1
|
du Pasquier J, Paës G, Perré P. Principal factors affecting the yield of dilute acid pretreatment of lignocellulosic biomass: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128439. [PMID: 36493953 DOI: 10.1016/j.biortech.2022.128439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This review provides a critical analysis of the state of the art of dilute acid pretreatment applied to lignocellulosic biomass. Data from 63 publications were extracted and analysed. The majority of the papers used residence times of<30 min, temperature ranges from 100 °C to 200 °C, and acid levels between 0 % and 2 %. Yields are quantified directly after pretreatment (xylose content) or after enzymatic hydrolysis (glucose content). Statistical analyses allowed the time-temperature equivalence to be quantified for three types of biomass: they were formulated by non-linear expressions. In further works, investigating less explored areas, for example moderate temperature levels with longer residence times, is recommended. Pretreatment material (time-temperature kinetics, reactor type) and analytical methods should be standardized and better described. It becomes mandatory to promote the development of an open, findable, accessible, interoperable, and reusable data approach for pretreatments research.
Collapse
Affiliation(s)
- Julien du Pasquier
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France; Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France.
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| |
Collapse
|
2
|
Choudhary H, Pidatala VR, Mohan M, Simmons BA, Gladden JM, Singh S. Renewable Schiff-Base Ionic Liquids for Lignocellulosic Biomass Pretreatment. Molecules 2022; 27:molecules27196278. [PMID: 36234813 PMCID: PMC9573442 DOI: 10.3390/molecules27196278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Growing interest in sustainable sources of chemicals and energy from renewable and reliable sources has stimulated the design and synthesis of renewable Schiff-base (iminium) ionic liquids (ILs) to replace fossil-derived ILs. In this study, we report on the synthesis of three unique iminium-acetate ILs from lignin-derived aldehyde for a sustainable “future” lignocellulosic biorefinery. The synthesized ILs contained only imines or imines along with amines in their structure; the ILs with only imines group exhibited better pretreatment efficacy, achieving >89% sugar release. Various analytical and computational tools were employed to understand the pretreatment efficacy of these ILs. This is the first study to demonstrate the ease of synthesis of these renewable ILs, and therefore, opens the door for a new class of “Schiff-base ILs” for further investigation that could also be designed to be task specific.
Collapse
Affiliation(s)
- Hemant Choudhary
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Venkataramana R. Pidatala
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mood Mohan
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Blake A. Simmons
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John M. Gladden
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
| | - Seema Singh
- Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94551, USA
- Correspondence:
| |
Collapse
|
3
|
Galán G, Martín M, Grossmann IE. Integrated Renewable Production of Sorbitol and Xylitol from Switchgrass. Ind Eng Chem Res 2021; 60:5558-5573. [PMID: 34795467 PMCID: PMC8592025 DOI: 10.1021/acs.iecr.1c00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
This work deals with the design of integrated facilities for the production of xylitol and sorbitol from lignocellulosic biomass. Xylitol can be obtained from xylose via fermentation or catalytic hydrogenation. Sorbitol is obtained from glucose, but preferably from fructose, and also via fermentation or catalytic hydrogenation. Fructose can be obtained from glucose via isomerization. Thus, a superstructure of alternatives is formulated to process switchgrass, corn stover, miscanthus, and other agricultural and forestry residues. Different pretreatments, such as dilute acid or ammonia fiber explosion (AFEX), for the fractionation of the biomass are evaluated. Next, after hydrolysis, the C5 and C6 sugars are processed separately for which a catalytic or a fermentation stage are considered. Glucose has to be isomerized before it can be processed. Finally, crystallization in a multistage evaporator system is used for purification. The optimization of the system is done by the use of dilute acid and the catalytic system. A system of 3 crystallizers is selected. For a facility that produces 145 kt/yr of xylitol and 157.6 kt/yr of sorbitol, the investment adds up to 120.74 M€ for a production cost of 0.28 €/kg products. The inverse engineering of biomass was also performed resulting in a composition of 15% water, 20% cellulose, 40% hemicellulose, 15% lignin, and 5% ash. The closest biomass corresponds to Sargassum (brown algae), which is capable of producing 230.5 kt/yr of xylitol and 116 kt/yr of sorbitol with investment and production costs of 120.5 M€ and 0.25 €/kg products, respectively.
