1
|
Lu H, He S, Zhang G, Gao F, Zhao R. Periodic oxygen supplementation drives efficient metabolism for enhancing valuable bioresource production in photosynthetic bacteria wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 347:126678. [PMID: 34999192 DOI: 10.1016/j.biortech.2022.126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Periodic oxygen supplementation (A-O) strategy was proposed to improve pollutant removal and enhance bioresource production of photosynthetic bacteria (PSB). The A-O strategy obtained higher COD (91.4%) and NH4+-N (78.6%) removal compared with the non-oxygen supplementation (N-O) strategy, which was similar to the continuous oxygen supplementation (C-O) strategy. A-O strategy achieved the highest biomass concentration of 1338.5 mg/L. Bacteriochlorophyll and carotenoids concentration in the A-O strategy were 24.9-31.1% and 15.1-23.7% higher than those in the other two strategies; coenzyme Q10 concentration and content were 52.5% and 21.3% higher than that in the N-O strategy. The metabolomic analysis showed that the A-O strategy enhanced the tricarboxylic acid cycle after fumaric acid formation and β-alanine metabolism, then caused higher biomass accumulation. The A-O strategy reduced the inhibition of photophosphorylation by oxidative-phosphorylation and maintained both characteristics. Hence, A-O might be an economic strategy for enhancing pollutant removal and bioresource production in PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Fengzheng Gao
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
2
|
Mata-De-la-Vega JF, Akizuki S, Sakai HD, Cuevas-Rodríguez G. Slaughterhouse wastewater treatment using purple phototrophic bacteria: A comparison between photoheterotrophic and chemoheterotrophic conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Lu H, Zhang G, He S, Zhao R, Zhu D. Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World J Microbiol Biotechnol 2021; 37:161. [PMID: 34436687 DOI: 10.1007/s11274-021-03133-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Shortage of water, energy, and bioresources in the world has led to the exploration of new technologies that achieve resource recovery from wastewater, which has become a new sustainable trend. Photosynthetic non-sulfur bacteria (PNSB), the most ancient photo microorganism, not only treats different wastewater types, but also generates PNSB cells, which are non-toxic bioresources and containing many value-added products. These bioresources can be used as raw materials in the agricultural, food, and medical industries. Therefore, PNSB or PNSB-based wastewater resource recovery technology can be simultaneously used to treat wastewater and produce useful bioresources. Compared with traditional wastewater treatment, this technology can reduce CO2 emissions, promote the N recovery ratio and prevent residual sludge disposal or generation. After being developed for over half a century, PNSB wastewater resource recovery technology is currently extended towards industrial applications. Here, this technology is comprehensively introduced in terms of (1) PNSB characteristics and metabolism; (2) PNSB wastewater treatment and bioresource recovery efficiency; (3) the relative factors influencing the performance of this technology, including light, oxygen, strains, wastewater types, hydraulic retention time, on wastewater treatment, and resource production; (4) PNSB value-added bioresources and their generation from wastewater; (5) the scale-up history of PNSB technology; (6) Finally, the future perspectives and challenges of this technology were also analysed and summarised.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Guangming Zhang
- Key Laboratory of Environmental Biotechnology, China Academy of Science, Shuangqing Road, Beijing, 100084, China. .,School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Da Zhu
- Nan Tong Ju Yi Cheng Guang Biotechnology Co. LTD., Nantong, 226321, China
| |
Collapse
|
4
|
Capson-Tojo G, Lin S, Batstone DJ, Hülsen T. Purple phototrophic bacteria are outcompeted by aerobic heterotrophs in the presence of oxygen. WATER RESEARCH 2021; 194:116941. [PMID: 33640750 DOI: 10.1016/j.watres.2021.116941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
There is an ongoing debate around the effect of microaerobic/aerobic conditions on the wastewater treatment performance and stability of enriched purple phototrophic bacteria (PPB) cultures. It is well known that oxygen-induced oxidative conditions inhibit the synthesis of light harvesting complexes, required for photoheterotrophy. However, in applied research, several publications have reported efficient wastewater treatment at high dissolved oxygen (DO) levels. This study evaluated the impact of different DO concentrations (0-0.25 mg·L-1, 0-0.5 mg·L-1 and 0-4.5 mg·L-1) on the COD, nitrogen and phosphorus removal performances, the biomass yields, and the final microbial communities of PPB-enriched cultures, treating real wastewaters (domestic and poultry processing wastewater). The results show that the presence of oxygen suppressed photoheterotrophic growth, which led to a complete pigment and colour loss in a matter of 20-30 h after starting the batch. Under aerobic