1
|
Wang Y, Wang N, Wang P, Yang F, Han C, Yu D. Preparation of magnetic dialdehyde starch-immobilized phospholipase A 1 and acyl transfer in reflection. Int J Biol Macromol 2024; 257:128804. [PMID: 38101664 DOI: 10.1016/j.ijbiomac.2023.128804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
In this paper, using a coprecipitation method to prepare Fe3O4 magnetic nanoparticles (Fe3O4 MNPS), magnetic dialdehyde starch nanoparticles with immobilized phospholipase A1 (MDSNIPLA) were successfully prepared by using green dialdehyde starch (DAS) instead of glutaraldehyde as the crosslinking agent. The Fe3O4 MNPS was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area analysis method, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) et al. The results showed that the alkaline resistance and acid resistance of the enzyme were improved after the crosslinking of DAS. After repeated use (seven times), the relative activity of MDSNIPLA reached 56 %, and the magnetic dialdehyde starch nanoparticles (MDASN) had good carrier performance. MDSNIPLA was applied to enzymatic hydrolysis of phospholipids in the soybean oil degumming process. The results showed that the acyl transfer rate of sn-2-HPA was 14.01 %, and the content of free fatty acids was 1.144 g/100 g after 2 h reaction at 50 °C and pH 5.0 with appropriate boric acid. The immobilized enzyme has good thermal stability and storage stability, and its application of soybean oil improves the efficiency of the oil.
Collapse
Affiliation(s)
- Yawen Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Zhang W, Yang Y, Xie P, Ye P, Shu X, Zhang H, Chen Y, Zhang Y, Jin J. Effects of Silica Hydrogel on Degumming of Fragrant Rapeseed Oil. J Oleo Sci 2024; 73:45-53. [PMID: 38171730 DOI: 10.5650/jos.ess23095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Hot-pressed rapeseed oils with pleasant flavor, i.e., fragrant rapeseed oils, are favored by consumers, especially people from the southwest provinces of China. Although degumming is an important section in producing edible rapeseed oils, conventional degumming techniques are generally suffered from disadvantages such as moisture control, and large losses of micronutrients and flavors. In the present paper, hot-pressed rapeseed oils were treated with silica hydrogel to remove their gums, and changes in phospholipids, acid values, peroxide values, tocopherols, total phenols, and flavor compounds were analyzed to compare the silica hydrogel-degumming with conventional methods. The optimized conditions were suggested to be carried out at 45°C for 15 min, and the silica hydrogel dosage was 1.10%. More than 97.00% of phospholipids were removed after the degumming, and more than 85.00% of micronutrients, were retained in the treated oils. The degumming efficiency was therefore significantly higher than those operated by conventional acid degumming and soft degumming techniques. It was found that the dosage of the silica hydrogel significantly affected the removal rate of phospholipids compared with degumming time and temperature. There were nearly typical volatile compounds found in the rapeseed oils, while most of them kept almost stable after the silica hydrogel-degumming. In this regard, silica hydrogel adsorption exhibited little effect on volatile compounds, making it more suitable for the production of fragrant rapeseed oils.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University
- Yancheng Hengxi Biotechnology Co., Ltd
| | - Yuhuang Yang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University
| | - Pengkai Xie
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University
| | | | | | - Haibo Zhang
- Jiangsu Hefeng Grain and Oil Industry Co., Ltd
| | - Yuhang Chen
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University
| | - Youfeng Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim
| | - Jun Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University
| |
Collapse
|
3
|
