1
|
Liu X, Gao F, Wang Y, Zhang J, Bai Y, Zhang W, Luo H, Yao B, Wang Y, Tu T. Characterization of a novel thermostable α-l-arabinofuranosidase for improved synergistic effect with xylanase on lignocellulosic biomass hydrolysis without prior pretreatment. BIORESOURCE TECHNOLOGY 2024; 394:130177. [PMID: 38072076 DOI: 10.1016/j.biortech.2023.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Utilizing thermostable enzymes in biomass conversion processes presents a promising approach to bypass pretreatment, garnering significant attention from the biorefinery industry. A novel discovered α-l-arabinofuranosidase, Abf4980, exhibits exceptional thermostability by maintaining full activity after 24 h of incubation at 70 °C. It effectively acts on polyarabinosides, cleaving α-1,2- and α-1,3-linked arabinofuranose side chains from water-soluble wheat arabinoxylan while releasing xylose. When synergistically combined with the thermostable bifunctional xylanase/β-glucanase CbXyn10C from Caldicellulosiruptor bescii at an enzyme-activity ratio of 6:1, Abf4980 achieves the highest degradation efficiency for wheat arabinoxylan. Furthermore, Abf4980 and CbXyn10C demonstrated remarkable efficacy in hydrolyzing unmodified wheat bran and corn cob to generate arabinose and xylooligosaccharides. This discovery holds promising opportunities for improving the efficiency of lignocellulosic biomass conversion into fermentable sugars.
Collapse
Affiliation(s)
- Xiaoqing Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Expression and Characterization of Two α-l-Arabinofuranosidases from Talaromyces amestolkiae: Role of These Enzymes in Biomass Valorization. Int J Mol Sci 2023; 24:11997. [PMID: 37569374 PMCID: PMC10418624 DOI: 10.3390/ijms241511997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and β-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a β-xylosidase already characterized from the same fungus.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Laura I. de Eugenio
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Alicia Prieto
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - María Jesús Martínez
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| |
Collapse
|
3
|
Sürmeli Y, Şanlı-Mohamed G. Structural and functional analyses of GH51 alpha-L-arabinofuranosidase of Geobacillus vulcani GS90 reveal crucial residues for catalytic activity and thermostability. Biotechnol Appl Biochem 2022. [PMID: 36455188 DOI: 10.1002/bab.2423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 12/04/2022]
Abstract
Alpha-L-arabinofuranosidase (Abf) is of big interest in various industrial areas. Directed evolution is a powerful strategy to identify significant residues underlying Abf properties. Here, six active variants from GH51 Abf of Geobacillus vulcani GS90 (GvAbf) by directed evolution were overproduced, extracted, and analyzed at biochemical and structural levels. According to the activity and thermostability results, the most-active and the least-active variants were found as GvAbf51 and GvAbf52, respectively. GvAbf63 variant was more active than parent GvAbf by 20% and less active than GvAbf51. Also, the highest thermostability belonged to GvAbf52 with 80% residual activity after 1 h. Comparative sequence and structure analyses revealed that GvAbf51 possessed L307S displacement. Thus, this study suggested that L307 residue may be critical for GvAbf activity. GvAbf63 had H30D, Q90H, and L307S displacements, and H30 was covalently bound to E29 catalytic residue. Thus, H30D may decrease the positive effect of L307S on GvAbf63 activity, preventing E29 action. Besides, GvAbf52 possessed S215N, L307S, H473P, and G476C substitutions and S215 was close to E175 (acid-base residue). S215N may partially disrupt E175 action. Overall effect of all substitutions in GvAbf52 may result in the formation of the C-C bond between C171 and C213 by becoming closer to each other.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
4
|
Thakur A, Sharma A, Khaire KC, Moholkar VS, Pathak P, Bhardwaj NK, Goyal A. Two-Step Saccharification of the Xylan Portion of Sugarcane Waste by Recombinant Xylanolytic Enzymes for Enhanced Xylose Production. ACS OMEGA 2021; 6:11772-11782. [PMID: 34056331 PMCID: PMC8153997 DOI: 10.1021/acsomega.1c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 05/10/2023]
Abstract
Sugarcane bagasse (SB) and sugarcane trash (SCT) containing 30% hemicellulose content are the waste from the sugarcane industry. Hemicellulose being heterogeneous, more complex, and less abundant than cellulose remains less explored. The optimized conditions for the pretreatment of SB and SCT for maximizing the delignification are soaking in aqueous ammonia (SAA), 18.5 wt %, followed by heating at 70 °C for 14 h. The optimization of hydrolysis of SAA pretreated (ptd) SB and SCT by the Box-Behnken design in the first step of saccharification by xylanase (CtXyn11A) and α-l-arabinofuranosidase (PsGH43_12) resulted in the total reducing sugar (TRS) yield of xylooligosaccharides (TRS(XOS)) of 93.2 mg/g ptd SB and 85.1 mg/g ptd SCT, respectively. The second step of saccharification by xylosidase (BoGH43) gave the TRS yield of 164.7 mg/g ptd SB and 147.2 mg/g ptd SCT. The high-performance liquid chromatography analysis of hydrolysate obtained after the second step of saccharification showed 69.6% xylan-to-xylose conversion for SB and 64.1% for SCT. This study demonstrated the optimization of the pretreatment method and of the enzymatic saccharification by recombinant xylanolytic enzymes, resulting in the efficient saccharification of ptd hemicellulose to TRS by giving 73.5% conversion for SB and 71.1% for SCT. These optimized conditions for the pretreatment and saccharification of sugarcane waste can also be used at a large scale.
