1
|
Miller S, Hendry M, King J, Sankaranarayanan K, Lawson PA. Clostridium tanneri sp. nov., isolated from the faecal material of an alpaca. Int J Syst Evol Microbiol 2024; 74. [PMID: 38728064 DOI: 10.1099/ijsem.0.006372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
A strictly anaerobic, Gram-stain-negative rod-shaped bacterium, designated A1-XYC3T, was isolated from the faeces of an alpaca (Lama pacos). On the basis of the results of a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Clostridium with the highest sequence similarities to Clostridium magnum DSM 2767T (96.8 %), Clostridium carboxidivorans P7T (96.3 %) and Clostridium aciditolerans JW/YJL-B3T (96.1 %). The average nucleotide identity between A1-XYC3T, C. magnum, C. carboxidivorans and C. aciditolerans was 77.4, 76.1 and 76.6 %, respectively. The predominant components of the cellular fatty acids of A1-XYC3T were C14 : 0, C16 : 0 and summed feature 10, containing C18:0/C17:0 cyclo. The DNA G+C content was 32.4 mol%. On the basis of biochemical, phylogenetic, genotypic and chemotaxonomic criteria, this isolate represents a novel species within Clostridium sensu stricto for which the name Clostridium tanneri sp. nov. is proposed. The type strain of this species is strain A1-XYC3T (=CCM 9376T=NRRL B-65691T).
Collapse
Affiliation(s)
- Samuel Miller
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center 101 David L. Boren Blvd. Norman, OK 73019, USA
| | - Meredith Hendry
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
| | - Jacobey King
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
| | - Krithivasan Sankaranarayanan
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
- Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center 101 David L. Boren Blvd. Norman, OK 73019, USA
- Wadsworth Center, NYS Department of Health, 120 New Scotland Ave. Albany, New York 12208, USA
| | - Paul A Lawson
- School of Biological Sciences, 730-770 Van Vleet Oval Norman, OK 73019, USA
| |
Collapse
|
2
|
Mekwichai P, Chutivisut P, Tuntiwiwattanapun N. Enhancing biogas production from palm oil mill effluent through the synergistic application of surfactants and iron supplements. Heliyon 2024; 10:e29617. [PMID: 38660277 PMCID: PMC11040070 DOI: 10.1016/j.heliyon.2024.e29617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, the effects of various surfactants on the soluble chemical oxygen demand (COD) fraction and biogas production from palm oil mill effluent (POME) were investigated. A cationic surfactant (cetyltrimethylammonium bromide, CTAB) and a nonionic surfactant (Tween 80; TW80) were found to adsorb onto the particulate matter from POME, markedly reducing the soluble COD, unlike an anionic surfactant (sodium dodecyl sulfate, SDS). The mechanism underlying this phenomenon might be the adsolubilization of oil on particulate matter induced by the adsorbed surfactants. In terms of biogas production, 0.1 % w/v SDS and CTAB dramatically reduced the biogas yield, while 0.1 % w/v TW80 did not have this negative effect. A synergistic effect was observed when TW80 (0.1 % w/v) was combined with FeSO4 (400 mg/L), resulting in a 17 % greater biogas yield than that achieved with treatments using TW80 or FeSO4 alone. Moreover, the combination of TW80 and FeSO4 increased the biogas production rate. Surprisingly, the water-soluble iron fraction remained consistent across all treatments, suggesting that the adsorption of TW80 on particulate matter may limit micelle formation. Importantly, the proportion of methane in the generated biogas remained stable in all the treatments. Microbial community analysis revealed that the introduction of TW80 and FeSO4 had no discernible impact on the microbial community of the system. Pretreatment with TW80 and an iron supplement significantly enhanced biogas production and reduced the retention time of the anaerobic digestion (AD) system while maintaining the biogas quality and microbial community stability.
Collapse
Affiliation(s)
- Pannawee Mekwichai
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
| | - Pokchat Chutivisut
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
| | - Nattapong Tuntiwiwattanapun
- Environmental Research Institute Chulalongkorn University, Bangkok, Thailand
- Hub of Waste Management for Sustainable Development, Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Sobieraj K, Stegenta-Dąbrowska S, Luo G, Koziel JA, Białowiec A. Biological treatment of biowaste as an innovative source of CO-The role of composting process. Front Bioeng Biotechnol 2023; 11:1126737. [PMID: 36845185 PMCID: PMC9947533 DOI: 10.3389/fbioe.2023.1126737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Carbon monoxide (CO) is an essential "building block" for producing everyday chemicals on industrial scale. Carbon monoxide can also be generated though a lesser-known and sometimes forgotten biorenewable pathways that could be explored to advance biobased production from large and more sustainable sources such as bio-waste treatment. Organic matter decomposition can generate carbon monoxide both under aerobic and anaerobic conditions. While anaerobic carbon monoxide generation is relatively well understood, the aerobic is not. Yet many industrial-scale bioprocesses involve both conditions. This review summarizes the necessary basic biochemistry knowledge needed for realization of initial steps towards biobased carbon monoxide production. We analyzed for the first time, the complex information about carbon monoxide production during aerobic, anaerobic bio-waste treatment and storage, carbon monoxide-metabolizing microorganisms, pathways, and enzymes with bibliometric analysis of trends. The future directions recognizing limitations of combined composting and carbon monoxide production have been discussed in greater detail.
Collapse
Affiliation(s)
- Karolina Sobieraj
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China,Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, China,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Jacek A. Koziel
- USDA-ARS Conservation and Production Research Laboratory, Bushland, TX, United States,Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland,Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States,*Correspondence: Andrzej Białowiec,
| |
Collapse
|
5
|
Sun X, Thunuguntla R, Zhang H, Atiyeh H. Biochar amended microbial conversion of C1 gases to ethanol and butanol: Effects of biochar feedstock type and processing temperature. BIORESOURCE TECHNOLOGY 2022; 360:127573. [PMID: 35792327 DOI: 10.1016/j.biortech.2022.127573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Biochar feedstock and production method affects its physicochemical properties and subsequent application. This study investigated the effects of biochar from switchgrass (SGB) and poultry litter (PLB) produced at 350 and 700 °C on alcohol formation using CO:CO2:H2 (40:30:30) by Clostridium carboxidivorans (P7) and C. ragsdalei (P11). Fermentations were performed in 250 mL bottles with a 50 mL working volume at 37 °C. Strains P7 and P11 produced 1.2- to 2.2-fold more alcohol and consumed 1.2- to 1.9-fold more syngas using biochars made at 700 °C compared to 350 °C. Both strains also produced 1.4- to1.9-fold more alcohol with both biochars made at 700 °C compared to control without biochar. Strain P11 produced 1.1- and 1.6-fold more alcohol and fatty acids, respectively, in medium with PLB made at 700 °C compared to strain P7. These results provide guidance towards the selection of biochar type and production temperature to improve syngas fermentation.
