1
|
Wang W, Zhu J, Xiong D, Su Y, Li Y, Fu J. Comparison between two anammox fiber fillers under load impact and the effect of HCO 3 - concentration. RSC Adv 2021; 12:24-31. [PMID: 35424468 PMCID: PMC8978840 DOI: 10.1039/d1ra07982d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared. Furthermore, the effect of HCO3− concentration on the bundle filler system was also investigated, the results have shown that the activity of the two anammox fiber fillers was not inhibited when the NO2−–N concentration was lower than 750 mg L−1 (FNA = 0.085 mg L−1), while it was significantly suppressed at 900 mg L−1 (FNA = 0.118 mg L−1). However, the two fiber fillers could be recovered and exhibit a good impact resistance reduction of the substrate concentration. On day 95, the structure of the bundle filler was more conducive to the stable attachment, proliferation, and aggregation of anammox bacteria. Dominant anammox bacteria in both the curtain and bundle fillers were Candidatus Kuenenia, which accounted for 25.9% and 35.9% of the total population, respectively. When the influent HCO3− concentration was 900 mg L−1, the bundled fiber filler had the highest total nitrogen (TN) removal efficiency, which reached 89.0%. Even though it was inhibited under 2000 mg L−1 of HCO3− concentration, the reactor was able to recover within one week by reducing the substrate concentration. In addition, the HCO3− inhibition mechanism was independent of pH, which resulted in high FA content. Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared.![]()
Collapse
Affiliation(s)
- Weiqiang Wang
- College of Environmental Science and Engineering, Dalian Maritime University 116026 Dalian China
| | - Jinghai Zhu
- College of Environmental Science and Engineering, Dalian Maritime University 116026 Dalian China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University 116026 Dalian China
| | - Yang Su
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University 110168 Shenyang China
| | - Yehui Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University 110168 Shenyang China
| | - Jinxiang Fu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University 110168 Shenyang China
| |
Collapse
|
2
|
Rahimi S, Modin O, Mijakovic I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 2020; 43:107570. [PMID: 32531318 DOI: 10.1016/j.biotechadv.2020.107570] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Water contamination is a growing environmental issue. Several harmful effects on human health and the environment are attributed to nitrogen contamination of water sources. Consequently, many countries have strict regulations on nitrogen compound concentrations in wastewater effluents. Wastewater treatment is carried out using energy- and cost-intensive biological processes, which convert nitrogen compounds into innocuous dinitrogen gas. On the other hand, nitrogen is also an essential nutrient. Artificial fertilizers are produced by fixing dinitrogen gas from the atmosphere, in an energy-intensive chemical process. Ideally, we should be able to spend less energy and chemicals to remove nitrogen from wastewater and instead recover a fraction of it for use in fertilizers and similar applications. In this review, we present an overview of various technologies of biological nitrogen removal including nitrification, denitrification, anaerobic ammonium oxidation (anammox), as well as bioelectrochemical systems and microalgal growth for nitrogen recovery. We highlighted the nitrogen removal efficiency of these systems at different temperatures and operating conditions. The advantages, practical challenges, and potential for nitrogen recovery of different treatment methods are discussed.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Nsenga Kumwimba M, Lotti T, Şenel E, Li X, Suanon F. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. CHEMOSPHERE 2020; 238:124627. [PMID: 31548173 DOI: 10.1016/j.chemosphere.2019.124627] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen contamination remains a severe environmental problem and a major threat to sustainable development worldwide. A systematic analysis of the literature indicates that the partial nitritation-anammox (PN/AMX) process is still actively studied as a viable option for energy-efficient and feasible technology for the sustainable treatment of N- rich wastewaters, since its initial discovery in 1990. Notably, the mainstream PN/AMX process application remains the most challenging bottleneck in AMX technology and fascinates the world's attention in AMX studies. This paper discusses the recent trends and developments of PN/AMX research and analyzes the results of recent years of research on the PN/AMX from lab-to full-scale applications. The findings would deeply improve our understanding of the major challenges under mainstream conditions and next-stage research on the PN/AMX process. A great deal of efforts has been made in the process engineering, PN/AMX bacteria populations, predictive modeling, and the