Collapse
Affiliation(s)
- Abhijeet Thakur
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Aakash Sharma
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubh Chandrakant Khaire
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Vijayanand Suryakant Moholkar
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Puneet Pathak
- Avantha
Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Nishi Kant Bhardwaj
- Avantha
Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Arun Goyal
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
- E-mail: . Phone: +91-361-258-2208
| |
Collapse
|
5
|
Thakur A, Sharma K, Jamaldheen SB, Goyal A. Molecular Characterization, Regioselective and Synergistic Action of First Recombinant Type III α-L-arabinofuranosidase of Family 43 Glycoside Hydrolase (PsGH43_12) from Pseudopedobacter saltans. Mol Biotechnol 2020; 62:443-455. [DOI: 10.1007/s12033-020-00263-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 01/26/2023]
|
6
|
Poria V, Saini JK, Singh S, Nain L, Kuhad RC. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. BIORESOURCE TECHNOLOGY 2020; 304:123019. [PMID: 32089440 DOI: 10.1016/j.biortech.2020.123019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 05/15/2023]
Abstract
Alpha-L-arabinofuranoside arabinofuranohydrolase (ARA), more commonly known as alpha-L-arabinofuranosidase (E.C. number 3.2.1.55), is a hydrolytic enzyme, catalyzing the cleavage of alpha-L-arabinose by acting on the non-reducing ends of alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linked arabinoxylans and arabinogalactans. ARA functions as debranching enzyme removing arabinose substituents from arabinoxylan and arabinoxylooligomers, thereby, boosting the hydrolysis of arabinoxylan fraction of hemicellulose and improving bioconversion of lignocellulosic biomass. Previously, comprehensive information on this enzyme has not been reviewed thoroughly. Therefore, the main aim of this review is to highlight the important properties of this interesting enzyme, microorganisms used for its production, and enhanced production using genetic engineering approach. An account on synergism with other biomass hydrolyzing enzymes and various industrial applications of this enzyme has also been provided along with an outlook on further research and development.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India.
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India
| | - Ramesh Chander Kuhad
- Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi PIN-110021, India
| |
Collapse
|
7
|
Malgas S, Mafa MS, Mkabayi L, Pletschke BI. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World J Microbiol Biotechnol 2019; 35:187. [PMID: 31728656 DOI: 10.1007/s11274-019-2765-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
This review examines the recent models describing the mode of action of various xylanolytic enzymes and how these enzymes can be applied (sequentially or simultaneously) with their distinctive roles in mind to achieve efficient xylan degradation. With respect to homeosynergy, synergism appears to be as a result of β-xylanase and/or oligosaccharide reducing-end β-xylanase liberating xylo-oligomers (XOS) that are preferred substrates of the processive β-xylosidase. With regards to hetero-synergism, two cross relationships appear to exist and seem to be the reason for synergism between the enzymes during xylan degradation. These cross relations are the debranching enzymes such as α-glucuronidase or side-chain cleaving enzymes such as carbohydrate esterases (CE) removing decorations that would have hindered back-bone-cleaving enzymes, while backbone-cleaving-enzymes liberate XOS that are preferred substrates of the debranching and side-chain-cleaving enzymes. This interaction is demonstrated by high yields in co-production of xylan substituents such as arabinose, glucuronic acid and ferulic acid, and XOS. Finally, lytic polysaccharide monooxygenases (LPMO) have also been implicated in boosting whole lignocellulosic biomass or insoluble xylan degradation by glycoside hydrolases (GH) by possibly disrupting entangled xylan residues. Since it has been observed that the same enzyme (same Enzyme Commission, EC, classification) from different GH or CE and/or AA families can display different synergistic interactions with other enzymes due to different substrate specificities and properties, in this review, we propose an approach of enzyme selection (and mode of application thereof) during xylan degradation, as this can improve the economic viability of the degradation of xylan for producing precursors of value added products.
Collapse
Affiliation(s)
- Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa
| | - Mpho S Mafa
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa.,Protein Structure-Function Research Unit (PSFRU), School of Molecular and Cell Biology, Wits University, Johannesburg, Gauteng, 2000, South Africa
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, Eastern Cape, 6140, South Africa.