conditions, chemoheterotrophy was the dominant catabolic pathway, with wastewater treatment performances similar to those achieved in common aerobic reactors, rather than those corresponding to phototrophic systems (i.e. considerable total COD decrease (45-57% aerobically vs. ± 10% anaerobically). This includes faster consumption of COD and nutrients, lower nutrient removal efficiencies (50-58% vs. 72-99% for NH4+-N), lower COD:N:P substrate ratios (100:4.5-5.0:0.4-0.8 vs. 100:6.7-12:0.9-1.2), and lower apparent biomass yields (0.15-0.31 vs. 0.8-1.2 g CODbiomass·g CODremoved-1)). The suppression of photoheterotrophy inevitably resulted in a reduction of the relative PPB abundances in all the aerated tests (below 20% at the end of the tests), as PPB lost their main competitive advantage against competing aerobic heterotrophic microbes. This was explained by the lower aerobic PPB growth rates (2.4 d-1 at 35 °C) when compared to common growth rates for aerobic heterotrophs (6.0 d-1 at 20 °C). Therefore, PPB effectively outcompete other microbes under illuminated-anaerobic conditions, but not under aerobic or even micro-aerobic conditions, as shown by continuously aerated tests controlled at undetectable DO levels. While their aerobic heterotrophic capabilities provide some resilience, at non-sterile conditions PPB cannot dominate when growing chemoheterotrophically, and will be outcompeted.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Shengli Lin
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Sepúlveda-Muñoz CA, de Godos I, Puyol D, Muñoz R. A systematic optimization of piggery wastewater treatment with purple phototrophic bacteria. CHEMOSPHERE 2020; 253:126621. [PMID: 32278906 DOI: 10.1016/j.chemosphere.2020.126621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The increase in natural water bodies pollution caused by intensive animal farming requires the development of innovative sustainable treatment processes. This study assessed the influence of piggery wastewater (PWW) load, air dosing, CO2/NaHCO3- supplementation and pH control on PWW treatment by mixed cultures of purple phototrophic bacteria (PPB) under infrared radiation in batch photobioreactors. PPB was not able to grow in raw PWW but PWW dilution prevented inhibition and supported an effective light penetration. Despite the fact that PPB were tolerant to O2, carbon recovery decreased in the presence of air (induced by stripping). CO2 supplementation was identified as an effective strategy to maximize the removal of carbon during PPB-based PWW treatment with removal efficiencies of 72% and 74% for TOC and VFAs. However, the benefits derived from CO2 addition were induced by the indirect pH control exerted in the cultivation medium. Thus, PPB supported an optimal pollutant removal performance at pH 7, with removal efficiencies of 75%, 39% and 98% for TOC, TN and VFAs.
Collapse
Affiliation(s)
- Cristian A Sepúlveda-Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Ignacio de Godos
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; School of Forestry, Agronomic and Bioenergy Industry Engineering (EIFAB), University of Valladolid, Campus Duques de Soria, 42004, Soria, Spain
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, King Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
6
|
Lu H, Zhang G, Zheng Z, Meng F, Du T, He S. Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: A review. BIORESOURCE TECHNOLOGY 2019; 278:383-399. [PMID: 30683503 DOI: 10.1016/j.biortech.2019.01.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Generating or recycling water and resources from wastewater other than just treating wastewater is one of the most popular trends worldwide. Photosynthetic bacteria (PSB) wastewater treatment and resource recovery technology is one of the most potential methods. PSBs are non-toxic and contain lots of value-added products that can be utilized in the agricultural and food industries. They are effective to degrade pollutants and synthesize useful biomass, thus realizing wastewater treatment, bioresource production, and eliminating waste sludge. If all the nutrients in wastewaters could be bio-converted by PSB, then pollutant reductions and economic benefits would be achieved. This review paper firstly describes and summarizes this technology, including PSBs classification, metabolism, and the market application. The feasibility, technical procedures, bioreactors, pollutant removal, and bioresource production are also summarized, compared and evaluated. Issues that concern the advantages and industrialization of this technologies at the plant scale are also discussed.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| | - Guangming Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Ziqiao Zheng
- Yantai Research Institute, China Agriculture University, Yantai 264000, China
| | - Fan Meng
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Taisheng Du
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
7
|
Lu H, Han T, Zhang G, Ma S, Zhang Y, Li B, Cao W. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process. ENVIRONMENTAL TECHNOLOGY 2018; 39:74-82. [PMID: 28278105 DOI: 10.1080/09593330.2017.1296027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.
