Alzheimers Dis 2021; 80:407-419. [PMID: 33554907 DOI: 10.3233/jad-201142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The choroid is involved directly or indirectly in many pathological conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). OBJECTIVE The objective of this study was to investigate the association between retinal choroidal properties and the pathology of AD by determining choroidal thickness, hippocampus volume, cognitive functions, and plasma BACE1 activity. METHODS In this cross-sectional study, 37 patients with AD and 34 age-matched controls were included. Retinal choroidal thickness was measured via enhanced depth imaging optical coherence tomography. Hippocampal volume was measured via 3.0T MRI. Cognitive functions were evaluated using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog). Plasma BACE1 activity was analyzed using a fluorescence substrate-based plasma assay, and regression model were to analyze the data. RESULTS Retinal choroidal thickness was significantly thinner in the AD group than in the control group [(114.81±81.30) μm versus (233.79±38.29) μm, p < 0.05]. Multivariable regression analysis indicated that the ADAS-cog scores (β=-0.772, p = 0.000) and age (β=-0.176, p = 0.015) were independently associated with choroidal thickness. The logistic regression model revealed that the subfoveal choroidal thickness was a significant predictor for AD (OR = 0.984, 95% CI: 0.972-0.997). CONCLUSION There was a general tendency of choroid thinning as the cognitive function declined. Although choroidal thickness was not a potential indicator for early stage AD, it was valuable in monitoring AD progression.
Collapse
Affiliation(s)
- Mo Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Rena Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ji-Hui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian-Hua Chen
- Department of Ophthalmology, Beijing Geriatric Hospital, Beijing, China
| | - Wei Wang
- Department of Ophthalmology, Beijing Geriatric Hospital, Beijing, China
| | - Mao-Long Gao
- The Geriatric Institute for Clinic and Rehabilitation, Beijing Geriatric Hospital, Beijing, China
| | - Wen-Jie Li
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Jie De
- Department of Radiology, Beijing Geriatric Hospital, Beijing, China
| | - Han-Yan Mu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Wei-Gang Pan
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Pei-Xian Mao
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xin Ma
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Xu MM, Zhou MT, Li SW, Zhen XC, Yang S. Glycoproteins as diagnostic and prognostic biomarkers for neurodegenerative diseases: A glycoproteomic approach. J Neurosci Res 2021; 99:1308-1324. [PMID: 33634546 DOI: 10.1002/jnr.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are incurable and can develop progressively debilitating disorders, including dementia and ataxias. Alzheimer's disease and Parkinson's disease are the most common NDs that mainly affect the elderly people. There is an urgent need to develop new diagnostic tools so that patients can be accurately stratified at an early stage. As a common post-translational modification, protein glycosylation plays a key role in physiological and pathological processes. The abnormal changes in glycosylation are associated with the altered biological pathways in NDs. The pathogenesis-related proteins, like amyloid-β and microtubule-associated protein tau, have altered glycosylation. Importantly, specific glycosylation changes in cerebrospinal fluid, blood and urine are valuable for revealing neurodegeneration in the early stages. This review describes the emerging biomarkers based on glycoproteomics in NDs, highlighting the potential applications of glycoprotein biomarkers in the early detection of diseases, monitoring of the disease progression, and measurement of the therapeutic responses. The mass spectrometry-based strategies for characterizing glycoprotein biomarkers are also introduced.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
45
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
46
|
Vergallo A, Lemercier P, Cavedo E, Lista S, Vanmechelen E, De Vos A, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Teipel S, Hampel H. Plasma β-secretase1 concentrations correlate with basal forebrain atrophy and neurodegeneration in cognitively healthy individuals at risk for AD. Alzheimers Dement 2021; 17:629-640. [PMID: 33527718 DOI: 10.1002/alz.12228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Increased β-secretase 1 (BACE1) protein concentration, in body fluids, is a candidate biomarker of Alzheimer's disease (AD).We reported that plasma BACE1 protein concentrations are associated with the levels of brain amyloidβ (Αβ) accumulation in cognitively healthy individuals with subjective memory complaint (SMC). METHODS In 302 individuals from the same cohort, we investigated the cross-sectional and longitudinal association between plasma BACE1 protein concentrations and AD biomarkers of neurodegeneration (plasma t-tau and Neurofilament light chain (NfL), fluorodeoxyglucose-positron emission tomography (FDG-PET), brain volumes in the basal forebrain [BF], hippocampus, and entorhinal cortex). RESULTS We report a positive longitudinal correlation of BACE1 with both NfL and t-tau, as well as a correlation between annual BACE1 changes and bi-annual reduction of BF volume. We show a positive association between BACE1 and FDG-PET signal at baseline. CONCLUSIONS The association between plasma BACE1 protein concentrations and BF atrophy we found in cognitively healthy individuals with SMC corroborates translational studies, suggesting a role of BACE1 in neurodegeneration.
