1
|
Ji S, Yang H, Xie X, Zhang Y, Li X, Wang F. Combined fermentation and ARTP mutagenesis to enhance lipase activity of Penicillium camembertii and its application for high-purity 1,3-diacylglycerol preparation. Food Chem 2025; 465:142072. [PMID: 39615088 DOI: 10.1016/j.foodchem.2024.142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Penicillium camembertii lipase (PCL) is a glycerol-biased enzyme isolated from P. camembertii, exhibiting high esterification activity. The PCL activity was enhanced by combining fermentation optimization with atmospheric and room temperature plasma (ARTP) mutagenesis. Following multiple rounds of high-throughput screening and serial passages, a genetically stable mutant, P12, was obtained. In shake flask culture, P12 exhibited a lipase activity of 1600 U/g, representing an 800 % increase compared to the wild type (WT), with improved thermostability and methanol stability. Subsequently, P12 was used as a whole-cell biocatalyst to catalyze the esterification of oleic acid with glycerol in a solvent-free system to prepare 1,3-diacylglycerol (1,3-DAG). With an oleic acid /glycerol molar ratio of 4:1, 8 % biocatalyst, and a reaction temperature of 40 °C, the content of 1,3-DAG was 74.7 % after 24 h. These results suggest that the mutant P12 demonstrates considerable potential as a whole-cell biocatalyst for synthesizing high-purity 1,3-DAG.
Collapse
Affiliation(s)
- Shulan Ji
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hong Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
2
|
Chintagunta AD, Zuccaro G, Kumar M, Kumar SPJ, Garlapati VK, Postemsky PD, Kumar NSS, Chandel AK, Simal-Gandara J. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Front Microbiol 2021; 12:658284. [PMID: 34475852 PMCID: PMC8406692 DOI: 10.3389/fmicb.2021.658284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Biodiesel is an eco-friendly, renewable, and potential liquid biofuel mitigating greenhouse gas emissions. Biodiesel has been produced initially from vegetable oils, non-edible oils, and waste oils. However, these feedstocks have several disadvantages such as requirement of land and labor and remain expensive. Similarly, in reference to waste oils, the feedstock content is succinct in supply and unable to meet the demand. Recent studies demonstrated utilization of lignocellulosic substrates for biodiesel production using oleaginous microorganisms. These microbes accumulate higher lipid content under stress conditions, whose lipid composition is similar to vegetable oils. In this paper, feedstocks used for biodiesel production such as vegetable oils, non-edible oils, oleaginous microalgae, fungi, yeast, and bacteria have been illustrated. Thereafter, steps enumerated in biodiesel production from lignocellulosic substrates through pretreatment, saccharification and oleaginous microbe-mediated fermentation, lipid extraction, transesterification, and purification of biodiesel are discussed. Besides, the importance of metabolic engineering in ensuring biofuels and biorefinery and a brief note on integration of liquid biofuels have been included that have significant importance in terms of circular economy aspects.
Collapse
Affiliation(s)
- Anjani Devi Chintagunta
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | - Gaetano Zuccaro
- Department of Chemical, Materials and Production Engineering, Università degli Studi di Napoli Federico II, Naples, Italy
- LBE, INRAE, Université de Montpellier, Narbonne, France
| | - Mahesh Kumar
- College of Agriculture, Central Agricultural University, Imphal, India
| | - S. P. Jeevan Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
- ICAR-Directorate of Floricultural Research, Pune, India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Pablo D. Postemsky
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-UNS/CONICET), Buenos Aires, Argentina
| | - N. S. Sampath Kumar
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | - Anuj K. Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, Brazil
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
3
|
Gao R, Li Z. Biosynthesis of 3-Hydroxy-3-Methylbutyrate from l-Leucine by Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3712-3719. [PMID: 33734707 DOI: 10.1021/acs.jafc.1c00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
3-Hydroxy-3-methylbutyrate (HMB) is an important compound that can be used for the synthesis of a variety of chemicals in the food and pharmaceutical fields. Here, a biocatalytic method using l-leucine as a substrate was designed and constructed by expressing l-amino acid deaminase (l-AAD) and 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) in Escherichia coli. To reduce the influence of the rate-limiting step on the cascade reaction, two 4-HPPD mutants were screened by rational design and both showed improved catalytic activity. Under optimal reaction conditions, the maximum conversion rate and production rate were 80% and 0.257 g/L·h, respectively. HMB production could be realized with high efficiency without an additional supply of adenosine triphosphate (ATP), which successfully overcomes the shortcomings of chemical production and fermentation methods. This design-based strategy of constructing a whole-cell catalyst system from l-leucine might serve as an alternative route to HMB synthesis.