Collapse
Affiliation(s)
- Guillermo Galán
- Department
of Chemical Engineering, University of Salamanca, Plz Caidos 1-5, 37008 Salamanca, Spain
| | - Mariano Martín
- Department
of Chemical Engineering, University of Salamanca, Plz Caidos 1-5, 37008 Salamanca, Spain
| | - Ignacio E. Grossmann
- Department
of Chemical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Alokika, Anu, Kumar A, Kumar V, Singh B. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int J Biol Macromol 2020; 169:564-582. [PMID: 33385447 DOI: 10.1016/j.ijbiomac.2020.12.175] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/29/2020] [Accepted: 12/23/2020] [Indexed: 12/01/2022]
Abstract
Sugarcane bagasse is a rich source of cellulose (32-45%), hemicellulose (20-32%) and lignin (17-32%), 1.0-9.0% ash and some extractives. Huge amount of the generation of sugarcane bagasse has been a great challenge to industries and environment at global level for many years. Though cellulosic and hemicellulosic fractions in bagasse makes it a potential raw substrate for the production of value-added products at large scale, the presence of lignin hampers its saccharification which further leads to low yields of the value-added products. Therefore, an appropriate pretreatment strategy is of utmost importance that effectively solubilizes the lignin that exposes cellulose and hemicellulose for enzymatic action. Pretreatment also reduces the biomass recalcitrance i.e., cellulose crystallinity, structural complexity of cell wall and lignification for its effective utilization in biorefinery. Sugarcane bagasse served as nutrient medium for the cultivation of diverse microorganisms for the production of industrially important metabolites including enzymes, reducing sugars, prebiotic, organic acids and biofuels. Sugarcane bagasse has been utilized in the generation of electricity, syngas and as biosorbant in the bioremediation of heavy metals. Furthermore, the ash generated from bagasse is an excellent source for the synthesis of high strength and light weight bricks and tiles. Present review describes the utility of sugarcane bagasse as sustainable and renewable lignocellulosic substrate for the production of industrially important multifarious value-added products.
Collapse
Affiliation(s)
- Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Anu
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Anil Kumar
- Department of Botany, Pt. N.R.S. Govt. College, Rohtak 124001, Haryana, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
5
|
Belgodere JA, Zamin SA, Kalinoski RM, Astete CE, Penrod JC, Hamel KM, Lynn BC, Rudra JS, Shi J, Jung JP. Modulating Mechanical Properties of Collagen-Lignin Composites. ACS APPLIED BIO MATERIALS 2019; 2:3562-3572. [PMID: 35030742 DOI: 10.1021/acsabm.9b00444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in a plant tissue, we found that sodium lignosulfonate (SLS) and an alkali-extracted lignin from switchgrass (SG) increased the stiffness of Col I gels. SLS and SG enhanced the stiffness of Col I gels from 52 to 670 Pa and 52 to 320 Pa, respectively, and attenuated shear-thinning properties, with the formulation of 1.8 mg/mL Col I and 5.0 mg/mL SLS or SG. In 2D cultures, the cytotoxicity of collagen-SLS to adipose-derived stromal cells was not observed and the cell viability was maintained over 7 days in 3D cultures. Collagen-SLS composites did not elicit immunogenicity when compared to SLS-only groups. Our collagen-SLS composites present a case that exploits lignins as an enhancer of mechanical properties of Col I without adverse cytotoxicity and immunogenicity for in vitro scaffolds or in vivo tissue repairs.
