1
|
Michaud M, Nonglaton G, Anxionnaz-Minvielle Z. Wall-Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale-Up. Chembiochem 2024; 25:e202400086. [PMID: 38618870 DOI: 10.1002/cbic.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.
Collapse
Affiliation(s)
- Maïté Michaud
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| | - Guillaume Nonglaton
- Univ. Grenoble Alpes, CEA, LETI, DTIS, Plateforme de Recherche Intégration, fonctionnalisation de Surfaces et Microfabrication (PRISM), F-38000, Grenoble, France
| | - Zoé Anxionnaz-Minvielle
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| |
Collapse
|
2
|
Li X, Chen J, Wu B, Gao Z, He B. Immobilization and Characterization of a Processive Endoglucanase EG5C-1 from Bacillus subtilis on Melamine-Glutaraldehyde Dendrimer-Functionalized Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:340. [PMID: 38392713 PMCID: PMC10891739 DOI: 10.3390/nano14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Exploring an appropriate immobilization approach to enhance catalytic activity and reusability of cellulase is of great importance to reduce the price of enzymes and promote the industrialization of cellulose-derived biochemicals. In this study, Fe3O4 magnetic nanoparticles (MNPs) were functionalized with meso-2,3-dimercaptosuccinic acid to introduce carboxyl groups on the surface (DMNPs). Then, melamine-glutaraldehyde dendrimer-like polymers were grafted on DMNPs to increase protein binding sites for the immobilization of processive endoglucanase EG5C-1. Moreover, this dendrimer-like structure was beneficial to protect the conformation of EG5C-1 and facilitate the interaction between substrate and active center. The loading capacity of the functionalized copolymers (MG-DMNPs) for EG5C-1 was about 195 mg/g, where more than 90% of the activity was recovered. Immobilized EG5C-1 exhibited improved thermal stability and increased tolerability over a broad pH range compared with the free one. Additionally, MG-DMNP/EG5C-1 biocomposite maintained approximately 80% of its initial hydrolysis productivity after five cycles of usage using filter paper as the substrate. Our results provided a promising approach for the functionalization of MNPs, enabling the immobilization of cellulases with a high loading capacity and excellent activity recovery.
Collapse
Affiliation(s)
- Xiaozhou Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (X.L.); (J.C.); (B.W.)
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China;
| |
Collapse
|
3
|
Wu Y, Liu X, Wang Q, Han D, Lin S. Fe3O4-Fused Magnetic Air Stone Prepared From Wasted Iron Slag Enhances Denitrification in a Biofilm Reactor by Increasing Electron Transfer Flow. Front Chem 2022; 10:948453. [PMID: 35873056 PMCID: PMC9304712 DOI: 10.3389/fchem.2022.948453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
nFe3O4 was prepared from waste iron slag and loaded onto air stone (named magnetic air stone or MAS in the following text). The main component of air stone is carborundum. To study the magnetic effects of MAS on denitrification, a biofilm reactor was built, and its microbial community structure and electron transfer in denitrification were analyzed. The results showed that MAS improved the performance of the reactor in both carbon and nitrogen removal compared with air stone (AS) control, and the average removal efficiencies of COD, TN, and NH4+-N increased by 17.15, 16.1, and 11.58%, respectively. High-throughput sequencing revealed that magnetism of MAS had a significant effect on the diversity and richness of microorganisms in the biofilm. The MAS also reduced the inhibition of rotenone, mipalene dihydrochloride (QDH), and sodium azide on the respiratory chain in denitrification and enhanced the accumulation of nitrite, in order to provide sufficient substrate for the following denitrification process. Therefore, the denitrification process is accelerated by the MAS. The results allowed us to deduce the acceleration sites of MAS in the denitrification electron transport chain. The existence of MAS provides a new rapid method for the denitrifying electron transport process. Even in the presence of respiratory inhibitors of denitrifying enzymes, the electron transfer acceleration provided by MAS still exists objectively. This is the mechanism through which MAS can restore the denitrification process inhibited by respiratory inhibitors to a certain extent.
Collapse
|
4
|
Wang H, Zhang Y, Yue W, Liang J, Su W. Application of magnetic field (MF) as an effective method to improve the activity of immobilized Candida antarctica lipase B (CALB). Catal Sci Technol 2022. [DOI: 10.1039/d2cy00628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of immobilized enzyme and the change mechanism of enzyme in magnetic field.
Collapse
Affiliation(s)
- Honghai Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- The National and Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin 300130, China
| | - Yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- The National and Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin 300130, China
| | - Wenda Yue
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- The National and Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin 300130, China
| | - Jun Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- The National and Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin 300130, China
| | - Weiyi Su
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- The National and Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin 300130, China
| |
Collapse
|
5
|
Liu G, Du T, Chen J, Hao X, Yang F, He H, Meng T, Wang Y. Microfluidic aqueous two-phase system-based nitrifying bacteria encapsulated colloidosomes for green and sustainable ammonium-nitrogen wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 342:126019. [PMID: 34571170 DOI: 10.1016/j.biortech.2021.126019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A novel strategy was proposed for preparing micro-scale monodisperses nitrifying bacteria (NB) encapsulated Ca-Alg@CaCO3 colloidosomes by exploiting capillary microfluidic device, as an attempt to treat ammonium-nitrogen wastewater in an environment-friendly, efficient and repeatable manner based on the aqueous two-phase (ATPS) system. By complying with the spatial confined urease mediate biomineralization reactions, ATPS droplets (Dextran in Polyethylene glycol) containing urease, NB regent and alginate were used as templates to prepare 500 μm Ca-Alg@CaCO3 colloidosomes with 16.48 Mpa mechanical strength. The activity of NB encapsulated in the colloidosomes was high. The simulated wastewater treated with the colloidosomes achieved a high removal rate even at harsh temperature and pH value. In both simulated and real wastewater treatment, prolonged reuse times (216 h) with high removal rate (>90%, after being applied 72 h) were obtained by using Ca-Alg@CaCO3 colloidosomes, as compared with that (96 h) by using general alginate microbeads.