| |
Collapse
|
8
|
Cintra LC, da Costa IC, de Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, de Faria FP, Ulhoa CJ. The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb Technol 2019; 133:109447. [PMID: 31874680 DOI: 10.1016/j.enzmictec.2019.109447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
To increase the efficiency of enzyme cocktails in deconstructing cellulose and hemicelluloses present in the plant cell wall, a combination of enzymes with complementary activities is required. Xylan is the main hemicellulose component of energy crops and for its complete hydrolysis a system consisting of several enzymes acting cooperatively, including endoxylanases (XYN), β-xylosidases (XYL) and α-l-arabinofuranosidases (ABF) is necessary. The current work aimed at evaluating the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of steam-exploded sugarcane bagasse (SEB). One recombinant endoxylanase (HXYN2) and one recombinant β-xylosidase (HXYLA) from Humicola grisea var thermoidea, together with an α-l-arabinofuranosidase (AFB3) from Penicillium pupurogenum, all produced in Pichia pastoris, were used to formulate an efficient enzyme mixture for SEB hydrolysis using a 23 Central Composite Rotatable Design (CCRD). The most potent enzyme for SEB hydrolysis was ABF3. Subsequently, the optimal enzyme mixture was used in combination with commercial cellulases (Accellerase 1500), either simultaneously or in sequential experiments. The supplementation of Accellerase 1500 with hemicellulases enhanced the glucose yield from SEB hydrolysis by 14.6%, but this effect could be raised to 50% when hemicellulases were added prior to hydrolysis with commercial cellulases. These results were supported by scanning electron microscopy, which revealed the effect of enzymatic hydrolysis on SEB fibers. Our results show the potential of complementary enzyme activities to improve enzymatic hydrolysis of SEB, thus improving the efficiency of the hydrolytic process.
Collapse
Affiliation(s)
- Lorena Cardoso Cintra
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; School of Veterinary and Animal Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Izadora Cristina Moreira de Oliveira
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Amanda Gregorim Fernandes
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Syd Pereira Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Maria Cristina Ravanal
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile; Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Eyzaguirre
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Fabrícia Paula de Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cirano José Ulhoa
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Zheng F, Liu J, Basit A, Miao T, Jiang W. Insight to Improve α-L-Arabinofuranosidase Productivity in Pichia pastoris and Its Application on Corn Stover Degradation. Front Microbiol 2018; 9:3016. [PMID: 30631307 PMCID: PMC6315152 DOI: 10.3389/fmicb.2018.03016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
α-L-arabinofuranosidase (ARA) with enhanced specific activity and in large amounts, is needed for a variety of industrial applications. To improve ARA production with engineered methylotrophic yeast Pichia pastoris, a genetically modified ara gene from Aspergillus niger ND-1 was investigated. Through codon optimization and rational replacement of α-factor signal peptide with the native propeptide (MFSRRNLVALGLAATVSA), ARA production was improved from 2.61 ± 0.13 U/mL to 14.37 ± 0.22 U/mL in shaking flask culture (a 5.5-fold increase). Results of N-terminal sequencing showed that secreted active ARA of recombinant strain p-oARA had theoretical initial five amino acids (GPCDI) comparable to the mature sequences of α-oARA (EAEAG) and αp-oARA (NLVAL). The kinetic values have been determined for ARA of recombinant strain p-oARA (Vmax = 747.55 μmol/min/mg, Km = 5.36 mmol/L), optimal activity temperature 60°C and optimal pH 4.0. Scaling up of ARA production by p-oARA in a 7.5-L fermentor resulted in remarkably high extracellular ARA specific activity (479.50 ± 12.83 U/mg) at 168 h, and maximal production rate 164.47 ± 4.40 U/mL. In studies of corn stover degradation activity, degree of synergism for ARA and xylanase was 32.4% and enzymatic hydrolysis yield for ARA + xylanase addition was 15.9% higher than that of commercial cellulase, indicating significant potential of ARA for catalytic conversion of corn stover to fermentable sugars for biofuel production.
Collapse
Affiliation(s)
- Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018; 23:E2937. [PMID: 30423814 PMCID: PMC6278514 DOI: 10.3390/molecules23112937] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an abundant and renewable resource that potentially contains large amounts of energy. It is an interesting alternative for fossil fuels, allowing the production of biofuels and other organic compounds. In this paper, a review devoted to the processing of lignocellulosic materials as substrates for fermentation processes is presented. The review focuses on physical, chemical, physicochemical, enzymatic, and microbiologic methods of biomass pretreatment. In addition to the evaluation of the mentioned methods, the aim of the paper is to understand the possibilities of the biomass pretreatment and their influence on the efficiency of biofuels and organic compounds production. The effects of different pretreatment methods on the lignocellulosic biomass structure are described along with a discussion of the benefits and drawbacks of each method, including the potential generation of inhibitory compounds for enzymatic hydrolysis, the effect on cellulose digestibility, the generation of compounds that are toxic for the environment, and energy and economic demand. The results of the investigations imply that only the stepwise pretreatment procedure may ensure effective fermentation of the lignocellulosic biomass. Pretreatment step is still a challenge for obtaining cost-effective and competitive technology for large-scale conversion of lignocellulosic biomass into fermentable sugars with low inhibitory concentration.
