1
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
2
|
Hoang AT, Nizetic S, Ong HC, Chong CT, Atabani AE, Pham VV. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113194. [PMID: 34243094 DOI: 10.1016/j.jenvman.2021.113194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nizetic
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia.
| | - Cheng Tung Chong
- China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China
| | - A E Atabani
- Alternative Fuels Research Laboratroy (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039, Kayseri, Turkey
| | - Van Viet Pham
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
3
|
Zabihi S, Sharafi A, Motamedi H, Esmaeilzadeh F, Doherty WOS. Environmentally friendly acetic acid/steam explosion/supercritical carbon dioxide system for the pre-treatment of wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37867-37881. [PMID: 33723770 DOI: 10.1007/s11356-021-13410-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
It is well established that pretreatment of lignocellulosic biomass is required to achieve an effective enzymatic saccharification process. At the present time, most of the touted pre-treatment technologies would cause environmental pollution and unsustainable water use for the pretreated material prior to enzymatic saccharification. To address these shortcomings, the pretreatment technology which combines the supercritical CO2, SC-CO2 (a green solvent), acetic acid, and steam explosion was used to assess the pretreatment of wheat straw for enzymatic saccharification. The effects of solvent concentration, impregnation temperature and time, pre-treatment time, and temperature, as well as SC-CO2 pressure, contact time, and temperature, were evaluated. The results identified that at the optimum SC-CO2 pressure of 18 MPa, the highest amount of reducing sugars (RS) was produced from the cellulosic pulp using Acetic acid/Steam/SC-CO2 at 200 °C for 30 min, a value 20% more than the pulp produced with the Water/Steam/SC-CO2. The effectiveness of the pretreatment process was attributed not only to delignification and defibrillation but also to the exposure of the cellulose structure evidenced from the proportion of the β-glycosidic linkages as shown by FTIR. Passing SC-CO2 after the pretreatment reduces the amounts of fermentation inhibitors and eliminates the use of wash water.
Collapse
Affiliation(s)
- Samyar Zabihi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Amir Sharafi
- Department of Process Engineering, Research and Development Department, Shazand-Arak Oil Refinery Company, Arak, Iran
| | - Hossein Motamedi
- Department of Biology Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Feridun Esmaeilzadeh
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, University, Shiraz, Shiraz, 7134851154, Iran.
| | - William O S Doherty
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Sasaki M, Ohsawa K. Hydrolysis of Lignocellulosic Biomass in Hot-Compressed Water with Supercritical Carbon Dioxide. ACS OMEGA 2021; 6:14252-14259. [PMID: 34124448 PMCID: PMC8190814 DOI: 10.1021/acsomega.1c01026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the decomposition behavior of bamboo under hydrothermal and hydrolysis conditions with H2O/CO2 in a semicontinuous-flow reactor at 9.8 MPa. At 255 °C, with and without CO2, xylan in bamboo completely decomposed into xylo-oligosaccharide (XOD). The yield of glucan degradation products with CO2 was significantly higher compared with that under the hydrothermal reaction (25.7 vs 14.9 wt %, respectively). The reaction rate of glucan decomposition with CO2 was slightly higher than the rate of hydrothermal reaction (k H2O/CO2 /k H2O = 1.3). Increasing the fluid velocity of the hydrothermal reaction (3-10 mL/min) significantly accelerated the solubilization rate, but the ultimate yield of the soluble fraction was unchanged. The ultimate yield of the soluble fraction was slightly affected by physical effects. Hydrolysis with CO2 under severe conditions exhibited effective degradation of glucan. The catalytic activity of the H2O/CO2 system under hydrolysis can be explained by the system's chemical effect.