Collapse
Affiliation(s)
- Xiao Sun
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Rahul Thunuguntla
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Hailin Zhang
- Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hasan Atiyeh
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
6
|
Liu G, Yang G, Peng X, Wu J, Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev 2022; 51:5606-5659. [PMID: 35705080 DOI: 10.1039/d0cs01003k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, as one of the important bulk chemicals, is widely used in modern society. It can be produced by fermentation of sugar, petroleum refining, or conversion of syngas (CO/H2). Among these approaches, conversion of syngas to ethanol (STE) is the most environmentally friendly and economical process. Although considerable progress has been made in STE conversion, control of CO activation and C-C growth remains a great challenge. This review highlights recent advances in the routes and catalysts employed in STE technology. The catalyst designs and pathway designs are summarized and analysed for the direct and indirect STE routes, respectively. In the direct STE routes (i.e., one-step synthesis of ethanol from syngas), modified catalysts of methanol synthesis, modified catalysts of Fischer-Tropsch synthesis, Mo-based catalysts, noble metal catalysts and multifunctional catalysts are systematically reviewed based on their catalyst designs. Further, in the indirect STE routes (i.e., multi-step processes for ethanol synthesis from syngas via methanol/dimethyl ether as intermediates), carbonylation of methanol/dimethyl ether followed by hydrogenation, and coupling of methanol with CO to form dimethyl oxalate followed by hydrogenation, are outlined according to their pathway designs. The goal of this review is to provide a comprehensive perspective on STE technology and inspire the invention of new catalysts and pathway designs in the near future.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xiaobo Peng
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Jinhu Wu
- Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
7
|
Sorokin DY, Merkel AY, Messina E, Tugui C, Pabst M, Golyshin PN, Yakimov MM. Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes. THE ISME JOURNAL 2022; 16:1534-1546. [PMID: 35132120 PMCID: PMC9123189 DOI: 10.1038/s41396-022-01206-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 05/24/2023]
Abstract
Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Enzo Messina
- IRBIM-CNR, Spianata S.Raineri 86, 98122, Messina, Italy
| | - Claudia Tugui
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Peter N Golyshin
- School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | | |
Collapse
|
8
|
Calvo DC, Luna HJ, Arango JA, Torres CI, Rittmann BE. Determining global trends in syngas fermentation research through a bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114522. [PMID: 35066199 DOI: 10.1016/j.jenvman.2022.114522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Syngas fermentation, in which microorganisms convert H2, CO, and CO2 to acids and alcohols, is a promising alternative for carbon cycling and valorization. The intellectual landscape of the topic was characterized through a bibliometric analysis using a search query (SQ) that included all relevant documents on syngas fermentation available through the Web of Science database up to December 31st, 2021. The SQ was validated with a preliminary analysis in bibliometrix and a review of titles and abstracts of all sources. Although syngas fermentation began in the early 1980s, it grew rapidly beginning in 2008, with 92.5% of total publications and 87.3% of total citations from 2008 to 2021. The field has been steadily moving from fundamentals towards applications, suggesting that the field is maturing scientifically. The greatest number of publications and citations are from the USA, and researchers in China, Germany, and Spain also are highly active. Although collaborations have increased in the past few years, author-cluster analysis shows specialized research domains with little collaboration between groups. Based on topic trends, the main challenges to be address are related to mass-transfer limitations, and researchers are starting to explore mixed cultures, genetic engineering, microbial chain elongation, and biorefineries.
Collapse
Affiliation(s)
- Diana C Calvo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| | - Hector J Luna
- Grupo GRESIA, Department of Environmental Engineering, Universidad Antonio Nariño, Bogotá, 110231, Colombia; Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus University, Campus Universitario, Brazil
| | - Jineth A Arango
- Pontificia Universidad Católica de Valparaíso, Valparaíso, 2362803, Chile.
| | - Cesar I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, PO Box 85287-3005, USA.
| |
Collapse
|
9
|
Salmerón I, Guzmán CLA, Sánchez VHR, Reyes IP, Mata JS, Cisneros de la Cueva S. Hydrogen and alcohols production by Serratia sp. from an inorganic carbon source. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Doyle DA, Smith PR, Lawson PA, Tanner RS. Clostridium muellerianum sp. nov., a carbon monoxide-oxidizing acetogen isolated from old hay. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An acid/alcohol-producing, Gram-stain-positive, obligately anaerobic, rod-shaped, non-motile, non-spore forming acetogen, designated as strain P21T, was isolated from old hay after enrichment with CO as the substrate. Spores not observed even after prolonged incubation (30 days). Phylogenetic analysis of the 16S rRNA gene sequence of strain P21T showed it was closely related to
Clostridium carboxidivorans
DSM 15243T (97.9%),
Clostridium scatologenes
DSM 757T (97.7 %) and
Clostridium drakei
DSM 12750T (97.7 %). The genome is 5.6 Mb and the G+C content is 29.4 mol%. Average nucleotide identity between strain P21T,
C. carboxidivorans
,
C. scatologenes
and
C. drakei
was 87.1, 86.4, 86.4 %, respectively. Strain P21T grew on CO:CO2, H2:CO2, l-arabinose, ribose, xylose, fructose, galactose, glucose, lactose, mannose, cellobiose, sucrose, cellulose, starch, pyruvate, choline, glutamate, histidine, serine, threonine and casamino acids. End products of metabolism were acetate, butyrate, caproate, ethanol and hexanol. Dominant cellular fatty acids (>10 %) were C16 : 0 (41.5 %), C16 : 1 ω7c/C16 : 1 ω6c (10.0 %), and a summed feature containing cyclo C17 : 1/C18 : 0 (17.3 %). Based on the phenotypic, chemotaxonomic, phylogenetic and phylogenomic analyses, strain P21T represents a new species in the genus
Clostridium
, for which the name Clostridium muellerianum sp. nov. is proposed. The type strain is P21T (=DSM 111390T=NCIMB 15261T).