Collapse
Affiliation(s)
- Karolina Kucharska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Piotr Rybarczyk
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Iwona Hołowacz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Rafał Łukajtis
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Marta Glinka
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Marian Kamiński
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
11
|
A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Cintra LC, Fernandes AG, Oliveira ICMD, Siqueira SJL, Costa IGO, Colussi F, Jesuíno RSA, Ulhoa CJ, Faria FPD. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int J Biol Macromol 2017; 105:262-271. [DOI: 10.1016/j.ijbiomac.2017.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/07/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
|
13
|
Malgas S, Thoresen M, van Dyk JS, Pletschke BI. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzyme Microb Technol 2017; 103:1-11. [DOI: 10.1016/j.enzmictec.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
14
|
Huang D, Liu J, Qi Y, Yang K, Xu Y, Feng L. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol 2017; 101:6023-6037. [PMID: 28616644 DOI: 10.1007/s00253-017-8341-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
Abstract
Lignocellulosic biomass from various types of wood has become a renewable resource for production of biofuels and biobased chemicals. Because xylan is the major component of wood hemicelluloses, highly efficient enzymes to enhance xylan hydrolysis can improve the use of lignocellulosic biomass. In this study, a xylanolytic gene cluster was identified from the crude oil-degrading thermophilic strain Geobacillus thermodenitrificans NG80-2. The enzymes involved in xylan hydrolysis, which include two xylanases (XynA1, XynA2), three β-xylosidases (XynB1, XynB2, XynB3), and one α-L-arabinofuranosidase (AbfA), have many unique features, such as high pH tolerance, high thermostability, and a broad substrate range. The three β-xylosidases were highly resistant to inhibition by product (xylose) accumulation. Moreover, the combination of xylanase, β-xylosidase, and α-L-arabinofuranosidase exhibited the largest synergistic action on xylan degradation (XynA2, XynB1, and AbfA on oat spelt or beechwood xylan; XynA2, XynB3, and AbfA on birchwood xylan). We have demonstrated that the proposed enzymatic cocktail almost completely converts complex xylan to xylose and arabinofuranose and has great potential for use in the conversion of plant biomass into biofuels and biochemicals.
Collapse
Affiliation(s)
- Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA), Nankai University, 23 Hongda Street, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People's Republic of China.
| | - Jia Liu
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA), Nankai University, 23 Hongda Street, Tianjin, 300457, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China
| | - Yanfei Qi
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA), Nankai University, 23 Hongda Street, Tianjin, 300457, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China
| | - Kexin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA), Nankai University, 23 Hongda Street, Tianjin, 300457, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China
| | - Yingying Xu
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA), Nankai University, 23 Hongda Street, Tianjin, 300457, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Economic-Technological Development Area (TEDA), Nankai University, 23 Hongda Street, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
15
|
Ventorino V, Ionata E, Birolo L, Montella S, Marcolongo L, de Chiaro A, Espresso F, Faraco V, Pepe O. Lignocellulose-Adapted Endo-Cellulase Producing Streptomyces Strains for Bioconversion of Cellulose-Based Materials. Front Microbiol 2016; 7:2061. [PMID: 28066379 PMCID: PMC5177626 DOI: 10.3389/fmicb.2016.02061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/07/2016] [Indexed: 11/13/2022] Open
Abstract
Twenty-four Actinobacteria strains, isolated from Arundo donax, Eucalyptus camaldulensis and Populus nigra biomass during natural biodegradation and with potential enzymatic activities specific for the degradation of lignocellulosic materials, were identified by a polyphasic approach. All strains belonged to the genus Streptomyces (S.) and in particular, the most highly represented species was Streptomyces argenteolus representing 50% of strains, while 8 strains were identified as Streptomyces flavogriseus (synonym S. flavovirens) and Streptomyces fimicarius (synonyms Streptomyces acrimycini, Streptomyces baarnensis, Streptomyces caviscabies, and Streptomyces flavofuscus), and the other four strains belonged to the species Streptomyces drozdowiczii, Streptomyces rubrogriseus, Streptomyces albolongus, and Streptomyces ambofaciens. Moreover, all Streptomyces strains, tested for endo and exo-cellulase, cellobiase, xylanase, pectinase, ligninase, peroxidase, and laccase activities using qualitative and semi-quantitative methods on solid growth medium, exhibited multiple enzymatic activities (from three to six). The 24 strains were further screened for endo-cellulase activity in liquid growth medium and the four best endo-cellulase producers (S. argenteolus AE58P, S. argenteolus AE710A, S. argenteolus AE82P, and S. argenteolus AP51A) were subjected to partial characterization and their enzymatic crude extracts adopted to perform saccharification experiments on A. donax pretreated biomass. The degree of cellulose and xylan hydrolysis was evaluated by determining the kinetics of glucose and xylose release during 72 h incubation at 50°C from the pretreated biomass in the presence of cellulose degrading enzymes (cellulase and β-glucosidase) and xylan related activities (xylanase and β-xylosidase). The experiments were carried out utilizing the endo-cellulase activities from the selected S. argenteolus strains supplemented with commercial β-gucosidase and xylanase preparations from Genencore (Accellerase BG and Accellerase XY). Cellulose and xylan conversion, when conducted using commercial (hemi)cellulases, gave glucose and xylose yields of 30.17 and 68.9%, respectively. The replacement of the cellulolytic preparation from Genencor (Accellerase 1500), with the endo-cellulase from S. argenteolus AE58P resulted in almost 76% of the glucose yield obtained in the presence of the commercial counterpart. Due to the promising results obtained by using the enzymatic crude extracts from S. argenteolus AE58P in the pretreated A. donax saccharification experiments, the proteins putatively responsible for endo-cellulase activity in this strain were identified by proteomics. Several proteins were confidently identified in different Streptomyces spp., eight of which belong to the class of Carbohydrate active enzymes. Overall results highlighted the biotechnological potential of S. argenteolus AE58P being an interesting candidate biocatalyst-producing bacterium for lignocellulose conversion and production of biochemicals and bioenergy.