Collapse
Affiliation(s)
- Masahide Sasaki
- Bioproduction
Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukisamu-Higashi, Sapporo 062-8517, Japan
| | - Kurumi Ohsawa
- Hokkaido
High-Technology College, Megumino, Eniwa 061-1396, Japan
| |
Collapse
|
5
|
Noppawan P, Lanctôt AG, Magro M, Navarro PG, Supanchaiyamat N, Attard TM, Hunt AJ. High pressure systems as sustainable extraction and pre-treatment technologies for a holistic corn stover biorefinery. BMC Chem 2021; 15:37. [PMID: 34051832 PMCID: PMC8164268 DOI: 10.1186/s13065-021-00762-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
This mini-review assesses supercritical carbon dioxide (scCO2) extraction and high-pressure carbon dioxide pre-treatment technologies for valorisation of corn stover agricultural residues with particular focus on showing how these can aid in the creation of a holistic biorefineries. Corn stover is currently the largest source of agriculture residues in the USA, as such there is significant potential for exploitation to yield valuable chemicals. ScCO2 extraction could lead to the recovery of a variety of different chemicals which include flavonoids, sterols, steroid ketones, hydrocarbons, saturated fatty acids, unsaturated fatty acids, fatty alcohols, phenolics and triterpenoids. Importantly, recent studies have not only demonstrated that supercritical extraction can be utilized for the recovery of plant lipids for use in consumer products, including nutraceuticals and personal care, but the processing of treated biomass can lead to enhanced yields and recovery of other products from biorefinery processes. Despite the great potential and opportunities for using scCO2 and high-pressure systems in a biorefinery context their real-world application faces significant challenges to overcome before it is widely applied. Such challenges have also been discussed in the context of this mini-review.
Collapse
Affiliation(s)
- Pakin Noppawan
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Adrienne Gallant Lanctôt
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Maria Magro
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Pablo Gil Navarro
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thomas M Attard
- RX Extraction Ltd., Unit 10, Rowen Trade Estate, Neville Road, Bradford, BD4 8TQ, UK.
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Badgujar KC, Dange R, Bhanage BM. Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yong TLK, Pa’ee KF, Abd-Talib N, Mohamad N. Production of Platform Chemicals Using Supercritical Fluid Technology. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020:53-73. [DOI: 10.1007/978-3-030-44984-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Treichel H, Fongaro G, Scapini T, Frumi Camargo A, Spitza Stefanski F, Venturin B. Waste Biomass Pretreatment Methods. UTILISING BIOMASS IN BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-22853-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Sasaki M, Tachibana Y, Fujinaka Y. Catalytic Activity of the H 2O/CO 2 System in Lignocellulosic-Material Decomposition. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahide Sasaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukisamu-Higashi, Sapporo 062-8517, Japan
| | - Yuki Tachibana
- Hokkaido High-Technology College, Megumino, Eniwa 061-1396, Japan
| | - Yuta Fujinaka
- Hokkaido High-Technology College, Megumino, Eniwa 061-1396, Japan
| |
Collapse
|
10
|
Zhou D, Wang L, Chen X, Wei X, Liang J, Zhang D, Ding G. A novel acid catalyst based on super/subcritical CO 2-enriched water for the efficient esterification of rosin. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171031. [PMID: 30109033 PMCID: PMC6083657 DOI: 10.1098/rsos.171031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Rosin esters are widely applied as masticatory substances and beverage stabilizers, while classical acid-catalysed processes will lead to metal residue or environmental issues. Super/subcritical CO2-enriched high temperature liquid water (HTLW) as a green acid catalyst in the esterification reaction of rosin with glycerol was investigated. The pH of CO2-H2O binary system, as calculated based on gas-liquid equilibrium, charge balance and chemical equilibrium equations, ranged from 3.49 to 3.70 depending on the reaction conditions, indicating effective acid catalysis. Response surface methodology experiments showed the optimum conditions were 3.5 h, 3.9 MPa CO2 pressure, a rosin-to-glycerol molar ratio of 1.32 and 269°C, and an enhanced esterification yield of 94.74% was achieved, which was superior to that obtained using a ZnO catalyst. It was found that the esterification kinetics was a pseudo first-order reaction, and the enthalpy and entropy of activation were calculated using the Arrhenius-Polanyi equation. The presence of super/subcritical CO2-enriched HTLW catalyst can decrease the activation energy and significantly accelerate the reaction rate.