Enhancing Soluble Expression of Phospholipase B for Efficient Catalytic Synthesis of L-Alpha-Glycerylphosphorylcholine. Catalysts 2022. [DOI: 10.3390/catal12060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phospholipase B (PLB) harbors three distinct activities with broad substrate specificities and application fields. Its hydrolyzing of sn-1 and sn-2 acyl ester bonds enables it to catalyze the production of L-alpha-glycerylphosphorylcholine (L-α-GPC) from phosphatidylcholine (PC) without speed-limiting acyl migration. This work was intended to obtain high-level active PLB and apply it to establish an efficient system for L-α-GPC synthesis. PLB from Pseudomonas fluorescens was co-expressed with five different molecular chaperones, including trigger factor (Tf), GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), GroELS and DnaKJE, or GroELS and Tf or fused with maltose binding protein (MBP) in Escherichia coli BL21(DE3) to improve PLB expression. PLB with DnaKJE-assisted expression exhibited the highest catalytic activity. Further optimization of the expression conditions identified an optimal induction OD600 of 0.8, IPTG concentration of 0.3 mmol/L, induction time of 9 h, and temperature of 25 °C. The PLB activity reached a maximum of 524.64 ± 3.28 U/mg under optimal conditions. Subsequently, to establish an efficient PLB-catalyzed system for L-α-GPC synthesis, a series of organic-aqueous mixed systems and surfactant-supplemented aqueous systems were designed and constructed. Furthermore, the factors of temperature, reaction pH, metal ions, and substrate concentration were further systematically identified. Finally, a high yield of 90.50 ± 2.21% was obtained in a Span 60-supplemented aqueous system at 40 °C and pH 6.0 with 0.1 mmol/L of Mg2+. The proposed cost-effective PLB production and an environmentally friendly PLB-catalyzed system offer a candidate strategy for the industrial production of L-α-GPC.
Collapse
|
4
|
Chen W, Kou M, Li L, Li B, Huang J, Fan S, Xu L, Zhong N. Immobilization of Lecitase<sup>®</sup> Ultra onto the Organic Modified SBA-15 for Soybean Oil Degumming. J Oleo Sci 2022; 71:721-733. [DOI: 10.5650/jos.ess21353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wenyi Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Maomao Kou
- School of Food Science, Guangdong Pharmaceutical University
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Jianrong Huang
- School of Food Science, Guangdong Pharmaceutical University
| | | | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University
| | - Nanjing Zhong
- School of Food Science, Guangdong Pharmaceutical University
| |
Collapse
|
5
|
Wang T, Cheng J, Wang N, Zhang X, Jiang L, Yu D, Wang L. Study on the stability of intermediates in the process of enzymatic hydrolysis of phosphatidic acid by phospholipase A1. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
FERNANDA SHANNI, ABINAWANTO ABINAWANTO, HELIANTI IS. Isolation of a Functional Gene Encoding Homologous Lysophospholipase from Indonesian Indigenous Bacillus halodurans CM1. MICROBIOLOGY INDONESIA 2019. [DOI: 10.5454/mi.13.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
|
8
|
More NS, Gogate PR. Ultrasound assisted enzymatic degumming of crude soybean oil. ULTRASONICS SONOCHEMISTRY 2018; 42:805-813. [PMID: 29429734 DOI: 10.1016/j.ultsonch.2017.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
The present work deals with ultrasound assisted enzymatic degumming (UAED) of crude soybean oil quantifying the extent of degumming (EOD), cavitational yield and synergistic index (f) for the combination approaches. The effect of different operating parameters such as enzyme loading, pH, presence of water, temperature and ultrasonic power on the EOD has been investigated. Ultrasound combined with enzyme at loading of 2.0 ml/L resulted in EOD as 92.2% under ambient conditions. Addition of water (5%) in combination with ultrasound and enzyme at 2.0 ml/L loading and pH of 5 resulted in maximum EOD (98.4%) in 120 min of treatment. The extent of phospholipid separation was also observed to be dependent on the power dissipation and maximum phospholipids separation was obtained at 100 W. Scale-up studies were performed at 500 ml and 1 L operating volume under optimized conditions of 2.0 ml/L as the enzyme loading, pH of 5, 5% water addition and ultrasonic power of 100 W where 93.63% and 91.15% phospholipid separation respectively was obtained. The effects of ultrasonic treatment were also quantified in terms of the acid value reduction and oxidative stability for the processed oil. It was demonstrated that suitable reduction in acid value (final value less than 1) and oxidative stability (TOTOX less than 4) is effectively obtained using UAED. Overall the approach of UAED was established to show much higher efficacy for soybean oil processing as compared to only ultrasound or only enzymatic treatment.