Collapse
Affiliation(s)
- Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Elena Ionata
- Institute of Biosciences and BioResources—National Research CouncilNaples, Italy
| | - Leila Birolo
- Department of Chemical Sciences, University of Naples Federico IINaples, Italy
| | - Salvatore Montella
- Department of Chemical Sciences, University of Naples Federico IINaples, Italy
| | - Loredana Marcolongo
- Institute of Biosciences and BioResources—National Research CouncilNaples, Italy
| | - Addolorata de Chiaro
- Institute of Biosciences and BioResources—National Research CouncilNaples, Italy
| | - Francesco Espresso
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico IINaples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico IINaples, Italy
| |
Collapse
|
16
|
Lei Z, Shao Y, Yin X, Yin D, Guo Y, Yuan J. Combination of Xylanase and Debranching Enzymes Specific to Wheat Arabinoxylan Improve the Growth Performance and Gut Health of Broilers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4932-4942. [PMID: 27285356 DOI: 10.1021/acs.jafc.6b01272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arabinoxylan (AX) is the major antinutritional factor of wheat. This study evaluated the synergistic effects of xylanase and debranching enzymes (arabinofuranosidase [ABF] and feruloyl esterase [FAE]) on AX. During in vitro tests, the addition of ABF or FAE accelerated the hydrolysis of water-soluble AX (WE-AX) and water-insoluble AX (WU-AX) and produced more xylan oligosaccharides (XOS) than xylanase alone. XOS obtained from WE-AX stimulated greater proliferation of Lactobacillus brevis and Bacillus subtilis than did fructo-oligosaccharides (FOS) and glucose. During in vivo trials, xylanase increased the average daily growth (ADG), decreased the feed-conversion ratio (FCR), and reduced the digesta viscosity of jejunum and intestinal lesions of broilers fed a wheat-based diet on day 36. ABF or FAE additions further improved these effects. Broilers fed a combination of xylanase, ABF, and FAE exhibited the best growth. In conclusion, the synergistic effects among xylanase, ABF, and FAE increased AX degradation, which improve the growth performance and gut health of broilers.
Collapse
Affiliation(s)
- Zhao Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yuxin Shao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Xiaonan Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| |
Collapse
|
17
|
Huang C, He J, Li X, Min D, Yong Q. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes. BIORESOURCE TECHNOLOGY 2015; 192:471-7. [PMID: 26080104 DOI: 10.1016/j.biortech.2015.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 05/24/2023]
Abstract
Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility.
Collapse
Affiliation(s)
- Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Juan He
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Douyong Min
- College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Strategic optimization of xylanase–mannanase combi-CLEAs for synergistic and efficient hydrolysis of complex lignocellulosic substrates. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Xia W, Shi P, Xu X, Qian L, Cui Y, Xia M, Yao B. High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to D-xylose. PLoS One 2015; 10:e0117578. [PMID: 25658646 PMCID: PMC4320052 DOI: 10.1371/journal.pone.0117578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/28/2014] [Indexed: 11/18/2022] Open
Abstract
A novel β-xylosidase gene of glycosyl hydrolase (GH) family 3, xyl3A, was identified from the thermophilic fungus Humicola insolens Y1, which is an innocuous and non-toxic fungus that produces a wide variety of GHs. The cDNA of xyl3A, 2334 bp in length, encodes a 777-residue polypeptide containing a putative signal peptide of 19 residues. The gene fragment without the signal peptide-coding sequence was cloned and overexpressed in Pichia pastoris GS115 at a high level of 100 mg/L in 1-L Erlenmeyer flasks without fermentation optimization. Recombinant Xyl3A showed both β-xylosidase and α-arabinfuranosidase activities, but had no hydrolysis capacity towards polysaccharides. It was optimally active at pH 6.0 and 60°C with a specific activity of 11.6 U/mg. It exhibited good stability over pH 4.0-9.0 (incubated at 37°C for 1 h) and at temperatures of 60°C and below, retaining over 80% maximum activity. The enzyme had stronger tolerance to xylose than most fungal GH3 β-xylosidases with a high Ki value of 29 mM, which makes Xyl3A more efficient to produce xylose in fermentation process. Sequential combination of Xyl3A following endoxylanase Xyn11A of the same microbial source showed significant synergistic effects on the degradation of various xylans and deconstructed xylo-oligosaccharides to xylose with high efficiency. Moreover, using pNPX as both the donor and acceptor, Xyl3A exhibited a transxylosylation activity to synthesize pNPX2. All these favorable properties suggest that Xyl3A has good potential applications in the bioconversion of hemicelluloses to biofuels.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Lichun Qian
- College of Animal Science, Zhejiang University, Hangzhou 310058, P. R. China
- * E-mail: (BY); (LQ)
| | - Ying Cui
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Mengjuan Xia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- * E-mail: (BY); (LQ)
| |
Collapse
|
20
|
A new GH43 α-arabinofuranosidase from Humicola insolens Y1: biochemical characterization and synergistic action with a xylanase on xylan degradation. Appl Biochem Biotechnol 2014; 175:1960-70. [PMID: 25432346 DOI: 10.1007/s12010-014-1416-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
A new α-arabinofuranosidase gene (Hiabf43) was cloned from Humicola insolens Y1 and successfully expressed in Pichia pastoris GS115. Deduced HiAbf43 contained a putative signal peptide and a catalytic domain of glycoside hydrolase (GH) family 43. Purified recombinant HiAbf43 showed optimal activity at pH 5.0 and 50 °C, and was active over a broad pH range. The enzyme was specific for the cleavage of α-1,3-linkage and showed high activity against 4-nitrophenyl α-L-arabinofuranoside, debranched arabinan, and sugar beet arabinan. Sequential addition of HiAbf43 followed by Xyn11A increased the degradation efficiency of birchwood and beechwood xylans but not wheat arabinoxylan. The synergy degree was high up to 1.21-fold.