Collapse
Affiliation(s)
- Dan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Linlin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Petrochemical Resources Processing and Process Intensification Technology, Guangxi University, Nanning 53004, People's Republic of China
| | - Xiaopeng Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Petrochemical Resources Processing and Process Intensification Technology, Guangxi University, Nanning 53004, People's Republic of China
| | - Xiaojie Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Petrochemical Resources Processing and Process Intensification Technology, Guangxi University, Nanning 53004, People's Republic of China
| | - Jiezhen Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Guangxi Key Laboratory of Petrochemical Resources Processing and Process Intensification Technology, Guangxi University, Nanning 53004, People's Republic of China
| | - Dong Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Guoxin Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
11
|
Wang X, Wang L, Chen X, Zhou D, Xiao H, Wei X, Liang J. Catalytic methyl esterification of colophony over ZnO/SFCCR with subcritical CO 2: catalytic performance, reaction pathway and kinetics. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172124. [PMID: 29892399 PMCID: PMC5990756 DOI: 10.1098/rsos.172124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
A heterogeneous catalyst (ZnO/SFCCR) composed of ZnO supported on spent fluid cracking catalyst by wet impregnation was synthesized and applied to the esterification of colophony acids with methanol under subcritical CO2 conditions. The catalyst was characterized by SEM-EDS, BET, ICP, FTIR, XRD and Py-IR. An experimental set-up involving a new injection technique was designed to promote the heterogeneous methyl esterification, and the subcritical CO2 played a role in auxiliary acid catalysis (a pH range of 3.54-3.91), increasing the lifespan of ZnO/SFCCR, reducing the viscosity of the system to promote gas-liquid mass transfer. A maximum conversion rate of 97.01% was obtained in a relatively short time of 5 h. Kinetic experiments were performed from 190 to 220°C using a special high-temperature sampling device and analysing aliquots with high-performance liquid chromatography. A new reaction pathway, involving methyl abietate, methyl dehydroabietate, methyl neoabietate and methyl palustrate along with other kinds of colophony acids, was developed. The kinetic parameters were obtained using the Levenberg-Marquardt nonlinear least-squares method, and the activation energies for the isomerizations of neoabietic and palustric acids and for the methyl esterification of neoabietic, abietic, palustric and dehydroabietic acids were found to be 107.09, 113.95, 68.99, 49.85, 75.43 and 59.20 kJ mol-1, respectively. The results from the kinetic model were in good agreement with experimental values.
Collapse
Affiliation(s)
- Xubin Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Linlin Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiaopeng Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Dan Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Han Xiao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaojie Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Jiezhen Liang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
12
|
Eskicioglu C, Monlau F, Barakat A, Ferrer I, Kaparaju P, Trably E, Carrère H. Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO 2 catalyst for enhanced methane and hydrogen production. WATER RESEARCH 2017; 120:32-42. [PMID: 28478293 DOI: 10.1016/j.watres.2017.04.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Hydrothermal pretreatment of five lignocellulosic substrates (i.e. wheat straw, rice straw, biomass sorghum, corn stover and Douglas fir bark) were conducted in the presence of CO2 as a catalyst. To maximize disintegration and conversion into bioenergy (methane and hydrogen), pretreatment temperatures and subsequent pressures varied with a range of 26-175 °C, and 25-102 bars, respectively. Among lignin, cellulose and hemicelluloses, hydrothermal pretreatment caused the highest reduction (23-42%) in hemicelluloses while delignification was limited to only 0-12%. These reductions in structural integrity resulted in 20-30% faster hydrolysis rates during anaerobic digestion for the pretreated substrates of straws, sorghum, and corn stover while Douglas fir bark yielded 172% faster hydrolysis/digestion due to its highly refractory nature in the control. Furans and phenolic compounds formed in the pretreated hydrolyzates were below the inhibitory levels for methane and hydrogen production which had a range of 98-340 ml CH4/g volatile solids (VS) and 5-26 ml H2/g VS, respectively. Results indicated that hydrothermal pretreatment is able to accelerate the rate of biodegradation without generating high levels of inhibitory compounds while showing no discernible effect on ultimate biodegradation.