Collapse
Affiliation(s)
- Nishant S More
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India.
| |
Collapse
|
9
|
Liu Y, Li M, Huang L, Gui S, Jia L, Zheng D, Fu Y, Zhang Y, Rui J, Lu F. Cloning, expression and characterisation of phospholipase B from Saccharomyces cerevisiae and its application in the synthesis of l-alpha-glycerylphosphorylcholine and peanut oil degumming. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1455536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Mingjie Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Shuang Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Leibo Jia
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Dong Zheng
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yutong Zhang
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Jinqiu Rui
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
10
|
Purification and characterization of extracellular phospholipase A1 from Trichoderma atroviride sp. ZB-ZH292. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Szydłowska-Czerniak A, Łaszewska A. Optimization of a soft degumming process of crude rapeseed oil—Changes in its antioxidant capacity. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
An Q, Wang F, Lan D, Khan FI, Durrani R, Yang B, Wang Y. Improving phospholipase activity of PLA
1
by protein engineering and its effects on oil degumming. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qun An
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Fanghua Wang
- School of Food Science and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Dongming Lan
- School of Food Science and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Faez Iqbal Khan
- School of Chemistry and Chemical EngineeringHenan University of TechnologyZhengzhouP. R. China
| | - Rabia Durrani
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Bo Yang
- School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Yonghua Wang
- School of Food Science and EngineeringState Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
13
|
|
14
|
Liu Y, Huang L, Li M, Liu H, Guo W, Gui S, Niu J, Lu F. Characterization of the recombinant porcine pancreas phospholipase A 2 expressed in Pichia pastoris GS115 and its application to synthesis of 2-DHA-PS. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ye Z, Qiao X, Luo Z, Hu C, Liu L, He D. Optimization and comparison of water degumming and phospholipase C degumming for rapeseed oil. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1182218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhan Ye
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Xue Qiao
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Zhi Luo
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| | - Chuanrong Hu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| | - Lingyi Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| | - Dongping He
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
- Grain and oil resources comprehensive exploitation and engineering technology research center of State Administration of Grain, Wuhan, Hubei 430023, China
| |
Collapse
|
16
|
Application of phospholipase A1 and phospholipase C in the degumming process of different kinds of crude oils. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Liu A, Yu XW, Sha C, Xu Y. Streptomyces violaceoruber Phospholipase A2: Expression in Pichia pastoris, Properties, and Application in Oil Degumming. Appl Biochem Biotechnol 2015; 175:3195-206. [DOI: 10.1007/s12010-015-1492-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
18
|
Wei T, Xu C, Yu X, Jia W, Yang K, Jia C, Mao D. Characterization of a novel thermophilic phospholipase B from Thermotoga lettingae TMO: applicability in enzymatic degumming of vegetable oils. J Ind Microbiol Biotechnol 2015; 42:515-22. [PMID: 25578305 DOI: 10.1007/s10295-014-1580-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
A novel phospholipase B (TLPLB) from Thermotoga lettingae TMO has been cloned, functionally overexpressed in Escherichia coli and purified to homogeneity. Gas chromatography indicated that the enzyme could efficiently hydrolyze both the sn-1 and sn-2 ester bonds of 1-palmitoyl-2-oleoyl phosphatidylcholine as phospholipase B. TLPLB was optimally active at 70 °C and pH 5.5, respectively. Its thermostability is relatively high with a half-life of 240 min at 90 °C. TLPLB also displayed remarkable organic solvent tolerance and maintained approximately 91-161 % of its initial activity in 20 and 50 % (v/v) hydrophobic organic solvents after incubation for 168 h. Furthermore, TLPLB exhibited high degumming activity towards rapeseed, soybean, peanut and sunflower seed oils, where the phosphorus contents were decreased from 225.2, 189.3, 85.6 and 70.4 mg/kg to 4.9, 4.7, 3.2 and 2.2 mg/kg within 5 h, respectively. TLPLB could therefore be used for the degumming of vegetable oils.