Collapse
Affiliation(s)
- Jorge A Belgodere
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Syed A Zamin
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Ryan M Kalinoski
- Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, Kentucky 40546, United States
| | - Carlos E Astete
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Joseph C Penrod
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Katie M Hamel
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Bert C Lynn
- Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506, United States
| | - Jai S Rudra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Jian Shi
- Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506, United States
| | - Jangwook P Jung
- Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, Kentucky 40546, United States
| |
Collapse
|
6
|
Patri AS, McAlister L, Cai CM, Kumar R, Wyman CE. CELF significantly reduces milling requirements and improves soaking effectiveness for maximum sugar recovery of Alamo switchgrass over dilute sulfuric acid pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:177. [PMID: 31320925 PMCID: PMC6617576 DOI: 10.1186/s13068-019-1515-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Pretreatment is effective in reducing the natural recalcitrance of plant biomass so polysaccharides in cell walls can be accessed for conversion to sugars. Furthermore, lignocellulosic biomass must typically be reduced in size to increase the pretreatment effectiveness and realize high sugar yields. However, biomass size reduction is a very energy-intensive operation and contributes significantly to the overall capital cost. RESULTS In this study, the effect of particle size reduction and biomass presoaking on the deconstruction of Alamo switchgrass was examined prior to pretreatment by dilute sulfuric acid (DSA) and Co-solvent Enhanced Lignocellulosic Fractionation (CELF) at pretreatment conditions optimized for maximum sugar release by each pretreatment coupled with subsequent enzymatic hydrolysis. Sugar yields by enzymatic hydrolysis were measured over a range of enzyme loadings. In general, DSA successfully solubilized hemicellulose, while CELF removed nearly 80% of Klason lignin from switchgrass in addition to the majority of hemicellulose. Presoaking and particle size reduction did not have a significant impact on biomass compositions after pretreatment for both DSA and CELF. However, presoaking for 4 h slightly increased sugar yields by enzymatic hydrolysis of DSA-pretreated switchgrass compared to unsoaked samples, whereas sugar yields from enzymatic hydrolysis of CELF solids continued to increase substantially for up to 18 h of presoaking time. Of particular importance, DSA required particle size reduction by knife milling to < 2 mm in order to achieve adequate sugar yields by subsequent enzymatic hydrolysis. CELF solids, on the other hand, realized nearly identical sugar yields from unmilled and milled switchgrass even at very low enzyme loadings. CONCLUSIONS CELF was capable of achieving nearly theoretical sugar yields from enzymatic hydrolysis of pretreated switchgrass solids without size reduction, unlike DSA. These results indicate that CELF may be able to eliminate particle size reduction prior to pretreatment and thereby reduce overall costs of biological processing of biomass to fuels. In addition, presoaking proved much more effective for CELF than for DSA, particularly at low enzyme loadings.