Collapse
Affiliation(s)
- Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada; LBE, INRA, 11100, Narbonne, France.
| | - Florian Monlau
- IATE, CIRAD, Montpellier SupAgro, INRA, Université de Montpelier, 34060, Montpellier, France
| | - Abdellatif Barakat
- IATE, CIRAD, Montpellier SupAgro, INRA, Université de Montpelier, 34060, Montpellier, France; Materials Science and Nano-engineering Department, Mohamed 6 Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya Barcelona Tech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Prasad Kaparaju
- LBE, INRA, 11100, Narbonne, France; Griffith School of Engineering, Nathan Campus, Griffith University, 170 Kessels Road, QLD 4111, Australia
| | | | | |
Collapse
|
13
|
Liang J, Chen X, Wang L, Wei X, Wang H, Lu S, Li Y. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. BIORESOURCE TECHNOLOGY 2017; 228:147-155. [PMID: 28061397 DOI: 10.1016/j.biortech.2016.12.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The aim of present study was to obtain total reducing sugars (TRS) by hydrolysis in subcritical CO2-water from sugarcane bagasse pith (SCBP), the fibrous residue remaining after papermaking from sugarcane bagasse. The optimum hydrolysis conditions were evaluated by L16(45) orthogonal experiments. The TRS yield achieved 45.8% at the optimal conditions: 200°C, 40min, 500rmin-1, CO2 initial pressure of 1MPa and liquid-to-solid ratio of 50:1. Fourier transform infrared spectrometry and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance were used to characterize hydrolysis liquor, treated and untreated SCBP, resulting in the removal of hemicelluloses to mainly produce xylose, glucose and arabinose during hydrolysis. The severity factors had no correlation to TRS yield, indicating that the simple kinetic processes of biomass solubilisation cannot perfectly describe the SCBP hydrolysis. The first-order kinetic model based on consecutive reaction was used to obtain rate constants, activation energies and pre-exponential factors.
Collapse
Affiliation(s)
- Jiezhen Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology of Guangxi, Nanning 530004, China
| | - Xiaopeng Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology of Guangxi, Nanning 530004, China.
| | - Linlin Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology of Guangxi, Nanning 530004, China
| | - Xiaojie Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology of Guangxi, Nanning 530004, China
| | - Huasheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Songzhou Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yunhua Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Moharreri E, Jafari T, Suib SL, Srinivasan N, Ghobadi AF, Ju LK, Elliott JR. Improved Understanding of CO2–Water Pretreatment of Guayule Biomass by High Solids Ratio Experiments, Rapid Physical Expansion, and Examination of Textural Properties. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b03318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ehsan Moharreri
- Institute
of Material Science, The University of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Tahereh Jafari
- Institute
of Material Science, The University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven L. Suib
- Institute
of Material Science, The University of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Chemistry, The University of Connecticut, Storrs, Connecticut 06269, United States
| | - Narayanan Srinivasan
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ahmadreza F. Ghobadi
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Lu-Kwang Ju
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - J. Richard Elliott
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
15
|
Toscan A, Morais ARC, Paixão SM, Alves L, Andreaus J, Camassola M, Dillon AJP, Lukasik RM. High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency. BIORESOURCE TECHNOLOGY 2017; 224:639-647. [PMID: 27955864 DOI: 10.1016/j.biortech.2016.11.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 05/03/2023]
Abstract
The performance of two lignocellulosic biomasses was studied in high-pressure carbon dioxide/water pre-treatment. Sugarcane bagasse and elephant grass were used to produce C5-sugars from hemicellulose and, simultaneously, to promote cellulose digestibility for enzymatic saccharification. Different pre-treatment conditions, with combined severity factor ranging from -1.17 to -0.04, were evaluated and maximal total xylan to xylose yields of 59.2wt.% (34.4wt.% xylooligomers) and 46.4wt.% (34.9wt.% xylooligomers) were attained for sugarcane bagasse and elephant grass, respectively. Furthermore, pre-treated biomasses were highly digestible, with glucan to glucose yields of 77.2mol% and 72.4mol% for sugarcane bagasse and elephant grass, respectively. High-pressure carbon dioxide/water pre-treatment provides high total C5-sugars and glucose recovery from both lignocellulosic biomasses; however it is highly influenced by composition and intrinsic features of each biomass. The obtained results confirm this approach as an effective and greener alternative to conventional pre-treatment processes.