Collapse
Affiliation(s)
- D. Annie Doyle
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK 73019, USA
| | - Parker R. Smith
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK 73019, USA
| | - Paul A. Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK 73019, USA
| | - Ralph S. Tanner
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman OK 73019, USA
| |
Collapse
|
11
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
12
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
13
|
Yuan Y, Liu J, Gao B, Hao J. Ozone direct oxidation pretreatment and catalytic oxidation post-treatment coupled with ABMBR for landfill leachate treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148557. [PMID: 34323762 DOI: 10.1016/j.scitotenv.2021.148557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In order to treat the high concentration landfill leachate, ozone direct oxidation pretreatment and catalytic oxidation post-treatment coupled with anaerobic baffled membrane bioreactor (ABMBR) system was proposed in this study. For pretreatment, ozone direct oxidation could remarkably reduce UV254, 3D fluorescence peak value and fluorescence regional integration (FRI) of organic pollutants. For ABMBR treatment, the removal efficiencies of COD and ammonia nitrogen were 80.38% and 21.56%, respectively. Post-treatment included struvite precipitation, ozone catalytic oxidation and membrane bioreactor (MBR) treatment. Finally, the total removal efficiencies of COD and ammonia nitrogen were 91.2% and 99.4%, respectively. The chroma was remarkably decreased from 1250 times to 40 times after a series of treatments. The acids in ABMBR could be degraded by microorganisms of Proteobacteria and Chloroflexi. The cellulose and polysaccharides could be decomposed by Bacteroidetes and ketones could be decomposed by Brevundimonas in ABMBR. Electron paramagnetic resonance (EPR) analysis indicated that the hydroxyl radicals were the main reactive oxygen species during the direct ozone oxidation process, while the superoxide radicals played an important role in the ozone catalytic oxidation process.
Collapse
Affiliation(s)
- Yuchen Yuan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jialiang Hao
- JUSCO (DaLian) Environmental Science and Technology Co. Ltd., China
| |
Collapse
|
14
|
Im H, An T, Kwon R, Park S, Kim YK. Effect of Organic Nitrogen Supplements on Syngas Fermentation Using Clostridium autoethanogenum. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0221-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
He Y, Cassarini C, Lens PNL. Bioethanol Production From H 2/CO 2 by Solventogenesis Using Anaerobic Granular Sludge: Effect of Process Parameters. Front Microbiol 2021; 12:647370. [PMID: 33790882 PMCID: PMC8006448 DOI: 10.3389/fmicb.2021.647370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
CO2 fermentation by biocatalysis is a promising route for the sustainable production of valuable chemicals and fuels, such as acetic acid and ethanol. Considering the important role of environmental parameters on fermentation processes, granular sludge from an industrial anaerobic wastewater treatment system was tested as inoculum for ethanol production from H2/CO2 at psychrophilic (18°C), submesophilic (25°C), and mesophilic (30°C) temperatures. The highest acetic acid and ethanol production was obtained at 25°C with a final concentration of 29.7 and 8.8 mM, respectively. The presence of bicarbonate enhanced acetic acid production 3.0 ∼ 4.1-fold, while inhibiting ethanol production. The addition of 0.3 g/L glucose induced butyric acid production (3.7 mM), while 5.7 mM ethanol was produced at the end of the incubation at pH 4 with glucose. The addition of 10 μM W enhanced ethanol production up to 3.8 and 7.0-fold compared to, respectively, 2 μM W addition and the control. The addition of 2 μM Mo enhanced ethanol production up to 8.1- and 5.4-fold compared to, respectively, 10 μM Mo and the control. This study showed that ethanol production from H2/CO2 conversion using granular sludge as the inoculum can be optimized by selecting the operational temperature and by trace metal addition.
Collapse
Affiliation(s)
- Yaxue He
- National University of Ireland Galway, Galway, Ireland
| | | | - Piet N L Lens
- National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Calvo DC, Ontiveros-Valencia A, Krajmalnik-Brown R, Torres CI, Rittmann BE. Carboxylates and alcohols production in an autotrophic hydrogen-based membrane biofilm reactor. Biotechnol Bioeng 2021; 118:2338-2347. [PMID: 33675236 DOI: 10.1002/bit.27745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023]
Abstract
Microbiological conversion of CO2 into biofuels and/or organic industrial feedstock is an excellent carbon-cycling strategy. Here, autotrophic anaerobic bacteria in the membrane biofilm reactor (MBfR) transferred electrons from hydrogen gas (H2 ) to inorganic carbon (IC) and produced organic acids and alcohols. We systematically varied the H2 -delivery, the IC concentration, and the hydraulic retention time in the MBfR. The relative availability of H2 versus IC was the determining factor for enabling microbial chain elongation (MCE). When the H2 :IC mole ratio was high (>2.0 mol H2 /mol C), MCE was an important process, generating medium-chain carboxylates up to octanoate (C8, 9.1 ± 1.3 mM C and 28.1 ± 4.1 mmol C m-2 d-1 ). Conversely, products with two carbons were the only ones present when the H2 :IC ratio was low (<2.0 mol H2 /mol C), so that H2 was the limiting factor. The biofilm microbial community was enriched in phylotypes most similar to the well-known acetogen Acetobacterium for all conditions tested, but phylotypes closely related with families capable of MCE (e.g., Bacteroidales, Rhodocyclaceae, Alcaligenaceae, Thermoanaerobacteriales, and Erysipelotrichaceae) became important when the H2 :IC ratio was high. Thus, proper management of IC availability and H2 supply allowed control over community structure and function, reflected by the chain length of the carboxylates and alcohols produced in the MBfR.