Collapse
Affiliation(s)
- Abhishek S. Patri
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Laura McAlister
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
| | - Charles M. Cai
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Rajeev Kumar
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Ave, Riverside, CA 92507 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 USA
| |
Collapse
|
7
|
Li W, Amos K, Li M, Pu Y, Debolt S, Ragauskas AJ, Shi J. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:304. [PMID: 30455733 PMCID: PMC6222996 DOI: 10.1186/s13068-018-1305-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/27/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignin is a promising source of building blocks for upgrading to valuable aromatic chemicals and materials. Endocarp biomass represents a non-edible crop residue in an existing agricultural setting which cannot be used as animal feed nor soil amendment. With significantly higher lignin content and bulk energy density, endocarps have significant advantages to be converted into both biofuel and bioproducts as compared to other biomass resources. Deep eutectic solvent (DES) is highly effective in fractionating lignin from a variety of biomass feedstocks with high yield and purity while at lower cost comparing to certain ionic liquids. RESULTS In the present study, the structural and compositional features of peach and walnut endocarp cells were characterized. Compared to typical woody and herbaceous biomass, endocarp biomass exhibits significantly higher bulk density and hardness due to its high cellular density. The sugar yields of DES (1:2 choline chloride: lactic acid) pretreated peach pit (Prunus persica) and walnut shell (Juglans nigra) were determined and the impacts of DES pretreatment on the physical and chemical properties of extracted lignin were characterized. Enzymatic saccharification of DES pretreated walnut and peach endocarps gave high glucose yields (over 90%); meanwhile, compared with dilute acid and alkaline pretreatment, DES pretreatment led to significantly higher lignin removal (64.3% and 70.2% for walnut and peach endocarps, respectively). The molecular weights of the extracted lignin from DES pretreated endocarp biomass were significantly reduced. 1H-13C HSQC NMR results demonstrate that the native endocarp lignins were SGH type lignins with dominant G-unit (86.7% and 80.5% for walnut and peach endocarps lignins, respectively). DES pretreatment decreased the S and H-unit while led to an increase in condensed G-units, which may contribute to a higher thermal stability of the isolated lignin. Nearly all β-O-4' and a large portion of β-5' linkages were removed during DES pretreatment. CONCLUSIONS The high lignin content endocarps have unique cell wall characteristics when compared to the other lignocellulosic biomass feedstocks. DES pretreatment was highly effective in fractionating high lignin content endocarps to produce both sugar and lignin streams while the DES extracted lignins underwent significant changes in SGH ratio, interunit linkages, and molecular sizes.
Collapse
Affiliation(s)
- Wenqi Li
- 1Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Kirtley Amos
- 2Department of Horticulture, University of Kentucky, Lexington, KY 40506 USA
| | - Mi Li
- 3Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- 4Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Yunqiao Pu
- 3Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Seth Debolt
- 2Department of Horticulture, University of Kentucky, Lexington, KY 40506 USA
| | - Arthur J Ragauskas
- 3Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- 4Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- 5Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Jian Shi
- 1Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506 USA
| |
Collapse
|
8
|
Wang Z, Wu G, Jönsson LJ. Effects of impregnation of softwood with sulfuric acid and sulfur dioxide on chemical and physical characteristics, enzymatic digestibility, and fermentability. BIORESOURCE TECHNOLOGY 2018; 247:200-208. [PMID: 28950127 DOI: 10.1016/j.biortech.2017.09.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 05/02/2023]
Abstract
Hydrothermal pretreatment improves bioconversion of lignocellulose, but the effects of different acid catalysts are poorly understood. The effects of sulfuric acid (SA) and sulfur dioxide (SD) in continuous steam pretreatment of wood of Norway spruce were compared in the temperature range 195°C-215°C. The inhibitory effects of the pretreatment liquid on cellulolytic enzymes and Saccharomyces cerevisiae yeast were higher for SD- than for SA-pretreated material, and the inhibitory effects increased with increasing pretreatment temperature. However, the susceptibility to cellulolytic enzymes of wood pretreated with SD was 2.0-2.9 times higher than that of wood pretreated with SA at the same temperature. Data conclusively show that the superior convertibility of SD-pretreated material was not due to inhibition phenomena but rather to the greater capability of the SD pretreatment to reduce the particle size through partial delignification and cellulose degradation. Particle size was shown to be correlated with enzymatic digestibility (R2 0.97-0.98).
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Guochao Wu
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
9
|
Das L, Liu E, Saeed A, Williams DW, Hu H, Li C, Ray AE, Shi J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. BIORESOURCE TECHNOLOGY 2017; 244:641-649. [PMID: 28810219 DOI: 10.1016/j.biortech.2017.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 05/17/2023]
Abstract
This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products.