Collapse
Affiliation(s)
- Andréia Toscan
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; Universidade de Caxias do Sul - Instituto de Biotecnologia, Laboratório de Enzimas e Biomassa, 95070-560 Caxias do Sul, RS, Brazil
| | - Ana Rita C Morais
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Susana M Paixão
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Luís Alves
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Jürgen Andreaus
- Departamento de Química, Universidade Regional de Blumenau, 89030-903 Blumenau, SC, Brazil
| | - Marli Camassola
- Universidade de Caxias do Sul - Instituto de Biotecnologia, Laboratório de Enzimas e Biomassa, 95070-560 Caxias do Sul, RS, Brazil
| | - Aldo José Pinheiro Dillon
- Universidade de Caxias do Sul - Instituto de Biotecnologia, Laboratório de Enzimas e Biomassa, 95070-560 Caxias do Sul, RS, Brazil
| | - Rafal M Lukasik
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.
| |
Collapse
|
16
|
Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2015.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Chhouk K, Quitain AT, Gaspillo PAD, Maridable JB, Sasaki M, Shimoyama Y, Goto M. Supercritical carbon dioxide-mediated hydrothermal extraction of bioactive compounds from Garcinia Mangostana pericarp. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Lachos-Perez D, Martinez-Jimenez F, Rezende C, Tompsett G, Timko M, Forster-Carneiro T. Subcritical water hydrolysis of sugarcane bagasse: An approach on solid residues characterization. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Liang J, Chen X, Wang L, Wei X, Qiu F, Lu C. Hydrolysis behaviors of sugarcane bagasse pith in subcritical carbon dioxide–water. RSC Adv 2016. [DOI: 10.1039/c6ra18436g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subcritical CO2–water exhibits a high capacity for dissolution and catalysis to promote the hydrolysis of sugarcane bagasse pith.
Collapse
Affiliation(s)
- Jiezhen Liang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P. R. China
- Key Laboratory for the Petrochemical Resources Processing and Process Intensification Technology of Guangxi
| | - Xiaopeng Chen
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P. R. China
- Key Laboratory for the Petrochemical Resources Processing and Process Intensification Technology of Guangxi
| | - Linlin Wang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P. R. China
- Key Laboratory for the Petrochemical Resources Processing and Process Intensification Technology of Guangxi
| | - Xiaojie Wei
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P. R. China
- Key Laboratory for the Petrochemical Resources Processing and Process Intensification Technology of Guangxi
| | - Feifei Qiu
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P. R. China
| | - Chaochao Lu
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning 530004
- P. R. China
| |
Collapse
|
20
|
Silveira MHL, Morais ARC, da Costa Lopes AM, Olekszyszen DN, Bogel-Łukasik R, Andreaus J, Pereira Ramos L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. CHEMSUSCHEM 2015; 8:3366-90. [PMID: 26365899 DOI: 10.1002/cssc.201500282] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/03/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).
Collapse
Affiliation(s)
- Marcos Henrique Luciano Silveira
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil
| | - Ana Rita C Morais
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | - Andre M da Costa Lopes
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | - Rafał Bogel-Łukasik
- Unit of Bioenergy, National Laboratory of Energy and Geology, 1649-038, Lisbon, Portugal.
| | - Jürgen Andreaus
- Department of Chemistry, Regional University of Blumenau, Blumenau, SC, 89012 900, Brazil.
| | - Luiz Pereira Ramos
- CEPESQ, Research Center in Applied Chemistry, Department of Chemistry, Federal University of Paraná, Curitiba, PR, 81531-970, Brazil.