Collapse
Affiliation(s)
- Diana C Calvo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Design Annex, Tempe, Arizona, USA
| | - Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,Department of Environmental Sciences, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Design Annex, Tempe, Arizona, USA.,Biodesign Center for Health Through Microbiome, Arizona State University, Tempe, Arizona, USA
| | - Cesar I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Tempe, Arizona, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA.,School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Design Annex, Tempe, Arizona, USA
| |
Collapse
|
17
|
Obergruber M, Hönig V, Procházka P, Kučerová V, Kotek M, Bouček J, Mařík J. Physicochemical Properties of Biobutanol as an Advanced Biofuel. MATERIALS 2021; 14:ma14040914. [PMID: 33671951 PMCID: PMC7919056 DOI: 10.3390/ma14040914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Biobutanol is a renewable, less polluting, and potentially viable alternative fuel to conventional gasoline. Biobutanol can be produced from same sources as bioethanol, and it has many advantages over the widespread bioethanol. This paper systematically analyzes biobutanol fuel as an alternative to bioethanol in alcohol–gasoline mixtures and the physicochemical properties. Based on the conducted analyses, it was found that biobutanol mixtures have a more suitable behavior of vapor pressure without the occurrence of azeotrope, do not form a separate phase in lower temperature, it has higher energy density, but slightly reduce the octane number and a have higher viscosity. However, in general, biobutanol has many advantageous properties that could allow its use in gasoline engines instead of the commonly used bioethanol.
Collapse
Affiliation(s)
- Michal Obergruber
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic;
| | - Vladimír Hönig
- Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic;
- Correspondence: ; Tel.: +420-22438-2722
| | - Petr Procházka
- Department of Economics, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic;
| | - Viera Kučerová
- Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University of Zvolen, 960 53 Zvolen, Slovakia;
| | - Martin Kotek
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic; (M.K.); (J.M.)
| | - Jiří Bouček
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic;
| | - Jakub Mařík
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 169 21 Prague 6, Czech Republic; (M.K.); (J.M.)
| |
Collapse
|
18
|
Cha S, Lim HG, Kwon S, Kim DH, Kang CW, Jung GY. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metab Eng 2021; 64:146-153. [PMID: 33571657 DOI: 10.1016/j.ymben.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Carbon monoxide (CO) is a promising carbon source for producing value-added biochemicals via microbial fermentation. However, its microbial conversion has been challenging because of difficulties in genetic engineering of CO-utilizing microorganisms and, more importantly, maintaining CO consumption which is negatively affected by the toxicity of CO and accumulated byproducts. To overcome these issues, we devised mutualistic microbial consortia, co-culturing Eubacterium limosum and genetically engineered Escherichia coli for the production of 3-hydroxypropionic acid (3-HP) and itaconic acid (ITA). During the co-culture, E. limosum assimilated CO and produced acetate, a toxic by-product, while E. coli utilized acetate as a sole carbon source. We found that this mutualistic interaction dramatically stabilized and improved CO consumption of E. limosum compared to monoculture. Consequently, the improved CO consumption allowed successful production of 3-HP and ITA from CO. This study is the first demonstration of value-added biochemical production from CO using a microbial consortium. Moreover, it suggests that synthetic mutualistic microbial consortium can serve as a powerful platform for the valorization of CO.
Collapse
Affiliation(s)
- Sanghak Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seokmu Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong-Hwan Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Chae Won Kang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-RoNam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
19
|
Sorokin DY, Diender M, Merkel AY, Koenen M, Bale NJ, Pabst M, Sinninghe Damsté JS, Sousa DZ. Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO-utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class 'Natranaerobiia'. Environ Microbiol 2020; 23:3460-3476. [PMID: 32955149 PMCID: PMC8359318 DOI: 10.1111/1462-2920.15241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023]
Abstract
An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane‐forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep‐branching phylogenetic lineage at the level of a new family within the class ‘Natranaerobiia’. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood–Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr‐like operon. The organism obviously relies on Na‐based bioenergetics, since the genome encodes for the Na+‐Rnf complex, Na+‐F1F0 ATPase and Na+‐translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO‐oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Michel Koenen
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Nicole J Bale
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands.,Department of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
20
|
Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide. Appl Environ Microbiol 2020; 86:AEM.00730-20. [PMID: 32414802 DOI: 10.1128/aem.00730-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Bioethanol production from syngas using acetogenic bacteria has attracted considerable attention in recent years. However, low ethanol yield is the biggest challenge that prevents the commercialization of syngas fermentation into biofuels using microbial catalysts. The present study demonstrated that ethanol metabolism plays an important role in recycling NADH/NAD+ during autotrophic growth. Deletion of bifunctional aldehyde/alcohol dehydrogenase (adhE) genes leads to significant growth deficiencies in gas fermentation. Using specific fermentation technology in which the gas pressure and pH were constantly controlled at 0.1 MPa and 6.0, respectively, we revealed that ethanol was formed during the exponential phase, closely accompanied by biomass production. Then, ethanol was oxidized to acetate via the aldehyde ferredoxin oxidoreductase pathway in Clostridium ljungdahlii A metabolic experiment using 13C-labeled ethanol and acetate, redox balance analysis, and comparative transcriptomic analysis demonstrated that ethanol production and reuse shared the metabolic pathway but occurred at different growth phases.IMPORTANCE Ethanol production from carbon monoxide (CO) as a carbon and energy source by Clostridium ljungdahlii and "Clostridium autoethanogenum" is currently being commercialized. During gas fermentation, ethanol synthesis is NADH-dependent. However, ethanol oxidation and its regulatory mechanism remain incompletely understood. Energy metabolism analysis demonstrated that reduced ferredoxin is the sole source of NADH formation by the Rnf-ATPase system, which provides ATP for cell growth during CO fermentation. Therefore, ethanol production is tightly linked to biomass production (ATP production). Clarification of the mechanism of ethanol oxidation and biosynthesis can provide an important reference for generating high-ethanol-yield strains of C. ljungdahlii in the future.