full-scale implementations during the past 22 years. A series of new and excellent experimental findings at lab, pilot and full-scale levels including good nitrogen removal performance even under low temperature (15-10 °C) around the world were achieved. To date, pilot- and full-scale PN/AMX have been successfully used to treat different types of industrial sewage, including black wastewater, sludge digester liquids, landfill leachate, monosodium glutamate wastewater, etc. Supplementing the qualitative analysis, this review also provides a quantitative bibliometrics study and evaluates global perspectives on PN/AMX research published during the past 22 years. Finally, general trends in the development of PN/AMX research are summarized with the aim of conveying potential future trajectories. The current review offers a valuable orientation and global overview for scientists, engineers, readers and decision makers presently focusing on PN/AMX processes.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Congo
| | - Tommaso Lotti
- Civil and Environmental Engineering Department, University of Florence, Via di Santa Marta 3, 50139, Florence, Italy
| | - Engin Şenel
- Hitit University Faculty of Medicine, Department of Dermatology, Çorum, Turkey
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fidèle Suanon
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
4
|
Zhao Y, Jiang B, Tang X, Liu S. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:50-60. [PMID: 31202013 DOI: 10.1016/j.scitotenv.2019.05.491] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Anammox technology is an energy-efficient wastewater treatment process and anammox community structure has gained extensive attention. However, the dynamics of community functional traits are still elusive. Here, we combined the long-term reactor operation and metagenomic, multiple bioinformatic and network analyses to reveal the succession of anammox community and function traits during reactor start-up. We found the cooperation of denitrifiers that affiliated to the phylum Proteobacteria could reduce nitrite to dinitrogen gas. These organisms and genes had higher abundance after the inhibition phase, which could contribute to nitrite consuming and reactor performance recovery. Importantly, the Terrimonas and Anaerolinea organisms had ability of extracellular polymers secretion or aggregate formation. They had the highest abundance at the end of the lag phase, which could benefit for promoting the nitrogen removal rate (NRR). Meanwhile, Terrimonas and Anaerolinea bacteria could cooperate with methanogenic and nitrite-denitrifying methanotrophic organisms based on H2 and CH4, respectively. Since these organisms also had higher abundance after the inhibition phase, their cooperation could prevent anammox bacteria from nitrite inhibiting when the influent nitrite concentration was higher. The analysis of community and function shift is expected to emphasize the importance of functional bacteria in anammox process and provides a potential control strategy for nitrogen-containing wastewater treatment process.
Collapse
Affiliation(s)
- Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Bo Jiang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
5
|
Li J, Wang D, Yu D, Zhang P. Performance and sludge characteristics of anammox process at moderate and low temperatures. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0277-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Wei H, Wang J, Hassan M, Han L, Xie B. Anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor: Variations and effects of microbial community structures. BIORESOURCE TECHNOLOGY 2017; 243:1149-1158. [PMID: 28764129 DOI: 10.1016/j.biortech.2017.07.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
In this work, anammox-denitrification process was verified by 15N stable isotopic tracing methods and variations and effects of microbial community structures were studied using Illumina MiSeq sequencing and Quantitative Polymerase Chain Reaction (qPCR). The results showed that higher nitrogen removal efficiency and richer microbial consortia was observed at hydraulic loading rate (HLR) of 15L/m3·d, BOD5/TN ratio of 0.4:1, respectively. Proteobacteria, Chloroflexi, Acidobacteria and Firmicutes were the dominant phyla in the anamox-denitrification biomass. The number of amx gene changed significantly during the HLR downshift and BOD5/TN ratio upshift period. The obtained results enhance understanding regarding the microbial community structures of anammox-denitrification bacteria in aged refuse, leading to a more effective controlling of anammox-denitrification process.
Collapse
Affiliation(s)
- Huawei Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, PR China
| | - Jie Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, PR China
| | - Muhammad Hassan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, PR China
| | - Lu Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, 500 Dong Chuan Road, Shanghai 200241, PR China.