Collapse
Affiliation(s)
- Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, 5 Dongfeng Rd, Zhengzhou, 450002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Zheng T, Yu L, Zhu Y, Zhao B. Evaluation of different pretreatments on microbial transformation of saponins in Dioscorea zingiberensis for diosgenin production. BIOTECHNOL BIOTEC EQ 2014; 28:740-746. [PMID: 26019558 PMCID: PMC4433906 DOI: 10.1080/13102818.2014.943019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/10/2014] [Indexed: 11/08/2022] Open
Abstract
In order to evaluate the effects of different pretreatments on microbial transformation of saponins in Dioscorea zingiberensis (DZW), various methods have been systematically studied on a large scale. Five pretreatments, including physical separation, catalytic solvent extraction, ultrasonic fermentation, complex enzymatic hydrolyzation and enzymatic saccharification, were performed on DZW. Compared with other methods, complex enzymatic hydrolyzation significantly improved the efficiency of microbial transformation. Due to the pretreatment, a diosgenin yield of 92.6%, and diosgenin accumulation of 27.3 mg/g DZW were achieved. The high efficiency of this method was attributed to the separation of 84.3% starch and 76.5% fibre from DZW in the form of a sugar. Analysis of saponins in this microbial transformation process showed that the residual rates of the intermediate products were much lower than those obtained from other pretreatments. The results demonstrate that complex enzymatic hydrolyzation is a practical and effective pretreatment method for production of diosgenin from DZW in a microbial transformation way.
Collapse
Affiliation(s)
- Tianxiang Zheng
- College of Life Science, Shaoxing University , Shaoxing , China
| | - Lidan Yu
- College of Life Science, Shaoxing University , Shaoxing , China
| | - Yuling Zhu
- College of Life Science, Shaoxing University , Shaoxing , China
| | - Bin Zhao
- The State Key Laboratory of Hollow Fibre Membrane Materials and Processes, Tianjin Polytechnic University , Tianjin , China
| |
Collapse
|
21
|
Jiang X, Chang M, Jin Q, Wang X. Optimization of the degumming process for camellia oil by the use of phospholipase C in pilot-scale system. Journal of Food Science and Technology 2014; 52:3634-44. [PMID: 26028746 DOI: 10.1007/s13197-014-1418-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 11/25/2022]
Abstract
In present study, phospholipase C (PLC) was applied in camellia oil degumming and the response surface method (RSM) was used to determine the optimum degumming conditions (reaction time, reaction temperature and enzyme dosage) for this enzyme. The optimum conditions for the minimum residual phosphorus content (15.14 mg/kg) and maximum yield of camellia oil (98.2 %) were obtained at reaction temperature 53 ºC, reaction time 2.2 h, PLC dosage 400 mg/kg and pH 5.4. The application of phospholipase A (PLA) - assisted degumming process could further reduce the residual phosphorus content of camellia oil (6.84 mg/kg) to make the oil suitable for physical refining while maintaining the maximal oil yield (98.2 %). These results indicate that PLC degumming process in combination with PLA treatment can be a commercially viable alternative for traditional degumming process. Study on the quality changes of degummed oils showed that the oxidative stability of camellia oil was slightly deceased after the enzymatic treatment, thus more attention should be paid to the oxidative stability in the further application.