Collapse
|
21
|
Nissen LS, Basen M. The emerging role of aldehyde:ferredoxin oxidoreductases in microbially-catalyzed alcohol production. J Biotechnol 2019; 306:105-117. [DOI: 10.1016/j.jbiotec.2019.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
|
22
|
Sun X, Atiyeh HK, Huhnke RL, Tanner RS. Syngas fermentation process development for production of biofuels and chemicals: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100279] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Investigation and Modeling of Gas-Liquid Mass Transfer in a Sparged and Non-Sparged Continuous Stirred Tank Reactor with Potential Application in Syngas Fermentation. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Syngas (mixture of CO, H2 and CO2) fermentation suffers from mass transfer limitation due to low solubility of CO and H2 in the liquid medium. Therefore, it is critical to characterize the mass transfer in syngas fermentation reactors to guide in delivery of syngas to the microorganisms. The objective of this study is to measure and predict the overall volumetric mass transfer coefficient, kLa for O2 at various operating conditions in a 7-L sparged and non-sparged continuous stirred-tank reactor (CSTR). Measurements indicated that the kLa for O2 increased with an increase in air flow rate and agitation speed. However, kLa for O2 decreased with the increase in the headspace pressure. The highest kLa for O2 with air sparged in the CSTR was 116 h−1 at 600 sccm, 900 rpm, 101 kPa, and 3 L working volume. Backmixing of the headspace N2 in the sparged CSTR reduced the observed kLa. The mass transfer model predicted the kLa for O2 within 10% of the experimental values. The model was extended to predict the kLa for syngas components CO, CO2 and H2, which will guide in selecting operating conditions that minimize power input to the bioreactor and maximize the syngas conversion efficiency.
Collapse
|
24
|
Park S, Ahn B, Kim YK. Growth enhancement of bioethanol-producing microbe Clostridium autoethanogenum by changing culture medium composition. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Orgill JJ, Abboud MC, Atiyeh HK, Devarapalli M, Sun X, Lewis RS. Measurement and prediction of mass transfer coefficients for syngas constituents in a hollow fiber reactor. BIORESOURCE TECHNOLOGY 2019; 276:1-7. [PMID: 30611083 DOI: 10.1016/j.biortech.2018.12.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Syngas fermentation for producing biofuels and other products suffers from mass transfer limitations due to low CO and H2 solubility in liquid medium. Therefore, it is critical to characterize mass transfer rates of these gases to guide bioreactor design and optimization. This work presents a novel technique to measure the volumetric mass transfer coefficients (kia) for H2 and CO using gas chromatography in a non-porous hollow fiber reactor (HFR). The largest measured kia for H2 and CO were 840 and 420 h-1, respectively. A model was developed to predict kia for H2 and CO that agreed well with experimental data. This study is the first to measure, compare, and model both H2 and CO mass transfer coefficients in an HFR. Based on model predictions, HFRs have the potential to be a reactor of choice for syngas fermentation as a result of high mass transfer that can support high cell densities.
Collapse
Affiliation(s)
- James J Orgill
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Mike C Abboud
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Hasan K Atiyeh
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Mamatha Devarapalli
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Xiao Sun
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Randy S Lewis
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
26
|
Kong Z, Li L, Wu J, Zhang T, Li YY. Insights into the methanogenic degradation of N, N-dimethylformamide: The functional microorganisms and their ecological relationships. BIORESOURCE TECHNOLOGY 2019; 271:37-47. [PMID: 30261335 DOI: 10.1016/j.biortech.2018.09.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The methanogenic degradation of N, N-dimethylformamide (DMF) was investigated using anaerobic digested sludge (ADS), aerobic activated sludge (AAS) and co-cultured sludge (CCS), respectively. Both the metabolic pathway and the corresponding microorganisms which function in the methanogenic degradation of DMF were elucidated. DMF was unable to be degraded anaerobically by ADS due to the lack of DMF-hydrolyzing bacteria. DMF can be effectively degraded by AAS, however, no methane was recovered under the aerobic condition. The co-culture of DMF-hydrolyzing bacteria and methanogens in the CCS allowed for both hydrolysis of DMF and methane production to proceed successfully under the anaerobic condition, realizing the complete conversion from DMF to methane. However, a niche overlap due to the competition for the intermediates lowered the abundance of DMF-hydrolyzing bacteria. The introduction of nitrate, timely replenishment of AAS, micro-aeration and co-digestion were likely to maintain a high abundance of DMF-hydrolyzing bacteria to ensure an effective hydrolysis.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tao Zhang
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
27
|
|
28
|
Sun X, Atiyeh HK, Kumar A, Zhang H, Tanner RS. Biochar enhanced ethanol and butanol production by Clostridium carboxidivorans from syngas. BIORESOURCE TECHNOLOGY 2018; 265:128-138. [PMID: 29886351 DOI: 10.1016/j.biortech.2018.05.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Biochar has functional groups, pH buffering capacity and cation exchange capacity (CEC) that can be beneficial in syngas fermentation. This study examined the properties of biochar made from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC), and their effects on ethanol and butanol production from syngas using Clostridium carboxidivorans. Experiments were performed in 250 mL bottle reactors with a 50 mL working volume at 37 °C fed syngas containing CO:H2:CO2 (40:30:30 by volume). Results showed that PLBC and SGBC enhanced ethanol production by 90% and 73%, respectively, and butanol production by fourfold compared to standard yeast extract medium without biochar (control). CO and H2 utilization in PLBC and SGBC media increased compared to control. PLBC had the highest pH buffering capacity, CEC and total amount of cations compared with SGBC, FSBC and RCBC, which could have contributed to its highest enhancement of ethanol and butanol production.