| |
Collapse
|
7
|
Effect of influent substrate ratio on anammox granular sludge: performance and kinetics. Biodegradation 2017; 28:437-452. [DOI: 10.1007/s10532-017-9807-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/25/2017] [Indexed: 11/26/2022]
|
8
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Influence of temperature and pH on the anammox process: A review and meta-analysis. CHEMOSPHERE 2017; 182:203-214. [PMID: 28499181 DOI: 10.1016/j.chemosphere.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The anammox (anaerobic ammonium oxidation) process was considered a very efficient and economic wastewater treatment technology immediately after its discovery in 1995, thus research in this field was intensified. The anammox process is characterised by a high temperature optimum and is very sensitive to both temperature and pH fluctuations. The process can also be inhibited by many factors, including by its substrates, i.e. nitrite and ammonium (or its unionised forms: free ammonia and free nitrous acid). This paper presents a comprehensive study of the most important and recent findings on the influence of two parameters that are crucial in wastewater treatment, i.e. temperature and pH. Because both parameters may influence the anammox process simultaneously, a meta-analysis was conducted of the data from the literature. Although meta-analysis is commonly used in medical research, mathematical analysis of the literature data has become an interesting and important step in the environmental sciences. This paper presents information on the influence of both temperature and pH on process efficiency and microbial composition. Additionally, the responses of different operating systems on both temperature and pH changes are described. Moreover, the role of both adaptation to changed conditions and of pH control as well as indicated areas of process operation are discussed.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland.
| | - Grzegorz Cema
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland
| | | |
Collapse
|
9
|
Wang C, Liu S, Xu X, Zhao C, Yang F, Wang D. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate. Appl Microbiol Biotechnol 2017; 101:3821-3828. [PMID: 28078398 DOI: 10.1007/s00253-016-7981-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Chuanqi Zhao
- Key Lab of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Dong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
10
|
Taotao Z, Dong L, Huiping Z, Shuibo X, Wenxin Q, Yingjiu L, Jie Z. Nitrogen removal efficiency and microbial community analysis of ANAMMOX biofilter at ambient temperature. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:725-733. [PMID: 25768219 DOI: 10.2166/wst.2015.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An upflow anaerobic biofilter (AF) was developed to investigate anaerobic ammonium-oxidizing (ANAMMOX) efficiency in treating low-strength wastewater at ambient temperature (15.3-23.2 °C). Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization were used to investigate treatment effects on the microbial community. Stepwise decreases in influent ammonia concentration could help ANAMMOX bacteria selectively acclimate to low-ammonia conditions. With an influent ammonia concentration of 46.5 mg/L, the AF reactor obtained an average nitrogen removal rate of 2.26 kg/(m³ day), and a removal efficiency of 75.9%. polymerase chain reaction-DGGE results showed that microbial diversity in the low matrix was greater than in the high matrix. Microbial community structures changed when the influent ammonia concentration decreased. The genus of functional ANAMMOX bacteria was Candidatus Kuenenia stuttgartiensis, which remained stationary across study phases. Visual observation revealed that the relative proportions of ANAMMOX bacteria decreased from 41.6 to 36.3% across three study phases. The AF bioreactor successfully maintained high activity due to the ANAMMOX bacteria adaptation to low temperature and substrate conditions.
Collapse
Affiliation(s)
- Zeng Taotao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China
| | - Li Dong
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Zeng Huiping
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Xie Shuibo
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China
| | - Qiu Wenxin
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100082, China
| | - Liu Yingjiu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, China
| | - Zhang Jie
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China E-mail: ; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Yu JJ, Chen H, Zhang J, Ji YX, Liu QZ, Jin RC. Enhancement of ANAMMOX activity by low-intensity ultrasound irradiation at ambient temperature. BIORESOURCE TECHNOLOGY 2013; 142:693-696. [PMID: 23731899 DOI: 10.1016/j.biortech.2013.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
This paper aims to investigate the enhancement effect of low intensity intermittent ultrasound irradiation on the efficiency of anaerobic ammonium oxidation (ANAMMOX) process at ambient temperature. With intermittently irradiated (ultrasound intensity of 0.19 w/cm(2), exposure time of 0.2 min), the reactor (RU) had a nitrogen removal rate (NRR) of 5.49 kgTN/m(3)/d at 14.8°C, while the NRR was 1.53 kgTN/m(3)/d in the control reactor (RC). At the end of operation, the contents of polysaccharide, protein, TTC-dehydrogenase and VSS were 6.82 mg/mgVSS, 26.79 mg/mgVSS, 0.58 mgTF/L/H and 10.11 gVSS/L in RU, higher than the levels in the RC. These results demonstrated that it is possible to achieve stable and highly efficient operation in an ANAMMOX reactor at low ambient temperature by implementation of ultrasonication.
