1
|
Tamashiro LAD, Soares-Jr JM, Renno J, Turri JAO, Linhares IM, Baracat EC, de Mello NR. Can cognitive behavioral therapy improve vasomotor symptoms and recurrent depression in postmenopausal women? REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231791. [PMID: 39166661 PMCID: PMC11329250 DOI: 10.1590/1806-9282.20231791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of cognitive behavioral therapy in the treatment of vasomotor, sexual dysfunction, and recurrent depression in postmenopausal women. METHODS This prospective, open study evaluated 112 postmenopausal women with vasomotor symptoms. Sexual dysfunction has cultural, social, biological, and emotional issues and divided into two groups: G1, without depression (n=65) and G2, with recurrent depression (n=47). The subjects underwent 12 sessions of in-person cognitive behavioral therapy and 12 sessions of home-based activity over a period of 6 months. They were evaluated at 3 months following the completion of therapy. Depression, memory, and attention-related functions, as well as climactic symptoms, were assessed using a questionnaire. RESULTS In the depression questionnaire, the G1 group had a lower initial score than the G2 group (p<0.01). Following 6 months of therapy, both groups had similar improved scores. In the depression questionnaire, the women in group G1 had higher baseline values. In the assessment of vasomotor symptoms, the values in both groups were similar and showed an improvement in vasomotor symptoms after 24 weeks of treatment, but these effects disappeared after the follow-up of 48 weeks in the G2 group. Both groups improved the sexual dysfunction after 24 weeks. CONCLUSION Cognitive behavioral therapy may be effective in reducing vasomotor symptoms and ameliorate the sexual dysfunction and recurrent depression in postmenopausal women after 24 weeks of treatment.
Collapse
Affiliation(s)
- Leiliane Aparecida Diniz Tamashiro
- Universidade de São Paulo, Hospital das Clinicas, Institute of Psychiatry, Faculty of Medicine, Women's Mental Health Program - São Paulo (SP), Brazil
| | - José Maria Soares-Jr
- Universidade de São Paulo, Faculdade Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Joel Renno
- Universidade de São Paulo, Hospital das Clinicas, Institute of Psychiatry, Faculty of Medicine, Women's Mental Health Program - São Paulo (SP), Brazil
| | - José Antônio Orellana Turri
- Universidade de São Paulo, Faculdade Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Iara Moreno Linhares
- Universidade de São Paulo, Faculdade Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Edmund Chada Baracat
- Universidade de São Paulo, Faculdade Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| | - Nilson Roberto de Mello
- Universidade de São Paulo, Faculdade Medicina, Hospital das Clínicas, Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia - São Paulo (SP), Brazil
| |
Collapse
|
2
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
3
|
Miao Z, Li Y, Mao F, Zhang J, Sun ZS, Wang Y. Prenatal witness stress induces intergenerational anxiety-like behaviors and altered gene expression profiles in male mice. Neuropharmacology 2022; 202:108857. [PMID: 34728220 DOI: 10.1016/j.neuropharm.2021.108857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Prenatal cues imposed on an organism can exert long-term and even cross-generational influences on the physiology and behaviors. To date, numerous rodent models have been developed to mimic the effects of prenatal physical stress on offspring. Whether psychological stress during gestation exerts adverse influences on offspring remains investigated. Here, we report that prenatal witnessing the defeat process of the mated partner induces anxiety-like behaviors in F1 male, but not female offspring. These abnormal behaviors were not present in the F2 generation, indicating a sex-specific intergenerational effects. Genome-wide transcriptional profiling identified 71 up-regulated and 120 down-regulated genes shared in F0 maternal and F1 male hippocampus. F0 and F1 hippocampi also shared witness stress-sensitive and -resistant genes. Whole transcriptome comparison reveals that F1 dentate gyrus showed differential expression profiles from hippocampus. Few differentially expressed genes were identified in the dentate gyrus of F1 stress female mice, explaining why females were resistant to the stress. Finally, candidate drugs as the potential treatment for psychological stress were predicted according to transcriptional signatures, including the histone deacetylase inhibitor and dopamine receptor agonist. Our work provides a new model for better understanding the molecular basis of prenatal psychological stress, highlighting the complexity of stress and sex factors on emotion and behaviors.