Collapse
Affiliation(s)
- Ruichen Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Li X, Zhao Y, Lai X, Nong J, Zhao G, Xiao X. One-pot biocatalytic synthesis and antioxidant activities of highly lipophilic naringin derivatives by using bi-functional whole-cells. Food Res Int 2020; 136:109291. [PMID: 32846510 DOI: 10.1016/j.foodres.2020.109291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
5
|
Elhussiny NI, Khattab AENA, El-Refai HA, Mohamed SS, Shetaia YM, Amin HA. Assessment of waste frying oil transesterification capacities of local isolated Aspergilli species and mutants. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Abstract
There is an increasing need for the development of alternative energy sources with a focus on reducing greenhouse gas emissions and striving toward a sustainable economy. Bioethanol and biodiesel are currently the primary choices of alternative transportation fuels. At present, biodiesel is not competitive with conventional fuel due to its high price, and the only way to compete with conventional fuel is to improve the quality, reduce the costs, and coproduce value-added products. With the high demand for lipids in the energy sector and other industrial applications, microbial lipids accumulated from microorganisms, especially oleaginous fungi and yeasts have been the important topic of many recent research studies. This chapter summarizes the current status of knowledge and technology about lipid production by oleaginous fungi and yeasts for biofuel applications and other value-added products. The chapter focuses on several aspects such as the most promising oleaginous strains, strain development, improvement of lipid production, methods and protocols to cultivate oleaginous fungi, substrate utilization, fermentation process design, and downstream processing. The feasibility and challenges during the large-scale commercial production of microbial lipids as fuel sources are also discussed. It provides an overview of microbial lipid production biorefinery and also future development directions.
Collapse
|
7
|
Amoah J, Kahar P, Ogino C, Kondo A. Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products. Biotechnol J 2019; 14:e1800494. [DOI: 10.1002/biot.201800494] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jerome Amoah
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Prihardi Kahar
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Akihiko Kondo
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| |
Collapse
|
8
|
Xin X, Zhang M, Li X, Lai F, Zhao G. Biocatalytic synthesis of acylated derivatives of troxerutin: their bioavailability and antioxidant properties in vitro. Microb Cell Fact 2018; 17:130. [PMID: 30134913 PMCID: PMC6106897 DOI: 10.1186/s12934-018-0976-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 08/11/2018] [Indexed: 04/16/2023] Open
Abstract
Background Flavonoid glycosides have many beneficial effects on health, but these bioactivities tend to decrease after oral administration owing to their poor lipophilicity. In this study, a facile whole-cell-based method was developed for selective preparation of monoester or diester of troxerutin, a flavonoid derivative. In addition, the bioavailabilities and antioxidant properties of troxerutin and its acylated derivatives were also investigated in cells. Results Pseudomonas aeruginosa and Pseudomonas stutzeri cells showed high catalytic efficiency (substrate conversion > 90%) and different preferences for troxerutin, resulting in the production of its monoester (TME) and diester (TDE), respectively. The logP values of troxerutin, TME, and TDE were − 2.04 ± 0.10, − 0.75 ± 0.08, and 1.51 ± 0.05 and their Papp values were 0.34 × 10−6 ± 0.05, 0.99 × 10−6 ± 0.12, and 1.54 × 10−6 ± 0.17 cm/s, respectively. The results of hydroxyl radical, ABTS, and ORAC assays indicated that the antiradical activities of acylated derivatives did not exceed that of troxerutin, but showed higher inhibition effects upon 2,2′-azobis(2-amidinopropane) dihydrochloride-induced erythrocyte hemolysis than that of troxerutin (P < 0.05). Conclusion A facile and efficient whole-cell biocatalysis method was developed to synthesize troxerutin-acylated derivatives, markedly enhancing the bioavailability and antioxidant activities of troxerutin in cells. Additionally, the mechanism underlying the observed difference in the antioxidant activities of troxerutin and its esters was ascribed to both their free radical scavenging abilities and distribution on the cell membrane surface.![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0976-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuan Xin
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, Guangdong, China
| | - Mengmeng Zhang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, Guangdong, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, Guangdong, China.