Collapse
|
21
|
Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 2014; 148:381-7. [DOI: 10.1016/j.foodchem.2013.10.062] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/24/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
|
22
|
Uçkun Kiran E, Akpinar O, Bakir U. Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. FOOD AND BIOPRODUCTS PROCESSING 2013. [DOI: 10.1016/j.fbp.2012.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
A novel neutral xylanase with high SDS resistance from Volvariella volvacea: characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. ACTA ACUST UNITED AC 2013; 40:1083-93. [DOI: 10.1007/s10295-013-1312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Abstract
A neutral xylanase (XynII) from Volvariella volvacea was identified and characterized. Unlike other modular xylanases, it consists of only a single GH10 catalytic domain with a unique C-terminal sequence (W-R-W-F) and a phenylalanine and proline-rich motif (T-P-F-P-P-F) at N-terminus, indicating that it is a novel GH10 xylanase. XynII exhibited optimal activity at pH 7 and 60 °C and stability over a broad range of pH 4.0–10.0. XynII displayed extreme highly SDS resistance retaining 101.98, 92.99, and 69.84 % activity at the presence of 300 mM SDS on birchwood, soluble oat spelt, and beechwood xylan, respectively. It remained largely intact after 24 h of incubation with proteinase K at a protease to protein ratio of 1:50 at 37 °C. The kinetic constants K m value towards beechwood xylan was 0.548 mg ml−1, and the k cat/K m ratio, reflecting the catalytic efficiency of the enzyme, was 126.42 ml mg−1 s−1 at 60 °C. XynII was a true endo-acting xylanase lacking cellulase activity. It has weak activity towards xylotriose but efficiently hydrolyzed xylans and xylooligosaccharides larger than xylotriose mainly to xylobiose. Synergistic action with acetyl xylan esterase (AXEI) from V. volvacea was observed for de-starched wheat bran. The highest degree of synergy (DS 1.42) was obtained in sequential reactions with AXEI digestion preceding XynII. The high SDS resistance and intrinsic stability suggested XynII may have potential applications in various industrial processes especially for the detergent and textile industries and animal feed industries.
Collapse
|
24
|
Motif-guided identification of a glycoside hydrolase family 1 α-L-arabinofuranosidase in Bifidobacterium adolescentis. Biosci Biotechnol Biochem 2013; 77:1709-14. [PMID: 23924734 DOI: 10.1271/bbb.130279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of glycoside hydrolase family 1 (GH1) cleave glycosidic linkages with a variety of physiological roles. Here we report a unique GH1 member encoded in the genome of Bifidobacterium adolescentis ATCC 15703. This enzyme, BAD0156, was identified from over 2,000 GH1 sequences accumulated in a database by a genome mining approach based on a motif sequence. A recombinant BAD0156 protein was characterized to confirm that this enzyme alone specifically hydrolyzes p-nitrophenyl-α-L-arabinofuranoside among the 24 p-nitrophenyl-glycosides examined. Among natural glycosides, α-1,5-linked arabino-oligosaccharides served as substrates, but arabinan, debranched arabinan, arabinoxylan, and arabinogalactan did not. A time course analysis of arabino-oligosaccharide hydrolysis indicated that BAD0156 is an exo-acting enzyme. These results suggest that BAD0156 is an α-L-arabinofuranosidase. This is the first report of a GH1 enzyme that acts specifically on arabinosides, providing information on GH1 substrate specificity.