- INCT Energy and Environment (INCT E&A), Department of Chemistry, Federal University of Paraná.
| |
Collapse
|
21
|
The solubility of sebacic acid in subcritical water using the response surface methodology. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2015. [DOI: 10.1007/s40090-014-0028-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Relvas FM, Morais ARC, Bogel-Lukasik R. Selective hydrolysis of wheat straw hemicellulose using high-pressure CO2 as catalyst. RSC Adv 2015. [DOI: 10.1039/c5ra14632a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of high-pressure CO2–H2O as selective acid-catalysed hydrolysis of wheat straw enhances xylo-oligosaccharides yield compared to water-only reaction.
Collapse
Affiliation(s)
- Frederico M. Relvas
- Unidade de Bioenergia
- Laboratório Nacional de Energia e Geologia
- Lisboa
- Portugal
| | - Ana Rita C. Morais
- Unidade de Bioenergia
- Laboratório Nacional de Energia e Geologia
- Lisboa
- Portugal
- LAQV/REQUIMTE
| | - Rafal Bogel-Lukasik
- Unidade de Bioenergia
- Laboratório Nacional de Energia e Geologia
- Lisboa
- Portugal
| |
Collapse
|
23
|
Morais ARC, da Costa Lopes AM, Bogel-Łukasik R. Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chem Rev 2014; 115:3-27. [DOI: 10.1021/cr500330z] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana R. C. Morais
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Andre M. da Costa Lopes
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Rafał Bogel-Łukasik
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
24
|
Kim IJ, Lee HJ, Choi IG, Kim KH. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 2014; 98:8469-80. [PMID: 25129610 DOI: 10.1007/s00253-014-6001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
Abstract
Reducing the enzyme loadings for enzymatic saccharification of lignocellulose is required for economically feasible production of biofuels and biochemicals. One strategy is addition of small amounts of synergistic proteins to cellulase mixtures. Synergistic proteins increase the activity of cellulase without causing significant hydrolysis of cellulose. Synergistic proteins exert their activity by inducing structural modifications in cellulose. Recently, synergistic proteins from various biological sources, including bacteria, fungi, and plants, were identified based on genomic data, and their synergistic activities were investigated. Currently, an up-to-date overview of several aspects of synergistic proteins, such as their functions, action mechanisms and synergistic activity, are important for future industrial application. In this review, we summarize the current state of research on four synergistic proteins: carbohydrate-binding modules, plant expansins, expansin-like proteins, and Auxiliary Activity family 9 (formerly GH61) proteins. This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology, Korea University Graduate School, Seoul, 136-713, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Rostagno MA, Prado JM, Mudhoo A, Santos DT, Forster–Carneiro T, Meireles MAA. Subcritical and supercritical technology for the production of second generation bioethanol. Crit Rev Biotechnol 2014; 35:302-12. [DOI: 10.3109/07388551.2013.843155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Evaluation and modelling of continuous flow sub-critical water hydrolysis of biomass derived components; lipids and carbohydrates. Chem Eng Res Des 2013. [DOI: 10.1016/j.cherd.2013.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb Technol 2013; 52:247-50. [PMID: 23540926 DOI: 10.1016/j.enzmictec.2013.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/18/2013] [Accepted: 02/04/2013] [Indexed: 11/21/2022]
Abstract
This work evaluates the pretreatment of sugarcane bagasse combining supercritical carbon dioxide (SC-CO2) and ultrasound to enhance the enzymatic hydrolysis of pretreated bagasse. In a first step the influence of process variables on the SC-CO2 pretreatment to enhance the enzymatic hydrolysis was evaluated by mean of a Plackett-Burmann design. Then, the sequential treatment combining ultrasound+SC-CO2 was evaluated. Results show that treatment using SC-CO2 increased the amount of fermentable sugar obtained of about 280% compared with the non-treated bagasse, leading to a hydrolysis efficiency (based on the amount of cellulose) as high as 74.2%. Combining ultrasound+SC-CO2 treatment increased about 16% the amount of fermentable sugar obtained by enzymatic hydrolysis in comparison with the treatment using only ultrasound. From the results presented in this work it can be concluded that the combined ultrasound+SC-CO2 treatment is an efficient and promising alternative to carry out the pretreatment of lignocellulosic feedstock at relatively low temperatures without the use of hazardous solvents.