| | - Furao Lai
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, Guangdong, China
| | - Guanglei Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
9
|
Geoffry K, Achur RN. Screening and production of lipase from fungal organisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Almyasheva NR, Shuktueva MI, Petrova DA, Kopitsyn DS, Kotelev MS, Vinokurov VA, Novikov AA. Biodiesel fuel production by Aspergillus niger whole-cell biocatalyst in optimized medium. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Cai H, Zhang T, Zhao M, Mao J, Cai C, Feng F. Co-expression of lipase isozymes for enhanced expression in Pichia pastoris. Lett Appl Microbiol 2017; 65:335-342. [DOI: 10.1111/lam.12783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 01/25/2023]
Affiliation(s)
- H. Cai
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing; School of Biological and Chemical Engineering; Zhejiang University of Science & Technology; Hangzhou China
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou China
| | - T. Zhang
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing; School of Biological and Chemical Engineering; Zhejiang University of Science & Technology; Hangzhou China
| | - M. Zhao
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou China
| | - J. Mao
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing; School of Biological and Chemical Engineering; Zhejiang University of Science & Technology; Hangzhou China
| | - C. Cai
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing; School of Biological and Chemical Engineering; Zhejiang University of Science & Technology; Hangzhou China
| | - F. Feng
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou China
| |
Collapse
|
12
|
Ali TH, El-Gamal MS, El-Ghonemy DH, Awad GE, Tantawy AE. Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1287-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Amoah J, Ho SH, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A. Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel. BIORESOURCE TECHNOLOGY 2016; 211:224-30. [PMID: 27019125 DOI: 10.1016/j.biortech.2016.03.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 05/13/2023]
Abstract
The presence of phospholipid has been a challenge in liquid enzymatic biodiesel production. Among six lipases that were screened, lipase AY had the highest hydrolysis activity and a competitive transesterification activity. However, it yielded only 21.1% FAME from oil containing phospholipids. By replacing portions of these lipases with a more robust bioFAME lipase, CalT, the combination of lipase AY-CalT gave the highest FAME yield with the least amounts of free fatty acids and partial glycerides. A higher methanol addition rate reduced FAME yields for lipase DF-CalT and A10D-CalT combinations while that of lipase AY-CalT combination improved. Optimizing the methanol addition rate for lipase AY-CalT resulted in a FAME yield of 88.1% at 2h and more than 95% at 6h. This effective use of lipases could be applied for the rapid and economic conversion of unrefined oils to biodiesel.
Collapse
Affiliation(s)
- Jerome Amoah
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shih-Hsin Ho
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Ayumi Yoshida
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Akihito Nakanishi
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
14
|
Yan J, Yan Y, Madzak C, Han B. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway. Crit Rev Biotechnol 2015; 37:26-36. [DOI: 10.3109/07388551.2015.1104531] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang X, Xu H, Lan D, Yang B, Wang Y. Hydrolysis of lysophosphatidylcholines by a lipase fromMalassezia globosa. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuping Wang
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| | - Huan Xu
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| | - Dongming Lan
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| | - Bo Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou P. R. China
| | - Yonghua Wang
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou P. R. China
| |
Collapse
|
16
|
Nie G, Zheng Z, Yue W, Liu Y, Liu H, Wang P, Zhao G, Cai W, Xue Z. One-pot bio-synthesis of propyl gallate by a novel whole-cell biocatalyst. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A. Lipase-catalyzed process for biodiesel production: Protein engineering and lipase production. Biotechnol Bioeng 2013; 111:639-53. [PMID: 24284881 DOI: 10.1002/bit.25162] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Hyun Tae Hwang
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Feng Qi
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Chongli Yuan
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Xuebing Zhao
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Doraiswami Ramkrishna
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| | - Dehua Liu
- Department of Chemical Engineering; Institute of Applied Chemistry; Tsinghua University; Beijing China
| | - Arvind Varma
- School of Chemical Engineering; Purdue University; 480 Stadium Mall Drive West Lafayette Indiana 47907
| |
Collapse
|
18
|
Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM. Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 2013; 31:1846-59. [DOI: 10.1016/j.biotechadv.2013.08.006] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
|
19
|
Adachi D, Hama S, Nakashima K, Bogaki T, Ogino C, Kondo A. Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. BIORESOURCE TECHNOLOGY 2013; 135:410-416. [PMID: 22850174 DOI: 10.1016/j.biortech.2012.06.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
For enzymatic biodiesel production from plant oil hydrolysates, an Aspergillus oryzae whole-cell biocatalyst that expresses Candida antarctica lipase B (r-CALB) with high esterification activity was developed. Each of soybean and palm oils was hydrolyzed using Candida rugosa lipase, and the resultant hydrolysates were subjected to esterification where immobilized r-CALB was used as a catalyst. In esterification, r-CALB afforded a methyl ester content of more than 90% after 6 h with the addition of 1.5 M equivalents of methanol. Favorably, stepwise additions of methanol and a little water were unnecessary for maintaining the lipase stability of r-CALB during esterification. During long-term esterification in a rotator, r-CALB can be recycled for 20 cycles without a significant loss of lipase activity, resulting in a methyl ester content of more than 90% even after the 20th batch. Therefore, the presented reaction system using r-CALB shows promise for biodiesel production from plant oil hydrolysates.