Collapse
Affiliation(s)
- Lalitendu Das
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States
| | - Enshi Liu
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States
| | - Areej Saeed
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States
| | - David W Williams
- Plant and Soils Science Department, University of Kentucky, Lexington, KY 40546, United States; Robinson Center for Appalachian Resource Sustainability (RCARS), Jackson, KY 41339, United States
| | - Hongqiang Hu
- Energy and Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, United States
| | - Chenlin Li
- Energy and Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, United States
| | - Allison E Ray
- Energy and Environment Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, United States
| | - Jian Shi
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
10
|
Schneider L, Haverinen J, Jaakkola M, Lassi U. Effective saccharification of lignocellulosic barley straw by mechanocatalytical pretreatment using potassium pyrosulfate as a catalyst. BIORESOURCE TECHNOLOGY 2017; 234:1-7. [PMID: 28315599 DOI: 10.1016/j.biortech.2017.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
The catalytic conversion of lignocellulosic biomass is attractive due to the feasible generation of valuable products such as reducing sugars which constitute the basic substrates for chemical and transportation fuel production, as well as the production of renewable hydrogen. This study shows the efficient conversion of lignocellulose, especially hemicellulose, into reducing sugars such as xylose and galactose, by mechanocatalysis using potassium pyrosulfate, K2S2O7, as an effective salt catalyst. Ball milling was performed, introducing a mechanical force which, combined with chemical pretreatment, leads to reducing sugar yields (40%) almost as high as when commonly used sulfuric acid was employed. Kinetic experiments as well as the optimization of the saccharification process are presented.
Collapse
Affiliation(s)
- Laura Schneider
- University of Oulu, Research Unit of Sustainable Chemistry, P.O. Box 3000, FIN-90014 Oulu, Finland; University of Jyvaskyla, Kokkola University Consortium Chydenius, FI-67100 Kokkola, Finland
| | - Jasmiina Haverinen
- University of Oulu, Kajaani University Consortium, CEMIS-Oulu, FI-87400 Kajaani, Finland
| | - Mari Jaakkola
- University of Oulu, Kajaani University Consortium, CEMIS-Oulu, FI-87400 Kajaani, Finland
| | - Ulla Lassi
- University of Oulu, Research Unit of Sustainable Chemistry, P.O. Box 3000, FIN-90014 Oulu, Finland; University of Jyvaskyla, Kokkola University Consortium Chydenius, FI-67100 Kokkola, Finland.
| |
Collapse
|
11
|
Lü H, Shi X, Li Y, Meng F, Liu S, Yan L. Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Zheng Y, Shi J, Tu M, Cheng YS. Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Verardi A, Blasi A, De Bari I, Calabrò V. Steam pretreatment of Saccharum officinarum L. bagasse by adding of impregnating agents for advanced bioethanol production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134:293-300. [PMID: 26314609 DOI: 10.1016/j.ecoenv.2015.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
The main byproduct of the sugarcane industry, Saccharum officinarum L. bagasse (sugarcane bagasse, SCB), is widely used as lignocellulose biomass for bio-ethanol (EtOH) production. In this research study, SCB was pretreated by steam explosion (SE) method using two different impregnating agents: sulfur dioxide (SD) and hydrogen peroxide (HP). As matter of fact, the use of impregnating agents improves the performance of SE method, increasing the concentrations of fermentable sugars after enzymatic saccharification, and decreasing the inhibitor compounds produced during the steam pretreatment step. The aim of this study was to investigate and compare the use of the two impregnating agents in various SE-conditions in order to optimize pretreatment parameters. For every pretreatment condition, it has been evaluated: concentration of fermentable sugars, glucose and xylose yields, and the effects of the inhibitor compounds on enzymatic hydrolysis step. The obtained results allow to improve the efficiency of the whole process of bio-EtOH synthesis enhancing the amount of fermentable sugars produced and the eco-sustainability of the whole process. Indeed, the optimization of steam pretreatment leads to a reduction of energy requirements and to a lower environmental impact.