Collapse
|
28
|
Zhang J, Zhang WX, Wu ZY, Yang J, Liu YH, Zhong X, Deng Y. A COMPARISON OF DIFFERENT DILUTE SOLUTION EXPLOSIONS PRETREATMENT FOR CONVERSION OF DISTILLERS' GRAINS INTO ETHANOL. Prep Biochem Biotechnol 2013; 43:1-21. [DOI: 10.1080/10826068.2012.692345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Gairola K, Smirnova I. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates. BIORESOURCE TECHNOLOGY 2012; 123:592-598. [PMID: 22947445 DOI: 10.1016/j.biortech.2012.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
This work explores hydrothermal d-xylose and hemicellulose to furfural conversion coupled with simultaneous furfural extraction by SC-CO(2) and the underlying reaction pathway. A maximum furfural yield of 68% was attained from d-xylose at 230°C and 12MPa. Additionally missing kinetic data for l-arabinose to furfural conversion was provided, showing close similarity to d-xylose. Furfural yields from straw and brewery waste hydrolysates were significantly lower than those obtained from model compounds, indicating side reactions with other hydrolysate components. Simultaneous furfural extraction by SC-CO(2) significantly increased extraction yield in all cases. The results indicate that furfural reacts with intermediates of pentose dehydration. The proposed processing route can be well integrated into existing lignocellulose biorefinery concepts.
Collapse
Affiliation(s)
- Krishan Gairola
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eissendorfer Strasse 38, 21073 Hamburg, Germany.
| | | |
Collapse
|
30
|
Ruen-ngam D, Quitain AT, Sasaki M, Goto M. Hydrothermal Hydrolysis of Hesperidin Into More Valuable Compounds Under Supercritical Carbon Dioxide Condition. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301056b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Armando T. Quitain
- Graduate School
of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Mitsuru Sasaki
- Graduate School
of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Motonobu Goto
- Bioelectrics Research Center,
Kumamoto University, Kumamoto, Japan
| |
Collapse
|
31
|
Um BH, van Walsum GP. Effect of Pretreatment Severity on Accumulation of Major Degradation Products from Dilute Acid Pretreated Corn Stover and Subsequent Inhibition of Enzymatic Hydrolysis of Cellulose. Appl Biochem Biotechnol 2012; 168:406-20. [DOI: 10.1007/s12010-012-9784-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
32
|
Reactive high pressure carbonated water pretreatment prior to enzymatic saccharification of biomass substrates. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Abstract
The anaerobic fermentation characteristics of green and dried corn straw pretreated by steam explosion method were investigated. The steam pressure and retention time were 1.0Mpa and 90s, TS of fermentation liquid were 2% and 4%. It was shown that the fermentation cycle of green straw is shorter than that of the dried one by 4-7 days, the gas productivity of green straw is 220 mL/gVS, which is higher than that of dried one (153 mL/gVS) while TS is 2%, but there is no significant difference between the green and dried corn straw while TS is 4%, the average methane content in biogas produced from green straw is slightly less than that of the dried one.