Collapse
Affiliation(s)
- Daisuke Adachi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Talukder MMR, Lee HZS, Low RF, Pei-Lyn LC, Warzecha D, Wu J. Potential use of whole cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Hama S, Kondo A. Enzymatic biodiesel production: an overview of potential feedstocks and process development. BIORESOURCE TECHNOLOGY 2013; 135:386-395. [PMID: 22985827 DOI: 10.1016/j.biortech.2012.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
The increased global demand for biofuels has prompted the search for alternatives to edible oils for biodiesel production. Given the abundance and cost, waste and nonedible oils have been investigated as potential feedstocks. A recent research interest is the conversion of such feedstocks into biodiesel via enzymatic processes, which have considerable advantages over conventional alkali-catalyzed processes. To expand the viability of enzymatic biodiesel production, considerable effort has been directed toward process development in terms of biodiesel productivity, application to wide ranges of contents of water and fatty acids, adding value to glycerol byproducts, and bioreactor design. A cost evaluation suggested that, with the current enzyme prices, the cost of catalysts alone is not competitive against that of alkalis. However, it can also be expected that further process optimization will lead to a reduced cost in enzyme preparation as well as in downstream processes.
Collapse
Affiliation(s)
- Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | | |
Collapse
|
22
|
Jin Z, Han SY, Zhang L, Zheng SP, Wang Y, Lin Y. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. BIORESOURCE TECHNOLOGY 2013; 130:102-109. [PMID: 23306117 DOI: 10.1016/j.biortech.2012.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Lipase-displaying whole cells appear to be efficient biocatalysts because of their low preparation costs and simple recycling procedure. The combined utilization of Candida antarctica lipase B (CALB) and Rhizomucor miehei lipase (RML), separately displayed on Pichia pastoris whole cells, to produce biodiesel in co-solvent media was investigated. A response surface methodology incorporating a D-optimal design was employed to obtain the optimum reaction conditions for methyl ester (ME) synthesis. The synergistic effect of the two displayed lipases and the use of tert-butanol and isooctane as the co-solvent media were found to significantly improve the transesterification reaction. Scaled-up reactions using various types of feedstock were carried out in a 0.5-l stirred reactor under optimum conditions, affording ME yields over 90% in 12h. Moreover, the ME yields remained above 85% after 20 repeated batch cycles. In conclusion, this biocatalyst affords a promising route to efficient biodiesel production.
Collapse
Affiliation(s)
- Zi Jin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Menetrez MY. An overview of algae biofuel production and potential environmental impact. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7073-7085. [PMID: 22681590 DOI: 10.1021/es300917r] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.
Collapse
Affiliation(s)
- Marc Y Menetrez
- Office of Research and Development, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.
| |
Collapse
|
24
|
Yoshida A, Hama S, Tamadani N, Fukuda H, Kondo A. Improved performance of a packed-bed reactor for biodiesel production through whole-cell biocatalysis employing a high-lipase-expression system. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Overview of fungal lipase: a review. Appl Biochem Biotechnol 2011; 166:486-520. [PMID: 22072143 DOI: 10.1007/s12010-011-9444-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering.
Collapse
|
26
|
Li Z, Li X, Wang Y, Wang Y, Wang F, Jiang J. Expression and characterization of recombinant Rhizopus oryzae lipase for enzymatic biodiesel production. BIORESOURCE TECHNOLOGY 2011; 102:9810-3. [PMID: 21852124 DOI: 10.1016/j.biortech.2011.07.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 05/20/2023]
Abstract
The Rhizopus oryzae lipase containing prosequence was expressed in Pichia pastoris. Recombinant lipase subunit showed a molecular mass of 32 kDa. The maximum activity of recombinant lipase obtained from Mut(s) recombinant was 90 IU/ml. The enzyme was stable in broad ranges of temperatures and pH, with the optimal temperature at 35 °C and pH 7.0. The crude recombinant R. oryzae lipase can be directly used for the transesterification of plant oils at high-water content of 60-100% (w/w) based on oil weight. The addition of 80% water to the transesterification systems resulted in the yield of methyl ester of 95%, 94% and 92% after 72 h using soybean oil, Jatropha curcas seed raw oil and Pistacia chinensis seed raw oil as raw material, respectively. These results indicate that the recombinant lipase is an effective biocatalyst for enzymatic biodiesel production.
Collapse
Affiliation(s)
- Zhilin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | | | | | | | | |
Collapse
|