Collapse
Affiliation(s)
- Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, F-75013, Paris, France.,Centre pour l'Acquisition et le Traitement des Images, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Département de Médecine Nucléaire, Paris, France
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Bruno Dubois
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Stefan Teipel
- Clinical Dementia Research Section, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | -
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
47
|
Bao H, Liu Y, Zhang M, Chen Z, Zhang W, Ge Y, Kang D, Gao F, Shen Y. Increased β-site APP cleaving enzyme 1-mediated insulin receptor cleavage in type 2 diabetes mellitus with cognitive impairment. Alzheimers Dement 2021; 17:1097-1108. [PMID: 33410588 DOI: 10.1002/alz.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Patients with type 2 diabetes mellitus (T2DM) are at a high risk of cognitive impairment, with insulin resistance playing a pivotal role. β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is considered a predictor of Alzheimer's disease. However, the potential roles of BACE1 in insulin resistance and the risk of cognitive impairment in T2DM remain unclear. METHODS We measured plasma BACE1 levels, BACE1 cleavage activities for Swedish mutant amyloid precursor protein (APPsw) and insulin receptor β subunit (INSR-β), and soluble INSR (sINSR) levels in a clinical cohort study. RESULTS T2DM patients with or without cognitive impairment exhibited elevated plasma BACE1 levels and BACE1 enzymatic activities for APPsw and INSR-β, and sINSR levels. Moreover, the glycemic status correlated with elevated BACE1 levels and BACE1-mediated INSR cleavage, which was associated with insulin resistance. DISCUSSION The elevated BACE1 levels in T2DM may contribute to increasing the cognitive impairment risk through both amyloidogenesis and insulin resistance.
Collapse
Affiliation(s)
- Hong Bao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiming Liu
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengguo Zhang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zuolong Chen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yuhao Ge
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Dongmei Kang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Feng Gao
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
49
|
Differential Expression of mRNAs in Peripheral Blood Related to Prodrome and Progression of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4505720. [PMID: 33204697 PMCID: PMC7648929 DOI: 10.1155/2020/4505720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease that affects the quality of life of elderly individuals, while the pathogenesis of AD is still unclear. Based on the bioinformatics analysis of differentially expressed genes (DEGs) in peripheral blood samples, we investigated genes related to mild cognitive impairment (MCI), AD, and late-stage AD that might be used for predicting the conversions. Methods. We obtained the DEGs in MCI, AD, and advanced AD patients from the Gene Expression Omnibus (GEO) database. A Venn diagram was used to identify the intersecting genes. Gene Ontology (GO) and Kyoto Gene and Genomic Encyclopedia (KEGG) were used to analyze the functions and pathways of the intersecting genes. Protein-protein interaction (PPI) networks were constructed to visualize the network of the proteins coded by the related genes. Hub genes were selected based on the PPI network. Results. Bioinformatics analysis indicated that there were 61 DEGs in both the MCI and AD groups and 27 the same DEGs among the three groups. Using GO and KEGG analyses, we found that these genes were related to the function of mitochondria and ribosome. Hub genes were determined by bioinformatics software based on the PPI network. Conclusions. Mitochondrial and ribosomal dysfunction in peripheral blood may be early signs in AD patients and related to the disease progression. The identified hub genes may provide the possibility for predicting AD progression or be the possible targets for treatments.
Collapse
|
50
|
Ye C, Zhang Y, Luo S, Cao Y, Gao F, Wang E. Correlation of Serum BACE1 With Emergence Delirium in Postoperative Patients: A Preliminary Study. Front Aging Neurosci 2020; 12:555594. [PMID: 33192455 PMCID: PMC7655534 DOI: 10.3389/fnagi.2020.555594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background: The mechanism underlying delirium, a common acute fluctuating mental state, may be related to the activation of a neuroinflammatory response. In this study, we attempted to investigate whether plasma inflammatory response markers, vascular and cerebrovascular injury-related markers, and neurodegeneration-associated markers were associated with emergence delirium (ED). Methods: Patients aged 50 years or above who underwent elective laparoscopic surgery under general anesthesia were included in this study. Delirium was assessed postoperatively with the Richmond Agitation Sedation Scale (RASS) and the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) scale. Plasma samples were collected from ED patients and non-ED patients to test concentrations of inflammation markers, including interleukin 6 (IL-6), chitinase 3-like 1 (CHI3L1), S100 calcium-binding protein B (S100B), lipoprotein-associated phospholipase-A2 (Lp-PLA2), and macrophage migration inhibitory factor (MIF); vascular and cerebrovascular injury-related markers, including intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1); and neurodegeneration-associated markers, including alpha-synuclein (α-Syn) and β-secretase 1 (BACE1). Binary logistic regression analysis was performed to analyze the relationship between biomarkers and ED, and receiver operating characteristic (ROC) curves were used to analyze the diagnostic value of biomarkers. Results: A total of 104 patients were included in this study, with an average age of 63.69 ± 7.21. IL-6 (OR = 2.73, 95% CI: 1.66–6.44, P = 0.022), S100B (OR = 4.74, 95% CI: 1.88–11.95, P = 0.001), and BACE1 (OR = 6.54, 95% CI: 2.57–16.65, P < 0.000) were independent biological indicators for the occurrence of ED.CHI3L1, Lp-PLA2, MIF, ICAM-1, VCAM-1, and α-Syn were unrelated to ED. Plasma BACE1 level had a possible diagnostic value for ED [area under curve (AUC) = 0.75, 95% CI: 0.66–0.85], whereas plasma IL-6 (AUC = 0.62, 95% CI: 0.51–0.73) and S100B (AUC = 0.65, 95% CI: 0.54–0.76) levels had little diagnostic value for distinguishing ED vs. non-ED. Conclusion: Higher levels of systemic inflammation marker IL-6, cerebral inflammation marker S100B, and neurodegeneration-associated marker BACE1 are related to ED. Plasma BACE1 may be a potential diagnostic biomarker for ED.
Collapse
Affiliation(s)
- Chunyan Ye
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yanrong Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Sumei Luo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yanan Cao
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| |
Collapse
|