Collapse
Affiliation(s)
- Xiao Sun
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Hasan K Atiyeh
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA.
| | - Ajay Kumar
- Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Hailin Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ralph S Tanner
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
29
|
Valgepea K, de Souza Pinto Lemgruber R, Abdalla T, Binos S, Takemori N, Takemori A, Tanaka Y, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. H 2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:55. [PMID: 29507607 PMCID: PMC5831606 DOI: 10.1186/s13068-018-1052-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/14/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND The global demand for affordable carbon has never been stronger, and there is an imperative in many industrial processes to use waste streams to make products. Gas-fermenting acetogens offer a potential solution and several commercial gas fermentation plants are currently under construction. As energy limits acetogen metabolism, supply of H2 should diminish substrate loss to CO2 and facilitate production of reduced and energy-intensive products. However, the effects of H2 supply on CO-grown acetogens have yet to be experimentally quantified under controlled growth conditions. RESULTS Here, we quantify the effects of H2 supplementation by comparing growth on CO, syngas, and a high-H2 CO gas mix using chemostat cultures of Clostridium autoethanogenum. Cultures were characterised at the molecular level using metabolomics, proteomics, gas analysis, and a genome-scale metabolic model. CO-limited chemostats operated at two steady-state biomass concentrations facilitated co-utilisation of CO and H2. We show that H2 supply strongly impacts carbon distribution with a fourfold reduction in substrate loss as CO2 (61% vs. 17%) and a proportional increase of flux to ethanol (15% vs. 61%). Notably, H2 supplementation lowers the molar acetate/ethanol ratio by fivefold. At the molecular level, quantitative proteome analysis showed no obvious changes leading to these metabolic rearrangements suggesting the involvement of post-translational regulation. Metabolic modelling showed that H2 availability provided reducing power via H2 oxidation and saved redox as cells reduced all the CO2 to formate directly using H2 in the Wood-Ljungdahl pathway. Modelling further indicated that the methylene-THF reductase reaction was ferredoxin reducing under all conditions. In combination with proteomics, modelling also showed that ethanol was synthesised through the acetaldehyde:ferredoxin oxidoreductase (AOR) activity. CONCLUSIONS Our quantitative molecular analysis revealed that H2 drives rearrangements at several layers of metabolism and provides novel links between carbon, energy, and redox metabolism advancing our understanding of energy conservation in acetogens. We conclude that H2 supply can substantially increase the efficiency of gas fermentation and thus the feed gas composition can be considered an important factor in developing gas fermentation-based bioprocesses.
Collapse
Affiliation(s)
- Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Australia
| | | | | | - Steve Binos
- Thermo Fisher Scientific, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Nobuaki Takemori
- Proteo-Science Center, Ehime University, Ehime, Japan
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | | | - Yuki Tanaka
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | | | | | | | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
30
|
Sun X, Atiyeh HK, Kumar A, Zhang H. Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium. BIORESOURCE TECHNOLOGY 2018; 247:291-301. [PMID: 28950138 DOI: 10.1016/j.biortech.2017.09.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Biochar contains minerals and metals that can serve as nutrients for acetogens to produce ethanol via syngas fermentation. In this study, four fermentation media containing biochar from switchgrass (SGBC), forage sorghum (FSBC), red cedar (RCBC) and poultry litter (PLBC) were compared with standard yeast extract (YE) medium for syngas fermentation using Clostridium ragsdalei. Fermentations were performed in 250mL bottle reactors at 150rpm and 37°C with syngas containing CO:H2:CO2 (40:30:30) by volume. Results showed that media containing RCBC and PLBC improved ethanol production by 16.3% and 58.9%, respectively, compared to YE medium. C. ragsdalei consumed 69% more H2 and 40% more CO in PLBC medium compared to YE medium. However, no enhancement of ethanol production was observed in SGBC and FSBC media. The highest release of Na, K, Ca, Mg, S and P was from PLBC, which was considered to contribute in enhancement of ethanol production.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA.
| | - Ajay Kumar
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Hailin Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
31
|
Pardo-Planas O, Atiyeh HK, Phillips JR, Aichele CP, Mohammad S. Process simulation of ethanol production from biomass gasification and syngas fermentation. BIORESOURCE TECHNOLOGY 2017; 245:925-932. [PMID: 28931209 DOI: 10.1016/j.biortech.2017.08.193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 05/24/2023]
Abstract
The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production.
Collapse
Affiliation(s)
- Oscar Pardo-Planas
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA.
| | - John R Phillips
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Clint P Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Sayeed Mohammad
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
32
|
Syngas Fermentation: A Microbial Conversion Process of Gaseous Substrates to Various Products. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomass and other carbonaceous materials can be gasified to produce syngas with high concentrations of CO and H2. Feedstock materials include wood, dedicated energy crops, grain wastes, manufacturing or municipal wastes, natural gas, petroleum and chemical wastes, lignin, coal and tires. Syngas fermentation converts CO and H2 to alcohols and organic acids and uses concepts applicable in fermentation of gas phase substrates. The growth of chemoautotrophic microbes produces a wide range of chemicals from the enzyme platform of native organisms. In this review paper, the Wood–Ljungdahl biochemical pathway used by chemoautotrophs is described including balanced reactions, reaction sites physically located within the cell and cell mechanisms for energy conservation that govern production. Important concepts discussed include gas solubility, mass transfer, thermodynamics of enzyme-catalyzed reactions, electrochemistry and cellular electron carriers and fermentation kinetics. Potential applications of these concepts include acid and alcohol production, hydrogen generation and conversion of methane to liquids or hydrogen.
Collapse
|
33
|
Continuous Ethanol Production from Synthesis Gas by Clostridium ragsdalei in a Trickle-Bed Reactor. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans. World J Microbiol Biotechnol 2017; 33:43. [DOI: 10.1007/s11274-016-2188-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
35
|
General medium for the autotrophic cultivation of acetogens. Bioprocess Biosyst Eng 2016; 39:1645-50. [DOI: 10.1007/s00449-016-1634-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/30/2016] [Indexed: 01/19/2023]
|
36
|
Devarapalli M, Atiyeh HK, Phillips JR, Lewis RS, Huhnke RL. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. BIORESOURCE TECHNOLOGY 2016; 209:56-65. [PMID: 26950756 DOI: 10.1016/j.biortech.2016.02.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate.
Collapse
Affiliation(s)
- Mamatha Devarapalli
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA
| | - Hasan K Atiyeh
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA.
| | - John R Phillips
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA
| | - Randy S Lewis
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Raymond L Huhnke
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
37
|
Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Front Microbiol 2016; 7:694. [PMID: 27242719 PMCID: PMC4862988 DOI: 10.3389/fmicb.2016.00694] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.