Collapse
|
25
|
Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium. J Biosci Bioeng 2013; 116:152-9. [DOI: 10.1016/j.jbiosc.2013.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 11/20/2022]
|
26
|
Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation. Appl Environ Microbiol 2013; 79:1990-5. [PMID: 23335774 DOI: 10.1128/aem.03276-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned a Paenibacillus sp. strain E18 5.3-kb xylanolytic gene cluster that contains three open reading frames encoding two family 43 α-L-arabinofuranosidases (Abf43A and Abf43B) and one family 10 xylanase (XynBE18). The deduced amino acid sequences of Abf43A and Abf43B were at most 68% and 63% identical to those of two putative family 43 proteins from Clostridium sp. strain DL-VIII (EHI98634.1 and EHI98635.1), respectively, but were only 11% identical to each other. Recombinant Abf43A and Abf43B had similar activities at 45°C and pH 6.0 but varied in thermostabilities and substrate specificities. Abf43B was active against only 4-nitrophenyl α-L-arabinofuranoside, whereas Abf43A acted on 4-nitrophenyl α-L-arabinofuranoside, wheat arabinoxylan, 4-nitrophenyl α-D-xylopyranoside, and sugar beet arabinan. The sequential and combined effects on xylan degradation by XynBE18, Abf43A, and Abf43B were characterized. For beechwood, birchwood, and oat spelt xylans as the substrates, synergistic effects were found when XynBE18 and Abf43A or Abf43B were incubated together and when the substrates were first incubated with Abf43A or Abf43B and then with XynBE18. Further high-performance liquid chromatography (HPLC) analysis showed that the amounts of xylobiose and xylose increased sharply in the aforementioned reactions. For water-soluble wheat arabinoxylan as the substrate, Abf43A not only released arabinose but also had a synergistic effect with XynBE18. Synergy may arise as the result of removal of arabinose residues from xylans by α-L-arabinofuranosidases, which eliminates steric hindrance caused by the arabinose side chains and which allows xylanases to then degrade the xylan backbone, producing short xylooligosaccharides.
Collapse
|
27
|
Gonçalves TA, Damásio ARL, Segato F, Alvarez TM, Bragatto J, Brenelli LB, Citadini APS, Murakami MT, Ruller R, Paes Leme AF, Prade RA, Squina FM. Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. BIORESOURCE TECHNOLOGY 2012; 119:293-299. [PMID: 22750495 DOI: 10.1016/j.biortech.2012.05.062] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Plant cell wall degrading enzymes are key technological components in biomass bioconversion platforms for lignocellulosic materials transformation. Cost effective production of enzymes and identification of efficient degradation routes are two economic bottlenecks that currently limit the use of renewable feedstocks through an environmental friendly pathway. The present study describes the hypersecretion of an endo-xylanase (GH11) and an arabinofuranosidase (GH54) by a fungal expression system with potential biotechnological application, along with comprehensive characterization of both enzymes, including spectrometric analysis of thermal denaturation, biochemical characterization and mode of action description. The synergistic effect of these enzymes on natural substrates such as sugarcane bagasse, demonstrated the biotechnological potential of using GH11 and GH54 for production of probiotic xylooligosaccharides from plant biomass. Our findings shed light on enzymatic mechanisms for xylooligosaccharide production, as well as provide basis for further studies for the development of novel enzymatic routes for use in biomass-to-bioethanol applications.
Collapse
Affiliation(s)
- T A Gonçalves
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chanitnun K, Pinphanichakarn P. Glucose(xylose) isomerase production by Streptomyces sp. CH7 grown on agricultural residues. Braz J Microbiol 2012; 43:1084-93. [PMID: 24031932 PMCID: PMC3768894 DOI: 10.1590/s1517-838220120003000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 06/07/2012] [Indexed: 11/22/2022] Open
Abstract
Streptomyces sp. CH7 was found to efficiently produce glucose(xylose) isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose) isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its K m values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its V max values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85°C and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60°C after 30 min. These findings indicate that glucose(xylose) isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Kankiya Chanitnun
- Department of Microbiology, Faculty of Science, Chulalongkorn University , Bangkok 10330 , Thailand
| | | |
Collapse
|
29
|
Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Biotechnol Adv 2012; 30:1458-80. [PMID: 22445788 DOI: 10.1016/j.biotechadv.2012.03.002] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/10/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023]
Abstract
Lignocellulose is a complex substrate which requires a variety of enzymes, acting in synergy, for its complete hydrolysis. These synergistic interactions between different enzymes have been investigated in order to design optimal combinations and ratios of enzymes for different lignocellulosic substrates that have been subjected to different pretreatments. This review examines the enzymes required to degrade various components of lignocellulose and the impact of pretreatments on the lignocellulose components and the enzymes required for degradation. Many factors affect the enzymes and the optimisation of the hydrolysis process, such as enzyme ratios, substrate loadings, enzyme loadings, inhibitors, adsorption and surfactants. Consideration is also given to the calculation of degrees of synergy and yield. A model is further proposed for the optimisation of enzyme combinations based on a selection of individual or commercial enzyme mixtures. The main area for further study is the effect of and interaction between different hemicellulases on complex substrates.
Collapse
Affiliation(s)
- J S Van Dyk
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | | |
Collapse
|
30
|
NURCHOLIS MOCHAMAD, NURHAYATI NIKNIK, HELIANTI IS, ULFAH MARIA, WAHYUNTARI BUDIASIH, KRISNA WARDANI AGUSTIN. Cloning of α-L-arabinofuranosidase Genes and Its Expression in Escherichia coli: A Comparative Study of Recombinant Arabinofuranosidase Originatingin Bacillus subtilis DB104 and Newly Isolated Bacillus licheniformis CW1. MICROBIOLOGY INDONESIA 2012. [DOI: 10.5454/mi.6.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Yan Q, Tang L, Yang S, Zhou P, Zhang S, Jiang Z. Purification and characterization of a novel thermostable α-l-arabinofuranosidase (α-l-AFase) from Chaetomium sp. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Zhang J, Siika-aho M, Tenkanen M, Viikari L. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:60. [PMID: 22185437 PMCID: PMC3259036 DOI: 10.1186/1754-6834-4-60] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/20/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from Trichoderma reesei on xylan solubilization and enzymatic hydrolysis of cellulose. RESULTS The solubilization of xylan in pretreated wheat straw and giant reed (Arundo donax) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry. CONCLUSIONS The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.