Collapse
Affiliation(s)
- Zhuang Miao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianghong Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Li MM, Zhou P, Chen XD, Xu HS, Wang J, Chen L, Zhang N, Liu N. NO in the dPAG modulates panic-like responses and ASIC1a expression in the prefrontal cortex and hippocampus in mice. Biochem Biophys Res Commun 2019; 511:274-279. [PMID: 30770101 DOI: 10.1016/j.bbrc.2019.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/04/2019] [Indexed: 01/20/2023]
Abstract
Panic disorder (PD) is a multifactorial neuropsychiatric disorder. Our previous study has demonstrated that the nitric oxide (NO) pathway and the acid-sensing ion channel 1a (ASIC1a) level in the dorsal midbrain periaqueductal gray (dPAG) are involved in the modulation of panic-like responses. In addition, the prefrontal cortex (PFC) and the hippocampus also play a role in panic-like responses. However, no studies have investigated the protein level of ASIC1a in the PFC and hippocampus in a mouse model of panic-like disorders after alteration of the NO pathway in the dPAG. We investigated the production of a panic attack with intra-dPAG injections of SNAP, an NO donor, and 7-NI, an nNOS inhibitor. Moreover, we measured ASIC1a protein levels in the PFC and hippocampus. The rat exposure test (RET) is frequently used as an animal model of panic. In our study, C57BL/6 mice received an intra-dPAG injection of SNAP or 7-NI before RET; neurobehavioral tests were then conducted, followed by mechanistic evaluation through western blot analysis in the PFC and hippocampus. An intra-dPAG infusion of SNAP significantly increased the panic-like effect, whereas treatment with 7-NI decreased fear behavior. Mice treated with SNAP/7-NI showed significantly increased/decreased ASIC1a expression in the PFC, and a decreasing/increasing trend in the hippocampus. The present study suggests that the NO pathway in the dPAG plays a key role in panic-like responses in mice confronted by a rat, further, NO intra-dPAG injection also modulates the ASIC1a expression levels in the PFC and hippocampus.
Collapse
Affiliation(s)
- Meng-Meng Li
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Ping Zhou
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiao-Dong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, 210029, China
| | - Huai-Sha Xu
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Jun Wang
- Department of Toxicology, The Key Lab of Modern Toxicology (NJMU), Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| |
Collapse
|
5
|
Battaglia M, Rossignol O, Bachand K, D'Amato FR, De Koninck Y. Amiloride modulation of carbon dioxide hypersensitivity and thermal nociceptive hypersensitivity induced by interference with early maternal environment. J Psychopharmacol 2019; 33:101-108. [PMID: 29968500 DOI: 10.1177/0269881118784872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Early life adversities are risk factors for anxiety disorders and for pain syndromes, which are, in turn, highly comorbid with anxiety disorders. Repeated cross-fostering mouse pups to adoptive lactating females induces epigenetic modification and heightened mRNA-expression of the acid-sensing-ion-channel-1 gene, altered nociception, and hypersensitivity to 6% carbon dioxide air mixtures, a trait marker of specific human anxiety disorders such as, most clearly and prominently, panic disorder. AIMS We hypothesized that the acid-sensing ion channel inhibitor amiloride can modulate repeated cross-fostering animals' exaggerated responses to carbon dioxide and nociceptive thermal stimulation. METHODS Respiratory carbon dioxide sensitivity was assessed by plethysmography during 6% carbon dioxide air mixture challenges, and nociception was assessed by latency of paw withdrawal to thermal stimulation, in repeated cross-fostering and control animals. To circumvent the blood-brain barrier, prior to testing, amiloride was nebulized in a plethysmograph. Data were analyzed by general linear models. RESULTS Analyses of tidal volume responses to 6% carbon dioxide of animals pre-treated with nebulized amiloride/saline in a randomized crossover design showed significant modulatory effect of amiloride, and amiloride×repeated cross-fostering interaction. In contrast, repeated cross-fostering animals' responses to 6% carbon dioxide after intraperitoneal amiloride, saline, or no treatment, were no different. Analyses of responses to thermal stimuli showed a significant modulatory effect of nebulized amiloride, and repeated cross-fostering×amiloride interaction. CONCLUSIONS Single-dose nebulized amiloride decreased repeated cross-fostering animals' carbon dioxide sensitivity and nociception indices to levels that were no different from those of control animals. Inasmuch as these results pertain to human anxiety and/or pain hypersensitivity, our findings provide a rationale for studying inhaled amiloride in some anxiety disorders and/or pain syndromes.