Collapse
|
38
|
Aghbashlo M, Tabatabaei M, Dadak A, Younesi H, Najafpour G. Exergy-based performance analysis of a continuous stirred bioreactor for ethanol and acetate fermentation from syngas via Wood–Ljungdahl pathway. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2015.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
40
|
Diender M, Stams AJM, Sousa DZ. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation. Front Microbiol 2015; 6:1275. [PMID: 26635746 PMCID: PMC4652020 DOI: 10.3389/fmicb.2015.01275] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/31/2015] [Indexed: 11/29/2022] Open
Abstract
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands ; Centre of Biological Engineering, University of Minho Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
41
|
Gotovtsev PM, Yuzbasheva EY, Gorin KV, Butylin VV, Badranova GU, Perkovskaya NI, Mostova EB, Namsaraev ZB, Rudneva NI, Komova AV, Vasilov RG, Sineokii SP. Immobilization of microbial cells for biotechnological production: Modern solutions and promising technologies. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815080025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ganigué R, Ramió-Pujol S, Sánchez P, Bañeras L, Colprim J. Conversion of sewage sludge to commodity chemicals via syngas fermentation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:415-420. [PMID: 26204073 DOI: 10.2166/wst.2015.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gasification of sewage sludge allows the recovery of energy, and produces a mix of CO, CO₂and H₂called synthesis gas (or syngas), which can be fermented by acetogenic bacteria to added-value products. This work presents the conversion of syngas to organic acids and alcohols using both pure and mixed cultures. Pure culture kinetic experiments with Clostridium carboxidivorans P7 resulted in the production of high concentrations of acetate (454 mgC/L) and ethanol (167 mgC/L). The pH was the main factor driving solventogenesis, with about 50% of the products in the form of alcohols at pH 5. Conversely, laboratory-scale experiments using a carboxydotrophic mixed culture of the genus Clostridium enriched from anaerobic digester sludge of a municipal wastewater treatment plant was capable of producing mainly butyrate, with maximum concentration of 1,184 mgC/L.
Collapse
Affiliation(s)
- Ramon Ganigué
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Girona E-17071, Catalonia, Spain E-mail:
| | - Sara Ramió-Pujol
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Girona E-17071, Catalonia, Spain E-mail: ; Institute of Aquatic Ecology (IEA), University of Girona, Campus de Montilivi, Girona E-17071, Catalonia, Spain
| | - Patricia Sánchez
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Girona E-17071, Catalonia, Spain E-mail:
| | - Lluís Bañeras
- Institute of Aquatic Ecology (IEA), University of Girona, Campus de Montilivi, Girona E-17071, Catalonia, Spain
| | - Jesús Colprim
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Girona E-17071, Catalonia, Spain E-mail:
| |
Collapse
|
43
|
Liu K, Atiyeh HK, Pardo-Planas O, Ramachandriya KD, Wilkins MR, Ezeji TC, Ujor V, Tanner RS. Process development for biological production of butanol from Eastern redcedar. BIORESOURCE TECHNOLOGY 2015; 176:88-97. [PMID: 25460988 DOI: 10.1016/j.biortech.2014.10.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 05/16/2023]
Abstract
Eastern redcedar is an invasive softwood species in Oklahoma and across grasslands in the Central Plains of the United States and potential feedstock for butanol production. Butanol has higher energy content than ethanol and can be upgraded to jet and diesel fuels. The objective of this study was to develop a process for production of butanol from redcedar. Results showed that Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 8052 did not grow in fermentation medium with citrate buffer. However, both strains grew in the medium with acetate buffer, resulting in 3-4g/L greater butanol than without acetate. Detoxification of redcedar hydrolyzate was required to increase butanol concentration from 1 to 13g/L. Hydrolyzate was detoxified by activated carbon to remove inhibitors. Fermentations in detoxified redcedar hydrolyzate reached 13g/L butanol and 19g/L total ABE, comparable to glucose control. This shows the potential for redcedar use in butanol production.
Collapse
Affiliation(s)
- Kan Liu
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA
| | - Hasan K Atiyeh
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA.
| | - Oscar Pardo-Planas
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA
| | | | - Mark R Wilkins
- Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK, USA
| | - Thaddeus C Ezeji
- Department of Animal Sciences, The Ohio State University, and Ohio State Agricultural Research and Development Center, Wooster, OH, USA
| | - Victor Ujor
- Department of Animal Sciences, The Ohio State University, and Ohio State Agricultural Research and Development Center, Wooster, OH, USA
| | - Ralph S Tanner
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
44
|
Singla A, Verma D, Lal B, Sarma PM. Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. BIORESOURCE TECHNOLOGY 2014; 172:41-49. [PMID: 25233475 DOI: 10.1016/j.biortech.2014.08.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 05/15/2023]
Abstract
The main aim of the present study was to enrich anaerobic mixed bacterial culture capable of producing ethanol from synthesis gas fermentation. Screening of thirteen anaerobic strains together with enrichment protocol helped to develop an efficient mixed culture capable of utilizing syngas for ethanol production. Physiological and operational parameters were optimized for enhanced ethanol production. The optimized value of operational parameters i.e. initial media pH, incubation temperature, initial syngas pressure, and agitation speed were 6.0±0.1, 37°C, 2kgcm(-2) and 100rpm respectively. Under these conditions ethanol and acetic acid production by the selected mixed culture were 1.54gL(-1) and 0.8gL(-1) respectively. Furthermore, up-scaling studies in semi-continuous fermentation mode further enhanced ethanol and acetic acid production up to 2.2gL(-1) and 0.9gL(-1) respectively. Mixed culture TERI SA1 was efficient for ethanol production by syngas fermentation.
Collapse
Affiliation(s)
- Ashish Singla
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | - Dipti Verma
- TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | - Banwari Lal
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | - Priyangshu M Sarma
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India.