Collapse
Affiliation(s)
- Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 Espoo, Finland
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Liisa Viikari
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| |
Collapse
|
33
|
Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes. Appl Environ Microbiol 2011; 77:5157-69. [PMID: 21666020 DOI: 10.1128/aem.00353-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ruminococcus albus 8 is a ruminal bacterium capable of metabolizing hemicellulose and cellulose, the major components of the plant cell wall. The enzymes that allow this bacterium to capture energy from the two polysaccharides, therefore, have potential application in plant cell wall depolymerization, a process critical to biofuel production. For this purpose, a partial genome sequence of R. albus 8 was generated. The genomic data depicted a bacterium endowed with multiple forms of plant cell wall-degrading enzymes. The endoxylanases of R. albus 8 exhibited diverse modular architectures, including incorporation of a catalytic module, a carbohydrate binding module, and a carbohydrate esterase module in a single polypeptide. The accessory enzymes of xylan degradation were a β-xylosidase, an α-l-arabinofuranosidase, and an α-glucuronidase. We hypothesized that due to the chemical complexity of the hemicellulose encountered in the rumen, the bacterium uses multiple endoxylanases, with subtle differences in substrate specificities, to attack the substrate, while the accessory enzymes hydrolyze the products to simple sugars for metabolism. To test this hypothesis, the genes encoding the predicted endoxylanases were expressed, and the proteins were biochemically characterized either alone or in combination with accessory enzymes. The different endoxylanase families exhibited different patterns of product release, with the family 11 endoxylanases releasing more products in synergy with the accessory enzymes from the more complex substrates. Aside from the insights into hemicellulose degradation by R. albus 8, this report should enhance our knowledge on designing effective enzyme cocktails for release of fermentable sugars in the biofuel industry.
Collapse
|
34
|
Alvira P, Negro MJ, Ballesteros M. Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. BIORESOURCE TECHNOLOGY 2011; 102:4552-8. [PMID: 21262567 DOI: 10.1016/j.biortech.2010.12.112] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 05/10/2023]
Abstract
The cost and hydrolytic efficiency of enzymes are major factors that restrict the commercialization of the bioethanol production process from lignocellulosic biomass. Hemicellulases and other accessory enzymes are becoming crucial to increase enzymatic hydrolysis (EH) yields at low cellulase dosages. The aim of this work was to evaluate the effect of two recombinant hemicellulolytic enzymes on the EH of steam pretreated wheat straw. Pretreatments at two severity conditions were performed and the whole slurry obtained after steam explosion pretreatment was employed as substrate. An endoxylanase (Xln C) from Aspergillus nidulans and an α-L-arabinofuranosidase (AF) from Aspergillus niger, have been applied in combination with cellulase enzymes. A degree of synergism of 29.5% and increases up to 10% in the EH yields were obtained, showing the potential of accessory activities to improve the EH step and make the whole process more effective.
Collapse
Affiliation(s)
- P Alvira
- CIEMAT-Renewable Energies Division, Biofuels Unit, Av. Complutense 22, 28040 Madrid, Spain.
| | | | | |
Collapse
|
35
|
Catalytic properties of Talaromyces thermophilus α-l-arabinofuranosidase and its synergistic action with immobilized endo-β-1,4-xylanase. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Xiros C, Katapodis P, Christakopoulos P. Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. BIORESOURCE TECHNOLOGY 2011; 102:1688-1696. [PMID: 20971636 DOI: 10.1016/j.biortech.2010.09.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 05/30/2023]
Abstract
The enzymatic degradation of polysaccharides to monosaccharides is an essential step in bioconversion processes of lignocellulosic materials. Alkali treated brewers spent grain was used as a model substrate for the study of cellulose and hemicellulose hydrolysis by Fusarium oxysporum enzyme extract. The results obtained showed that cellulose and hemicellulose conversions are not affected by the same factors, implementing different strategies for a successful bioconversion. Satisfactory cellulose conversion could be achieved by increasing the enzyme dosage in order to overcome the end-product inhibition, while the complexity of hemicellulose structure imposes the presence of specific enzyme activities in the enzyme mixture used. All the factors investigated were combined in a mathematical model describing and predicting alkali treated brewers spent grain conversion by F. oxysporum enzyme extract.
Collapse
Affiliation(s)
- Charilaos Xiros
- Biotechmass Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 15700 Athens, Greece
| | | | | |
Collapse
|
37
|
Gene Cloning, Expression, and Characterization of a Family 51 α-l-Arabinofuranosidase from Streptomyces sp. S9. Appl Biochem Biotechnol 2009; 162:707-18. [DOI: 10.1007/s12010-009-8816-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/08/2009] [Indexed: 11/26/2022]
|