Collapse
Affiliation(s)
- Marco Battaglia
- Child Youth and Emerging Adult Programme, Centre for Addiction & Mental Health, Toronto, ON, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Karine Bachand
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Hypoventilation Therapy Alleviates Panic by Repeated Induction of Dyspnea. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:539-545. [PMID: 29573981 DOI: 10.1016/j.bpsc.2018.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous research has shown that hypoventilation therapy reduces panic symptoms in part by increasing basal partial pressure of carbon dioxide (PCO2) levels. We tested an additional pathway by which hypoventilation therapy could exert its therapeutic effects: through repeated interoceptive exposure to sensations of dyspnea. METHODS A total of 35 patients with panic disorder were trained to perform exercises to raise their end-tidal PCO2 levels using a portable capnometry device. Anxiety, dyspnea, end-tidal PCO2, and respiratory rate were assessed during each exercise across 4 weeks of training. Mixed-model analysis examined whether within-exercise levels of dyspnea were predictive of reduction of panicogenic cognitions. RESULTS As expected, within-exercise anxiety and respiratory rate decreased over time. Unexpectedly, PCO2 dropped significantly from the beginning to the end of exercise, with these drops becoming progressively smaller across weeks. Dyspnea increased and remained consistently above basal levels across weeks. As hypothesized, greater dyspnea was related to significantly lower panicogenic cognitions over time even after controlling for anxiety and PCO2. Additional exploratory analyses showed that within-exercise increases in dyspnea were related to within-exercise increases in anxiety but were not related to within-exercise increases in PCO2. CONCLUSIONS In support of the interoceptive exposure model, we found that greater dyspnea during hypoventilation exercises resulted in lower panicogenic cognitions even after the effect of PCO2 was taken into account. The findings offer an additional important target in panic treatment.
Collapse
|
7
|
Giannese F, Luchetti A, Barbiera G, Lampis V, Zanettini C, Knudsen GP, Scaini S, Lazarevic D, Cittaro D, D'Amato FR, Battaglia M. Conserved DNA Methylation Signatures in Early Maternal Separation and in Twins Discordant for CO 2 Sensitivity. Sci Rep 2018; 8:2258. [PMID: 29396481 PMCID: PMC5797081 DOI: 10.1038/s41598-018-20457-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Respiratory and emotional responses to blood-acidifying inhalation of CO2 are markers of some human anxiety disorders, and can be enhanced by repeatedly cross-fostering (RCF) mouse pups from their biological mother to unrelated lactating females. Yet, these dynamics remain poorly understood. We show RCF-associated intergenerational transmission of CO2 sensitivity in normally-reared mice descending from RCF-exposed females, and describe the accompanying alterations in brain DNA methylation patterns. These epigenetic signatures were compared to DNA methylation profiles of monozygotic twins discordant for emotional reactivity to a CO2 challenge. Altered methylation was consistently associated with repeated elements and transcriptional regulatory regions among RCF-exposed animals, their normally-reared offspring, and humans with CO2 hypersensitivity. In both species, regions bearing differential methylation were associated with neurodevelopment, circulation, and response to pH acidification processes, and notably included the ASIC2 gene. Our data show that CO2 hypersensitivity is associated with specific methylation clusters and genes that subserve chemoreception and anxiety. The methylation status of genes implicated in acid-sensing functions can inform etiological and therapeutic research in this field.
Collapse
Affiliation(s)
- Francesca Giannese
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Giulia Barbiera
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Zanettini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,National Institute on Drug Abuse, Medication Development Program Molecular Targets and Medications Discovery Branch, Intramural Research Program, NIH, Baltimore, USA
| | - Gun Peggy Knudsen
- The Norwegian Institute of Public Health Department of Genetics, Environment and Mental Health, Oslo, Norway
| | - Simona Scaini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Dejan Lazarevic
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.