Collapse
Affiliation(s)
- A Verardi
- Department of Computer Engineering, Modeling, Electronics, and Systems Science (DIMES), University of Calabria, via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - A Blasi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, km 419+500, 75026 Rotondella, MT, Italy
| | - I De Bari
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S.S. 106 Ionica, km 419+500, 75026 Rotondella, MT, Italy
| | - V Calabrò
- Department of Computer Engineering, Modeling, Electronics, and Systems Science (DIMES), University of Calabria, via P. Bucci, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
14
|
Martín M, Grossmann IE. Optimal Simultaneous Production of Biodiesel (FAEE) and Bioethanol from Switchgrass. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5038648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mariano Martín
- Departamento de Ingeniería
Química, Universidad de Salamanca. Plz. Caídos 1-5, Salamanca 37008, Spain
| | - Ignacio E. Grossmann
- Department of Chemical Engineering. Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Chen L, Zhang H, Li J, Lu M, Guo X, Han L. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. BIORESOURCE TECHNOLOGY 2015; 177:8-16. [PMID: 25479388 DOI: 10.1016/j.biortech.2014.11.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 05/27/2023]
Abstract
Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover.
Collapse
Affiliation(s)
- Longjian Chen
- China Agricultural University (East campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Haiyan Zhang
- China Agricultural University (East campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Junbao Li
- China Agricultural University (East campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Minsheng Lu
- China Agricultural University (East campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Xiaomiao Guo
- China Agricultural University (East campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China
| | - Lujia Han
- China Agricultural University (East campus), 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing 100083, PR China.
| |
Collapse
|
16
|
Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 2014; 117:624-631. [PMID: 25498680 DOI: 10.1016/j.carbpol.2014.10.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
Abstract
Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.
Collapse
Affiliation(s)
- Joginder Singh
- Laboratory of Environmental Biotechnology, Department of Botany, A. I. Jat H. M. College, Rohtak 124001, Haryana, India.
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Anil Dhaka
- PNRS Government College, Rohtak 124001, Haryana, India.
| |
Collapse
|
17
|
Pappas IA, Koukoura Z, Tananaki C, Goulas C. Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. lignocellulosic biomass into fermentable sugars. BIORESOURCE TECHNOLOGY 2014; 166:395-402. [PMID: 24929811 DOI: 10.1016/j.biortech.2014.05.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/11/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica lignocellulosic biomass into fermentable sugar monomers was studied. The pretreatment conditions were expressed in a combined severity factor (CSF), ranged from 0.13 to 1.16. The concentration of xylose and total monomeric sugars released from hemicellulose increased with pretreatment as the CSF increased. Dilute acid pretreatment resulted in about 1.7-fold increase in glucose release relative to the untreated biomass, while CSF was positively correlated with glucose recovery. A maximum glucose yield of 85.05% was observed at high severity values (i.e. CSF 1.16) after 72 h. The total amount of sugars released (i.e. xylose and glucose) was increased with pretreatment severity and a maximum conversion efficiency of 76.1% of structural carbohydrates was obtained at a CSF=1. Our data indicated that Phalaris aquatica L. is an alternative bioethanol feedstock and that hemicellulose removal promotes glucose yield.
Collapse
Affiliation(s)
- Ioannis A Pappas
- Chemical Process Engineering Research Institute, LPRE, 6th km Harilaou Thermi Road, 57001 Thessaloniki, Greece; Aristotle University, Department of Forestry and Natural Environment, Range Ecology Laboratory, 54124 Thessaloniki, Greece.