Collapse
Affiliation(s)
- Haifeng Lu
- a College of Water Resource and Civil Engineering , China Agriculture University , Beijing , People's Republic of China
- b Key Laboratory of Agricultural Engineering in Structure and Environment , Ministry of Agriculture , Beijing , People's Republic of China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , People's Republic of China
| | - Ting Han
- a College of Water Resource and Civil Engineering , China Agriculture University , Beijing , People's Republic of China
- b Key Laboratory of Agricultural Engineering in Structure and Environment , Ministry of Agriculture , Beijing , People's Republic of China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , People's Republic of China
| | - Guangming Zhang
- d School of Environment and Natural Resources , Renmin University of China , Beijing , People's Republic of China
| | - Shanshan Ma
- a College of Water Resource and Civil Engineering , China Agriculture University , Beijing , People's Republic of China
- b Key Laboratory of Agricultural Engineering in Structure and Environment , Ministry of Agriculture , Beijing , People's Republic of China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , People's Republic of China
| | - Yuanhui Zhang
- e Agricultural Engineering Sciences , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Baoming Li
- a College of Water Resource and Civil Engineering , China Agriculture University , Beijing , People's Republic of China
- b Key Laboratory of Agricultural Engineering in Structure and Environment , Ministry of Agriculture , Beijing , People's Republic of China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , People's Republic of China
| | - Wei Cao
- a College of Water Resource and Civil Engineering , China Agriculture University , Beijing , People's Republic of China
- b Key Laboratory of Agricultural Engineering in Structure and Environment , Ministry of Agriculture , Beijing , People's Republic of China
- c Beijing Engineering Research Center on Animal Healthy Environment , Beijing , People's Republic of China
| |
Collapse
|
8
|
Liu S, Zhang G, Li X, Zhang J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 2014; 98:7349-57. [DOI: 10.1007/s00253-014-5925-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
9
|
Xu J, Feng Y, Wang Y, Lin X. Characteristics of purple nonsulfur bacteria grown under Stevia residue extractions. Lett Appl Microbiol 2013; 57:420-6. [PMID: 23837648 DOI: 10.1111/lam.12129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/29/2013] [Accepted: 06/30/2013] [Indexed: 11/29/2022]
Abstract
As a consequence of the large-scale cultivation of Stevia plants, releases of plant residues, the byproduct after sweetener extraction, to the environment are inevitable. Stevia residue and its effluent after batching up contain large amounts of organic matters with small molecular weight, which therefore are a potential pollution source. Meanwhile, they are favourite substrates for micro-organism growths. This investigation was aimed to utilize the simulated effluent of Stevia residue to enrich the representative purple nonsulfur bacterium (PNSB), Rhodopseudomonas palustris (Rps. palustris), which has important economic values. The growth profile and quality of Rps. palustris were characterized by spectrophotometry, compared to those grown in common PNSB mineral synthetic medium. Our results revealed that the simulated effluent of Stevia residue not only stimulated Rps. palustris growth to a greater extent, but also increased its physiologically active cytochrome concentrations and excreted indole-3-acetic acid (IAA) content. This variation in phenotype of Rps. palustris could result from the shift in its genotype, further revealed by the repetitive sequence-based PCR (rep-PCR) fingerprinting analysis. Our results showed that the effluent of Stevia residue was a promising substrate for microbial growth.
Collapse
Affiliation(s)
- J Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | | | | |
Collapse
|