| | - Marco Battaglia
- Department of Psychiatry, the University of Toronto, Toronto, Canada. .,Division of Child, Youth and Emerging Adulthood, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
8
|
Battaglia M, Khan WU. Reappraising Preclinical Models of Separation Anxiety Disorder, Panic Disorder, and CO 2 Sensitivity: Implications for Methodology and Translation into New Treatments. Curr Top Behav Neurosci 2018; 40:195-217. [PMID: 29696603 DOI: 10.1007/7854_2018_42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Separation anxiety applies to multiple forms of distress responses seen in mammals during postnatal development, including separation from a caregiver. Childhood separation anxiety disorder is an important risk factor for developing panic disorder in early adulthood, and both conditions display an increased sensitivity to elevated CO2 concentrations inhaled from the air. By interfacing epidemiological, genetic, and physiological knowledge with preclinical animal research models, it is possible to decipher the mechanisms that are central to separation anxiety and panic disorders while also suggesting possible therapies. Preclinical research models allow for environmentally controlled studies of early interferences with parental care. These models have shown that different forms of early maternal separation in mice and rats induce elevated CO2 respiratory sensitivity, an important biomarker of separation anxiety and panic disorders. In mice, this is likely due to gene-environment interactions that affect multiple behavioural and physical phenotypes after exposure to this early adversity. Although several questions regarding the causal mechanism of separation anxiety and panic disorder remain unanswered, the identification and improved understanding of biomarkers that link these mental health conditions under the guise of preclinical research models in conjunction with human longitudinal cohort studies can help resolve these issues.
Collapse
Affiliation(s)
- Marco Battaglia
- Division of Child, Youth and Emerging Adulthood Psychiatry, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Waqas Ullah Khan
- Division of Child, Youth and Emerging Adulthood Psychiatry, Centre for Addiction & Mental Health, Toronto, ON, Canada
- School of Medicine, Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Savage JE, Sawyers C, Roberson-Nay R, Hettema JM. The genetics of anxiety-related negative valence system traits. Am J Med Genet B Neuropsychiatr Genet 2017; 174:156-177. [PMID: 27196537 PMCID: PMC5349709 DOI: 10.1002/ajmg.b.32459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
NIMH's Research Domain Criteria (RDoC) domain of negative valence systems (NVS) captures constructs of negative affect such as fear and distress traditionally subsumed under the various internalizing disorders. Through its aims to capture dimensional measures that cut across diagnostic categories and are linked to underlying neurobiological systems, a large number of phenotypic constructs have been proposed as potential research targets. Since "genes" represent a central "unit of analysis" in the RDoC matrix, it is important for studies going forward to apply what is known about the genetics of these phenotypes as well as fill in the gaps of existing knowledge. This article reviews the extant genetic epidemiological data (twin studies, heritability) and molecular genetic association findings for a broad range of putative NVS phenotypic measures. We find that scant genetic epidemiological data is available for experimentally derived measures such as attentional bias, peripheral physiology, or brain-based measures of threat response. The molecular genetic basis of NVS phenotypes is in its infancy, since most studies have focused on a small number of candidate genes selected for putative association to anxiety disorders (ADs). Thus, more research is required to provide a firm understanding of the genetic aspects of anxiety-related NVS constructs. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeanne E. Savage
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Chelsea Sawyers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roxann Roberson-Nay
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| | - John M. Hettema
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA,Department of Psychiatry, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
10
|
Anxiety-Related Behaviours Associated with microRNA-206-3p and BDNF Expression in Pregnant Female Mice Following Psychological Social Stress. Mol Neurobiol 2017; 55:1097-1111. [DOI: 10.1007/s12035-016-0378-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
|
11
|
Differential behavioral sensitivity to carbon dioxide (CO 2) inhalation in rats. Neuroscience 2017; 346:423-433. [PMID: 28087339 DOI: 10.1016/j.neuroscience.2017.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 01/21/2023]
Abstract
Inhalation of carbon dioxide (CO2) is frequently employed as a biological challenge to evoke intense fear and anxiety. In individuals with panic disorder, CO2 reliably evokes panic attacks. Sensitivity to CO2 is highly heterogeneous among individuals, and although a genetic component is implicated, underlying mechanisms are not clear. Preclinical models that can simulate differential responsivity to CO2 are therefore relevant. In the current study we investigated CO2-evoked behavioral responses in four different rat strains: Sprague-Dawley (SD), Wistar (W), Long Evans (LE) and Wistar-Kyoto, (WK) rats. We also assessed tryptophan hydroxylase 2 (TPH-2)-positive serotonergic neurons in anxiety/panic regulatory subdivisions of the dorsal raphe nucleus (DR), as well as dopamine β hydroxylase (DβH)-positive noradrenergic neurons in the locus coeruleus, implicated in central CO2-chemosensitivity. Behavioral responsivity to CO2 inhalation varied between strains. CO2-evoked immobility was significantly higher in LE and WK rats as compared with W and SD cohorts. Differences were also observed in CO2-evoked rearing and grooming behaviors. Exposure to CO2 did not produce conditioned behavioral responses upon re-exposure to CO2 context in any strain. Reduced TPH-2-positive cell counts were observed specifically in the panic-regulatory dorsal raphe ventrolateral (DRVL)-ventrolateral periaqueductal gray (VLPAG) subdivision in CO2-sensitive strains. Conversely, DβH-positive cell counts within the LC were significantly higher in CO2-sensitive strains. Collectively, our data provide evidence for strain dependent, differential CO2-sensitivity and potential differences in monoaminergic systems regulating panic and anxiety. Comparative studies between CO2-vulnerable and resistant strains may facilitate the mechanistic understanding of differential CO2-sensitivity in the development of panic and anxiety disorders.