| | - Zoi Koukoura
- Aristotle University, Department of Forestry and Natural Environment, Range Ecology Laboratory, 54124 Thessaloniki, Greece
| | - Chrisoula Tananaki
- Aristotle University, School of Agriculture, Apiculture-Sericulture Laboratory, 54124 Thessaloniki, Greece
| | | |
Collapse
|
18
|
Li S, Li J, Hu X, Li M, Yan Z, Li S, Fan C. Study on enzymatic saccharification of Suaeda salsa as a new potential feedstock for bio-ethanol production. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Sathitsuksanoh N, Xu B, Zhao B, Zhang YHP. Overcoming biomass recalcitrance by combining genetically modified switchgrass and cellulose solvent-based lignocellulose pretreatment. PLoS One 2013; 8:e73523. [PMID: 24086283 PMCID: PMC3785476 DOI: 10.1371/journal.pone.0073523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. Without pretreatment, no correlation was observed between lignin contents of plant biomass and saccharification efficiency. After dilute acid pretreatment, a strong negative correlation between lignin content of plant samples and overall glucose release was observed, wherein the highest overall enzymatic glucan digestibility was 70% for the low-lignin sample. After cellulose solvent- and organic solvent-based lignocellulose fractionation pretreatment, there was no strong correlation between lignin contents and high saccharification efficiencies obtained (i.e., 80–90%). These results suggest that the importance of decreasing lignin content in plant biomass to saccharification was largely dependent on pretreatment choice and conditions.
Collapse
Affiliation(s)
- Noppadon Sathitsuksanoh
- Biological Systems Engineering Department, Virginia Tech, Blacksburg, Virginia, United States of America
- Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Bin Xu
- Horticulture Department, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bingyu Zhao
- Horticulture Department, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Y.-H. Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, Blacksburg, Virginia, United States of America
- Institute for Critical Technology and Applied Sciences (ICTAS), Virginia Tech, Blacksburg, Virginia, United States of America
- DOE BioEnergy Science Center (BESC), Oak Ridge, Tennessee, United States of America
- Gate Fuels Inc., Blacksburg, Virginia, United States of America
- Cell-Free Bioinnovations Inc, Blacksburg, Virginia, United States of America
| |
Collapse
|
20
|
Yu Q, Zhuang X, Yuan Z, Qi W, Wang W, Wang Q, Tan X. Pretreatment of sugarcane bagasse with liquid hot water and aqueous ammonia. BIORESOURCE TECHNOLOGY 2013; 144:210-215. [PMID: 23871922 DOI: 10.1016/j.biortech.2013.06.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
Low water consumption operation (LWCO) can reduce the usage of water and energy input for the liquid hot water (LHW) pretreatment of sugarcane bagasse (SB) but causes great negative effects on the saccharification rate of xylose and enzymatic digestibility (ED) of cellulose. Therefore, a combined pretreatment with LHW and aqueous ammonia (LHWAA) was developed. ED of glucan and xylan is enhanced greatly resulted from the removal of hemicellulose and lignin after the LHWAA pretreatment. However, the intriguing results of low lignin removal and ED value were observed at the high reaction temperature of 180°C for the second step pretreatment of AA. It was proposed that lignin or pseudo-lignin droplet redeposited on the surface of residual solids might play a crucial role in determining the ED, so it is indispensable to make the enzyme access to the cellulose by the step of post-treatment with ultrasonic washing or hot washing. Coupled with the process of post-treatment and enzymatic hydrolysis, a high hemicellulose derived sugars recovery of 75.5% and glucose recovery of 87% was obtained for LHWAA pretreatment.
Collapse
Affiliation(s)
- Qiang Yu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu J, Wang ML, Tonnis B, Habteselassie M, Liao X, Huang Q. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. BIORESOURCE TECHNOLOGY 2013. [PMID: 23195655 DOI: 10.1016/j.biortech.2012.10.095] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study investigates fungal pretreatment of switchgrass involving solid state fermentation (SSF) to improve saccharification and simultaneously produce enzymes as co-products. The results revealed that the fungus Pycnoporus sp. SYBC-L3 can significantly degrade lignin and enhance enzymatic hydrolysis efficiency. After a 36-d cultivation period, nearly 30% reduction in lignin content was obtained without significant loss of cellulose and hemicellulose, while a considerable amount of laccase, as high as 6.3 U/g, was produced. After pretreatment, pores on switchgrass surface were observed using scanning electron microscopy (SEM). The enzymatic hydrolysis efficiency for the switchgrass with 36-d pretreatment was about 50% greater than the untreated one. Our results suggest that solid state fungal cultivation may be a good method for switchgrass pretreatment, which can simultaneously achieve high efficiency of enzymatic hydrolysis and production of some useful enzymes for other industrial utilization.