Collapse
Affiliation(s)
- Jin-Jin Yu
- Department of Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Gabarró J, Ganigué R, Gich F, Ruscalleda M, Balaguer MD, Colprim J. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration. BIORESOURCE TECHNOLOGY 2012; 126:283-289. [PMID: 23079415 DOI: 10.1016/j.biortech.2012.09.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
This study investigates the effects of temperature on ammonia oxidizing bacteria activity in a partial nitritation (PN) sequencing batch reactor. Stable PN was achieved in a 250 L SBR with a minimum operating volume of 111L treating mature landfill leachate containing an ammonium concentration of around 6000 mg N-NH(4)(+)L(-1) at both 25 and 35 °C. A suitable influent to feed an anammox reactor was achieved in both cases. A kinetic model was applied to study the influence of free ammonia (FA), the free nitrous acid (FNA) inhibition, and the inorganic carbon (IC) limitation. NH(4)(+) and NO(2)(-) concentrations were similar at 25 and 35 °C experiments (about 2500 mg N-NH(4)(+)L(-1) and 3500 mg N-NO(2)(-)L(-1)), FA and FNA concentrations differed due to the strong temperature dependence. FNA was the main source of inhibition at 25 °C, while at 35 °C combined FA and FNA inhibition occurred. DGGE results demonstrated that PN-SBR sludge was enriched on the same AOB phylotypes in both experiments.
Collapse
Affiliation(s)
- J Gabarró
- LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Anammox start-up in sequencing batch biofilm reactors using different inoculating sludge. Appl Microbiol Biotechnol 2012; 97:6057-64. [DOI: 10.1007/s00253-012-4427-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
14
|
Zhong YM, Jia XS. Simultaneous ANAMMOX and denitrification (SAD) process in batch tests. World J Microbiol Biotechnol 2012; 29:51-61. [DOI: 10.1007/s11274-012-1157-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
|
15
|
Inhibitory effects of free ammonia on Anammox bacteria. Biodegradation 2012; 23:751-62. [PMID: 22460564 DOI: 10.1007/s10532-012-9550-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
Anammox bacteria can effectively treat high ammonia and nitrite concentrations under anoxic environments. However, the presence of high ammonia and nitrite concentrations may cause free ammonia and nitrous acid inhibition at high pH and temperature environments. In this study, the inhibitory effect of free ammonia on Anammox bacteria was investigated in a lab-scale upflow fixed-bed reactor with Kaldnes biofilm carriers. Results of continuous operation showed that inhibition was not observed in the Anammox reactor when the free ammonia concentration gradually increased up to 150 mg/L. However, Anammox activity suddenly dropped to 10 % when the free ammonia concentration reached to 190 mg/L. Nevertheless, high influent ammonia and nitrite concentrations up to 1,500 and 500 mg/L, respectively, did not noticeably inhibit the Anammox activity. Gradually decreasing Anammox activity was also supported by fluorescent in situ hybridization (FISH) analysis. FISH and 16S rRNA gene analysis results revealed that main Anammox organisms were phylogenetically related to Candidatus Kuenenia stuttgartiensis, Candidatus Jettenia asiatica and Candidatus Brocadia anammoxidans.
Collapse
|
16
|
Yang J, Zhang L, Hira D, Fukuzaki Y, Furukawa K. Anammox treatment of high-salinity wastewater at ambient temperature. BIORESOURCE TECHNOLOGY 2011; 102:2367-2372. [PMID: 21074414 DOI: 10.1016/j.biortech.2010.10.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 05/30/2023]
Abstract
The present study aims to provide a realistic understanding of how the anammox bacterial community and nitrogen removal performance are affected by increasing salt concentrations at ambient temperature. A laboratory-scale investigation was conducted for 92 days, during which the reactor was fed with synthetic inorganic wastewater composed mainly of NH(4)(+)-N and NO(2)(-)-N. A stable nitrogen removal rate of 4.5±0.1 kg Nm(-3) day(-1) was obtained at a NaCl concentration of 30 g/L, suggesting that the enriched anammox consortium adapted to high salt concentrations. This NRR level is the highest level ever reported at high salt concentration. The addition of salt in the influent was expected to improve the physical properties of the biomass. The anammox bacterium KU2, which was confirmed to adapt to high salt concentrations, was considered to be responsible for the stable nitrogen removal performance. The successful application of anammox technology in this study provides an alternative for the treatment of wastewater containing high concentrations of salt and nitrogen.
Collapse
Affiliation(s)
- Jiachun Yang
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, Japan.
| | | | | | | | | |
Collapse
|