Collapse
|
34
|
Narayanaswamy N, Faik A, Goetz DJ, Gu T. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. BIORESOURCE TECHNOLOGY 2011; 102:6995-7000. [PMID: 21555219 DOI: 10.1016/j.biortech.2011.04.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/13/2011] [Accepted: 04/18/2011] [Indexed: 05/03/2023]
Abstract
Supercritical CO(2) (SC-CO(2)), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO(2) pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO(2) were higher than the untreated sample's 12% glucose yield (12 g/100g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO(2) pretreatment at 3500 psi and 150°C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO(2) treated corn stover when compared to the untreated, while SEM images showed an increase in surface area.
Collapse
Affiliation(s)
- Naveen Narayanaswamy
- Department of Chemical Engineering & Biomolecular Engineering, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
35
|
Luterbacher JS, Tester JW, Walker LP. High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass. Biotechnol Bioeng 2010; 107:451-60. [DOI: 10.1002/bit.22823] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Srinivas K, King JW, Monrad JK, Howard LR, Hansen CM. Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J Food Sci 2010; 74:E342-54. [PMID: 19723198 DOI: 10.1111/j.1750-3841.2009.01251.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Process engineering operations in food and nutraceutical industries pertaining to the design of extraction of value-added products from biomass using pressurized liquids involve a careful selection of the solvent and optimal temperature conditions to achieve maximum yield. Complex molecular structure and limited physical property data in the literature of biological solutes extracted from biomass compounds have necessitated the process modeling of such operations. In this study, we have applied the Hansen 3-dimensional solubility parameter concept to optimize the extraction of molecularly complex solutes using subcritical fluid solvents. Hansen solubility spheres characterized by the relative energy differences (RED) have been used to characterize and quantify the solute-subcritical solvent interactions as a function of temperature. The solvent power of subcritical water and compressed hydroethanolic mixtures above their boiling points has been characterized using the above-mentioned method. The use of group contribution methods in collaboration with computerized algorithms to plot the Hansen spheres provides a quantitative prediction tool for optimizing the design of extraction conditions. The method can be used to estimate conditions for solute-solvent miscibility, an optimum temperature range for conducting extractions under pressurized conditions, and approximate extraction conditions of solutes from natural matrices.
Collapse
Affiliation(s)
- K Srinivas
- Dept. of Chemical Engineering, Univ. of Arkansas, Bell Engineering Center, Fayetteville, AR 72701, USA
| | | | | | | | | |
Collapse
|
37
|
‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 2009; 20:339-47. [DOI: 10.1016/j.copbio.2009.05.003] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/20/2022]
|
38
|
|
39
|
Rogalinski T, Ingram T, Brunner G. Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 2008. [DOI: 10.1016/j.supflu.2008.05.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Van Walsum GP, Garcia-Gil M, Chen SF, Chambliss K. Effect of dissolved carbon dioxide on accumulation of organic acids in liquid hot water pretreated biomass hydrolyzates. Appl Biochem Biotechnol 2008; 137-140:301-11. [PMID: 18478397 DOI: 10.1007/s12010-007-9060-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Liquid hot water pretreatment has been proposed as a possible means of improving rates of enzymatic hydrolysis of biomass while maintaining low levels of inhibitory compounds. Supplementation of liquid hot water pretreatment with dissolved carbon dioxide, yielding carbonic acid, has been shown to improve hydrolysis of some biomass substrates compared with the use of water alone. Previous studies on the application of carbonic acid to biomass pretreatment have noted a higher pH of hydrolyzates treated with carbonic acid as compared with the samples prepared with water alone. This study has applied recently developed analytical methods to quantify the concentration of organic acids in liquid hot water pretreated hydrolyzates, prepared with and without the addition of carbonic acid. It was observed that the addition of carbon dioxide to liquid hot water pretreatment significantly changed the accumulated concentrations of most measured compounds. However, the measured differences in product concentrations resulting from addition of carbonic acid did not account for the measured differences in hydrolyzate pH.
Collapse
Affiliation(s)
- G Peter Van Walsum
- Department of Environmental Studies, Baylor University, One Bear Place No. 97266, Waco, Texas 76798-7266, USA.
| | | | | | | |
Collapse
|
41
|
|
42
|
|