Collapse
|
12
|
Panic Anxiety in Humans with Bilateral Amygdala Lesions: Pharmacological Induction via Cardiorespiratory Interoceptive Pathways. J Neurosci 2016; 36:3559-66. [PMID: 27013684 DOI: 10.1523/jneurosci.4109-15.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/12/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We previously demonstrated that carbon dioxide inhalation could induce panic anxiety in a group of rare lesion patients with focal bilateral amygdala damage. To further elucidate the amygdala-independent mechanisms leading to aversive emotional experiences, we retested two of these patients (B.G. and A.M.) to examine whether triggering palpitations and dyspnea via stimulation of non-chemosensory interoceptive channels would be sufficient to elicit panic anxiety. Participants rated their affective and sensory experiences following bolus infusions of either isoproterenol, a rapidly acting peripheral β-adrenergic agonist akin to adrenaline, or saline. Infusions were administered during two separate conditions: a panic induction and an assessment of cardiorespiratory interoception. Isoproterenol infusions induced anxiety in both patients, and full-blown panic in one (patient B.G.). Although both patients demonstrated signs of diminished awareness for cardiac sensation, patient A.M., who did not panic, reported a complete lack of awareness for dyspnea, suggestive of impaired respiratory interoception. These findings indicate that the amygdala may play a role in dynamically detecting changes in cardiorespiratory sensation. The induction of panic anxiety provides further evidence that the amygdala is not required for the conscious experience of fear induced via interoceptive sensory channels. SIGNIFICANCE STATEMENT We found that monozygotic twins with focal bilateral amygdala lesions report panic anxiety in response to intravenous infusions of isoproterenol, a β-adrenergic agonist similar to adrenaline. Heightened anxiety was evident in both twins, with one twin experiencing a panic attack. The twin who did not panic displayed signs of impaired cardiorespiratory interoception, including a complete absence of dyspnea sensation. These findings highlight that the amygdala is not strictly required for the experience of panic anxiety, and suggest that neural systems beyond the amygdala are also involved. Determining these additional systems could provide key neural modulation targets for future anxiolytic treatments.
Collapse
|
13
|
Cittaro D, Lampis V, Luchetti A, Coccurello R, Guffanti A, Felsani A, Moles A, Stupka E, D' Amato FR, Battaglia M. Histone Modifications in a Mouse Model of Early Adversities and Panic Disorder: Role for Asic1 and Neurodevelopmental Genes. Sci Rep 2016; 6:25131. [PMID: 27121911 PMCID: PMC4848503 DOI: 10.1038/srep25131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022] Open
Abstract
Hyperventilation following transient, CO2-induced acidosis is ubiquitous in mammals and heritable. In humans, respiratory and emotional hypersensitivity to CO2 marks separation anxiety and panic disorders, and is enhanced by early-life adversities. Mice exposed to the repeated cross-fostering paradigm (RCF) of interference with maternal environment show heightened separation anxiety and hyperventilation to 6% CO2-enriched air. Gene-environment interactions affect CO2 hypersensitivity in both humans and mice. We therefore hypothesised that epigenetic modifications and increased expression of genes involved in pH-detection could explain these relationships. Medullae oblongata of RCF- and normally-reared female outbred mice were assessed by ChIP-seq for H3Ac, H3K4me3, H3K27me3 histone modifications, and by SAGE for differential gene expression. Integration of multiple experiments by network analysis revealed an active component of 148 genes pointing to the mTOR signalling pathway and nociception. Among these genes, Asic1 showed heightened mRNA expression, coherent with RCF-mice’s respiratory hypersensitivity to CO2 and altered nociception. Functional enrichment and mRNA transcript analyses yielded a consistent picture of enhancement for several genes affecting chemoception, neurodevelopment, and emotionality. Particularly, results with Asic1 support recent human findings with panic and CO2 responses, and provide new perspectives on how early adversities and genes interplay to affect key components of panic and related disorders.