Collapse
Affiliation(s)
- Xiaofei Jiang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu People's Republic of China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu People's Republic of China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu People's Republic of China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu People's Republic of China
| |
Collapse
|
22
|
Yu D, Ma Y, Jiang L, Walid E, He S, He Y, Xiaoyu Z, Zhang J, Hu L. Stability of Soybean Oil Degumming Using Immobilized Phospholipase A2. J Oleo Sci 2014; 63:25-30. [DOI: 10.5650/jos.ess13105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Jiang X, Chang M, Wang X, Jin Q, Wang X. The effect of ultrasound on enzymatic degumming process of rapeseed oil by the use of phospholipase A(1). ULTRASONICS SONOCHEMISTRY 2014; 21:142-148. [PMID: 24001661 DOI: 10.1016/j.ultsonch.2013.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Comparative studies of enzymatic degumming process of rapeseed oil were carried out in mechanical-stirring and ultrasonic-assisted mechanical-stirring systems. The influences of enzyme dosage (10-50 mg/kg), pH (4.5-6), temperature (45-65 °C), water amount (1-3%), ultrasonic power (0.06-0.09 W/cm(3)) and reaction time were investigated subsequently. A suitable ultrasonic power of 0.07 W/cm(3) was determined to guarantee satisfactory degumming efficiency and enzyme activity. Compared to the mechanical-stirring system, optimum temperature of phospholipase A (PLA) in the ultrasonic-assisted mechanical-stirring system was about 5 °C higher, while the effects of pH on both of the two systems were quite similar. Less time and water were used in the ultrasonic-assisted mechanical-stirring system for enzymatic degumming. The study on the quality changes of degummed oils showed that ultrasound could accelerate the oxidation of edible oils due to the effect of cavitation, thus more attention should be paid on the oxidative stability in the further application.
Collapse
Affiliation(s)
- Xiaofei Jiang
- School of Food Science and Technology, Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
24
|
Mei L, Wang L, Li Q, Yu J, Xu X. Comparison of acid degumming and enzymatic degumming process for Silybum marianum seed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2822-8. [PMID: 23426870 DOI: 10.1002/jsfa.6109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/02/2013] [Accepted: 02/20/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND In this study the effects of processing conditions of acid degumming and enzymatic degumming on the removal of phospholipids from Silybum marianum seed oil were investigated and the degumming efficiency was compared based on the phospholipid content. RESULTS An orthogonal array experimental design was performed to optimise the process of citric acid degumming. Based on range analysis and analysis of variance, the optimal processing conditions were determined to be a citric acid dosage of 3 g kg(-1) , a degumming temperature of 70 °C, a water addition of 40 mL kg(-1) and a degumming time of 30 min. Under these conditions the phospholipid content of degummed S. marianum seed oil was reduced from 273.0 to 128.1 mg kg(-1) . In the case of enzymatic degumming, the effects of enzyme reaction time and enzyme dosage were investigated using single-factor experiments. The optimal processing conditions were found to be an enzyme reaction time of 6 h and an enzyme dosage of 100 mg kg(-1) oil. Under these conditions the phospholipid content of degummed S. marianum seed oil was reduced to 17.95 mg kg(-1) . CONCLUSION The results indicated that enzymatic degumming is more effective than acid degumming.
Collapse
Affiliation(s)
- Lin Mei
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | | | | | | | | |
Collapse
|
25
|
Investigation on the mechanisms for biotransformation of saponins to diosgenin. World J Microbiol Biotechnol 2013; 30:143-52. [DOI: 10.1007/s11274-013-1429-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
|
26
|
Jiang F, Huang S, Imadad K, Li C. Cloning and expression of a gene with phospholipase B activity from Pseudomonas fluorescens in Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 104:518-522. [PMID: 22078969 DOI: 10.1016/j.biortech.2011.09.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/09/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
A gene from Pseudomonasfluorescens BIT-18 encoding a protein with phospholipase B activity (Pf-PLB) was cloned in E. coli BL21 (DE3). The open reading frame consists of 1272 bp and potentially encodes a protein of 423 amino acid residues with a calculated molecular mass of 45.8 kDa. The nucleotide sequence of Pf-PLB is 45%, 42%, 41%, 40%, 33%, and 31% identical to that of Bifidobacterium animals, Mycobacterium parascrofulaceum, Acidobacterium capsulatum, Lactobacillus johnsonii, Moraxella bovis, and Moraxella catarrhalis, respectively. The His-tagged protein was purified by affinity chromatography and the eluted protein hydrolyzed both the 1- and 2-ester bond of phosphatidylcholine. The recombinant Pf-PLB had optimal activity at pH 6.0 and 30 °C, and it showed 20.1% higher efficiency in the conversion rate of the phosphorus content than the wild-type.
Collapse
Affiliation(s)
- Fangyan Jiang
- School of Life Science, Beijing Institute of Technology, 100081 Beijing, PR China
| | | | | | | |
Collapse
|