Collapse
Affiliation(s)
- Jiayang Liu
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yu Q, Zhuang X, Lv S, He M, Zhang Y, Yuan Z, Qi W, Wang Q, Wang W, Tan X. Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. BIORESOURCE TECHNOLOGY 2013; 129:592-8. [PMID: 23306094 DOI: 10.1016/j.biortech.2012.11.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 05/23/2023]
Abstract
Liquid hot water (LHW), dilute hydrochloric acid (HCl) and dilute sodium hydroxide (NaOH) were applied to sugarcane bagasse (SB). Application of the same analytical methods and material balance approaches facilitated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated sugarcane bagasse. Adding Tween80 in the enzymatic hydrolysis process increased the conversion level of glucan/xylan by 0.3-fold, especially for the low pH pretreatment where more lignin was left in the solids. The total sugar recovery from sugarcane bagasse with the coupled operations of pretreatment and 72 h enzymatic digestion reached 71.6% for LHW process, 76.6% for HCl pretreatment and 77.3% for NaOH pretreatment. Different structural changes at the plant tissue, cellular, and cell wall levels might be responsible for the different enzymatic digestibility. Furthermore, a combined LHW and aqueous ammonia pretreatment was proposed to reduce energy input and enhance the sugar recovery.
Collapse
Affiliation(s)
- Qiang Yu
- Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu W, Hou Y, Wu W, Liu Z, Liu Q, Tian S, Marsh KN. Efficient Conversion of Cellulose to Glucose, Levulinic Acid, and Other Products in Hot Water Using SO2 as a Recoverable Catalyst. Ind Eng Chem Res 2012. [DOI: 10.1021/ie302317t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weina Liu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yucui Hou
- Department of Chemistry, Taiyuan Normal University, Taiyuan 030031,
China
| | - Weize Wu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenyu Liu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingya Liu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shidong Tian
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kenneth N. Marsh
- Centre for Energy, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, Western
Australia 6009, Australia
| |
Collapse
|
24
|
Pilavtepe M, Sargin S, Celiktas MS, Yesil-Celiktas O. An integrated process for conversion of Zostera marina residues to bioethanol. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Wei W, Wu S, Liu L. Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production. BIORESOURCE TECHNOLOGY 2012; 110:302-307. [PMID: 22325899 DOI: 10.1016/j.biortech.2012.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/01/2012] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
Dilute sulfuric acid was used to pretreat eucalyptus chips prior to enzymatic hydrolysis. After both pretreatment and enzymatic hydrolysis processes. Attention is paid to sugar recovery. The maximum total sugars yield (combined xylose and glucose, 47.69g/100g raw material, representing 82% of total sugars in the eucalyptus biomass) was obtained at 160°C, 0.75% acid concentration and 10min residence time, which is consider to be the best reasonable conditions for the dilute acid pretreatment of eucalyptus, corresponding concentrations of acetic acid, HMF, and furfural in the prehydrolysate were about 2.01g/L, 0.13g/L and 1.37g/L, respectively. Under this optimal pretreatment condition, the acid-insoluble lignin recovery in the insoluble solid resulting from enzymatic hydrolysis, was 22.7g/100g raw material, representing 80% of acid-insoluble lignin in the eucalyptus biomass.
Collapse
Affiliation(s)
- Weiqi Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | |
Collapse
|
26
|
Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Ragauskas AJ, Wyman CE. Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2012. [DOI: 10.1039/c2ra20557b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Banerjee G, Car S, Liu T, Williams DL, Meza SL, Walton JD, Hodge DB. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol Bioeng 2011; 109:922-31. [DOI: 10.1002/bit.24385] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/09/2011] [Accepted: 11/14/2011] [Indexed: 11/09/2022]
|