Collapse
Affiliation(s)
- Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Lampis
- Developmental Psychopathology Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Alessandro Guffanti
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Genomnia srl, Lainate, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Anna Moles
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy.,Genomnia srl, Lainate, Italy
| | - Elia Stupka
- Centre for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D' Amato
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, University Of Toronto, Toronto, Canada.,Division of Child and Youth Mental Health, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The present review aims to deliver a systematic overview of current developments and trends in (epi)genetics of anxiety and to identify upcoming challenges and opportunities. RECENT FINDINGS Genes related to peptide and hormone signaling have been suggested for anxiety-related phenotypes, e.g., the NPSR1 gene, which has been associated predominantly with panic disorder in women, and shown to interact with environmental factors and to influence psychometric, neurophysiological, and neuroimaging correlates of anxiety. Similar multi-level results have been reported for genetic and epigenetic variation in the OXTR gene, especially in social anxiety disorder (SAD), and for CRHR1 gene variation in women with panic disorder. Variants in RGS2 and ASIC1 genes were linked to panic disorder, with the latter also being implicated in SAD treatment response. Finally, monoaminergic 'risk' genes (SLC6A4, MAOA, HTR1A) were related to SAD, generalized anxiety disorder and women with panic disorder, anxiety traits and response to psychopharmacological and psychotherapeutic interventions. SUMMARY Converging evidence for potential genetic and epigenetic risk markers has been gathered and future studies call for independent replications and multi-level integration of dimensional approaches, environmental factors, and biological readouts, while considering sex-specific substratification. Particularly, epigenetic variation appears promising for disease course and treatment response predictions.
Collapse
|
15
|
Smoller JW. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders. Neuropsychopharmacology 2016; 41:297-319. [PMID: 26321314 PMCID: PMC4677147 DOI: 10.1038/npp.2015.266] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories-posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders-for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene-environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research.
Collapse
Affiliation(s)
- Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
Khalsa SS, Lapidus RC. Can Interoception Improve the Pragmatic Search for Biomarkers in Psychiatry? Front Psychiatry 2016; 7:121. [PMID: 27504098 PMCID: PMC4958623 DOI: 10.3389/fpsyt.2016.00121] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/21/2016] [Indexed: 01/04/2023] Open
Abstract
Disrupted interoception is a prominent feature of the diagnostic classification of several psychiatric disorders. However, progress in understanding the interoceptive basis of these disorders has been incremental, and the application of interoception in clinical treatment is currently limited to panic disorder. To examine the degree to which the scientific community has recognized interoception as a construct of interest, we identified and individually screened all articles published in the English language on interoception and associated root terms in Pubmed, Psychinfo, and ISI Web of Knowledge. This search revealed that interoception is a multifaceted process that is being increasingly studied within the fields of psychiatry, psychology, neuroscience, and biomedical science. To illustrate the multifaceted nature of interoception, we provide a focused review of one of the most commonly studied interoceptive channels, the cardiovascular system, and give a detailed comparison of the most popular methods used to study cardiac interoception. We subsequently review evidence of interoceptive dysfunction in panic disorder, depression, somatic symptom disorders, anorexia nervosa, and bulimia nervosa. For each disorder, we suggest how interoceptive predictions constructed by the brain may erroneously bias individuals to express key symptoms and behaviors, and outline questions that are suitable for the development of neuroscience-based mental health interventions. We conclude that interoception represents a viable avenue for clinical and translational research in psychiatry, with a well-established conceptual framework, a neural basis, measurable biomarkers, interdisciplinary appeal, and transdiagnostic targets for understanding and improving mental health outcomes.
Collapse
Affiliation(s)
- Sahib S Khalsa
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Rachel C Lapidus
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA; Department of Psychology, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|