| |
Collapse
|
45
|
Ramachandriya KD, Wilkins MR, Patil KN. Influence of switchgrass generated producer gas pre-adaptation on growth and product distribution of Clostridium ragsdalei. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0384-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. BIORESOURCE TECHNOLOGY 2014; 152:337-46. [PMID: 24315938 DOI: 10.1016/j.biortech.2013.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 05/14/2023]
Abstract
Higher alcohols such as n-butanol and n-hexanol have higher energy density than ethanol, are more compatible with current fuel infrastructure, and can be upgraded to jet and diesel fuels. Several organisms are known to convert syngas to ethanol, but very few can produce higher alcohols alone. As a potential solution, mixed culture fermentation between the syngas fermenting Alkalibaculum bacchi strain CP15 and propionic acid producer Clostridium propionicum was studied. The monoculture of CP15 produced only ethanol from syngas without initial addition of organic acids to the fermentation medium. However, the mixed culture produced ethanol, n-propanol and n-butanol from syngas. The addition of propionic acid, butyric acid and hexanoic acid to the mixed culture resulted in a 50% higher conversion efficiency of these acids to their respective alcohols compared to CP15 monoculture. These findings illustrate the great potential of mixed culture syngas fermentation in production of higher alcohols.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Bradley S Stevenson
- Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Ralph S Tanner
- Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Mark R Wilkins
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Raymond L Huhnke
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
47
|
Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. BIORESOURCE TECHNOLOGY 2014; 151:69-77. [PMID: 24211485 DOI: 10.1016/j.biortech.2013.10.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 05/21/2023]
Abstract
Syngas fermentation to fuels is a technology on the verge of commercialization. Low cost of fermentation medium is important for process feasibility. The use of corn steep liquor (CSL) instead of yeast extract (YE) in Alkalibaculum bacchi strain CP15 bottle fermentations reduced the medium cost by 27% and produced 78% more ethanol. When continuous fermentation was performed in a 7-L fermentor, 6g/L ethanol was obtained in the YE and YE-free media. When CSL medium was used in continuous fermentation, the maximum produced concentrations of ethanol, n-propanol and n-butanol were 8 g/L, 6 g/L and 1 g/L, respectively. n-Propanol and n-butanol were not typical products of strain CP15. A 16S rRNA gene-based survey revealed a mixed culture in the fermentor dominated by A. bacchi strain CP15 (56%) and Clostridium propionicum (34%). The mixed culture presents an opportunity for higher alcohols production from syngas.
Collapse
Affiliation(s)
- Kan Liu
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gao J, Atiyeh HK, Phillips JR, Wilkins MR, Huhnke RL. Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. BIORESOURCE TECHNOLOGY 2013; 147:508-515. [PMID: 24012846 DOI: 10.1016/j.biortech.2013.08.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 05/05/2023]
Abstract
The development of a low cost medium for ethanol production is critical for process feasibility. Ten media were formulated for Clostridium ragsdalei by reduction, elimination and replacement of expensive nutrients. Cost analysis and effects of medium components on growth and product formation were investigated. Fermentations were performed in 250 mL bottles using syngas (20% CO, 15% CO2, 5% H2 and 60% N2). The standard medium M1 cost is $9.83/L, of which 93% is attributed to morpholinoethane sulfonic acid (MES) buffer. Statistical analysis of the results showed that MES removal did not affect cell growth and ethanol production (P>0.05). Based on cells' elemental composition, a minimal mineral concentration medium M7 was formulated, which provided 29% higher ethanol yield from CO at 3% of the cost compared to medium M1. Ethanol yield from CO in the completely defined medium M9 was 36% higher than while at 5% the cost of medium M1.
Collapse
Affiliation(s)
- Jie Gao
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA.
| | - John R Phillips
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mark R Wilkins
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Raymond L Huhnke
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
49
|
Richter H, Loftus SE, Angenent LT. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. ENVIRONMENTAL TECHNOLOGY 2013; 34:1983-94. [PMID: 24350452 DOI: 10.1080/09593330.2013.826255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To ensure economic implementation of syngas fermentation as a fuel-producing platform, engineers and scientists must both lower operating costs and increase product value. A considerable part of the operating costs is spent to procure chemicals for fermentation medium that can sustain sufficient growth of carboxydotrophic bacteria to convert synthesis gas (syngas: carbon monoxide, hydrogen, and carbon dioxide) into products such as ethanol. Recently, we have observed that wildtype carboxydotrophic bacteria (including Clostridium ljungdahlii) can produce alcohols with a longer carbon chain than ethanol via syngas fermentation when supplied with the corresponding carboxylic acid precursors, resulting in possibilities of increasing product value. Here, we evaluated a proof-of-concept system to couple syngas fermentation with the carboxylate platform to both lower medium costs and increase product value. Our carboxylate platform concept consists of an open culture, anaerobic fermentor that is fed with corn beer from conventional yeast fermentation in the corn kernel-to-ethanol industry. The mixed-culture anaerobic fermentor produces a mixture ofcarboxylic acids at dilute concentrations within the carboxylate platform effluent (CPE). Besides providing carboxylic acid precursors, this effluent may represent an inexpensive growth medium. An elemental analysis demonstrated that the CPE lacked certain essential trace metals, but contained ammonium, phosphate, sodium, chloride, potassium, magnesium, calcium, and sulphate at required concentrations. CPE medium with the addition of a trace metal solution supported growth and alcohol production of C. ljungdahlii at similar or better levels compared with an optimized synthetic medium (modified ATCC 1754 medium). Other expensive supplements, such as yeast extract or macro minerals (ammonium, phosphate), were not required. Finally, n-butyric acid and n-caproic acid within the CPE were converted into their corresponding medium-chain alcohols n-butanol and n-hexanol.
Collapse
Affiliation(s)
- Hanno Richter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sarah E Loftus
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Bengelsdorf FR, Straub M, Dürre P. Bacterial synthesis gas (syngas) fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1639-51. [PMID: 24350425 DOI: 10.1080/09593330.2013.827747] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acetogenic bacteria employing the Wood-Ljungdahl pathway can be used as biocatalysts in syngas fermentation for the production ofbiofuels such as ethanol or butanol as well as biocommodities such as acetate, lactate, butyrate, 2,3 butanediol, and acetone. The potential of such processes can be projected by the global syngas output, which was 70,817 megawatts thermal in 2010 and is expected to increase up to 72% in 2016. To date, different acetogens are used as commercial production strains for industrial syngas fermentations in pilot or demonstration plants (Coskata, INEOS Bio, LanzaTech) and first commercial units are expected to launch operation in the near future (INEOS Bio, LanzaTech). Considerations on potential yields are quite promising for fermentative production. New methods for metabolic engineering were established to construct novel recombinant acetogenic biocatalysts. Synthetic biology will certainly play a major role in constructing strains for commercial operations. This way, a cheap and abundant carbon source most probably replace, processes based on crude oil or sugar in the near future.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Melanie Straub
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| |
Collapse
|