Collapse
Affiliation(s)
- Gang Liu
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Ting Du
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jialin Chen
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Xin Hao
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Feng Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Huatao He
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
6
|
Interaction Analysis of Commercial Graphene Oxide Nanoparticles with Unicellular Systems and Biomolecules. Int J Mol Sci 2019; 21:ijms21010205. [PMID: 31892228 PMCID: PMC6982217 DOI: 10.3390/ijms21010205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 01/15/2023] Open
Abstract
The ability of commercial monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) to interact with different unicellular systems and biomolecules was studied by analyzing the response of human alveolar carcinoma epithelial cells, the yeast Saccharomyces cerevisiae and the bacteria Vibrio fischeri to the presence of different nanoparticle concentrations, and by studying the binding affinity of different microbial enzymes, like the α-l-rhamnosidase enzyme RhaB1 from the bacteria Lactobacillus plantarum and the AbG β-d-glucosidase from Agrobacterium sp. (strain ATCC 21400). An analysis of cytotoxicity on human epithelial cell line A549, S. cerevisiae (colony forming units, ROS induction, genotoxicity) and V. fischeri (luminescence inhibition) cells determined the potential of both nanoparticle types to damage the selected unicellular systems. Also, the protein binding affinity of the graphene derivatives at different oxidation levels was analyzed. The reported results highlight the variability that can exist in terms of toxicological potential and binding affinity depending on the target organism or protein and the selected nanomaterial.
Collapse
|
7
|
Sadasivam R, Sankarakuttalam C, Gopinath P. Hierarchical Architecture of Electrospun Hybrid PAN/Ag‐rGO/Fe3O4 Composite Nanofibrous Mat for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rajkumar Sadasivam
- Nanobiotechnology LaboratoryCentre for NanotechnologyIndian Institute of Technology Roorkee, Roorkee Uttarakhand- 247667 India
| | | | - Packirisamy Gopinath
- Nanobiotechnology LaboratoryCentre for NanotechnologyIndian Institute of Technology Roorkee, Roorkee Uttarakhand- 247667 India
- Department of BiotechnologyIndian Institute of Technology Roorkee, Roorkee Uttarakhand- 247667 India
| |
Collapse
|
8
|
Sharifi M, Robatjazi SM, Sadri M, Mosaabadi JM. Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Nizhelska O, Marynchenko L, Makara V, Naumenko S, Kurylyuk A. The Stabilizing Effect of Magnetic Field for the Shape of Yeast Cells Saccharomyces cerevisiae on Silicon Surface. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2018. [DOI: 10.20535/ibb.2018.2.4.151881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
10
|
Tamayo-Ramos JA, Rumbo C, Caso F, Rinaldi A, Garroni S, Notargiacomo A, Romero-Santacreu L, Cuesta-López S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32773-32781. [PMID: 30168313 DOI: 10.1021/acsami.8b07245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymeric electrospun fibers are becoming popular in microbial biotechnology because of their exceptional physicochemical characteristics, biodegradability, surface-to-volume ratio, and compatibility with biological systems, which give them a great potential as microbial supports to be used in production processes or environmental applications. In this work, we analyzed and compared the ability of Escherichia coli, Pseudomonas putida, Brevundimonas diminuta, and Sphingobium fuliginis to develop biofilms on different types of polycaprolactone (PCL) microfibers. These bacterial species are relevant in the production of biobased chemicals, enzymes, and proteins for therapeutic use and bioremediation. The obtained results demonstrated that all selected species were able to attach efficiently to the PCL microfibers. Also, the ability of pure cultures of S. fuliginis (former Flavobacterium sp. ATCC 27551, a very relevant strain in the bioremediation of organophosphorus compounds) to form dense biofilms was observed for the first time, opening the possibility of new applications for this microorganism. This material showed to have a high microbial loading capacity, regardless of the mesh density and fiber diameter. A comparative analysis between PCL and polylactic acid (PLA) electrospun microfibers indicated that both surfaces have a similar bacterial loading capacity, but the former material showed higher resistance to microbial degradation than PLA.
Collapse
Affiliation(s)
- Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Departamento de Química, Facultad de Ciencias , University of Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Federica Caso
- Nanofaber srl. , Via Anguillarese 301 , 00123 Rome , Italy
| | - Antonio Rinaldi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Casaccia Research Centre , Via Anguillarese 301 , 00123 Rome , Italy
| | - Sebastiano Garroni
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
| | - Andrea Notargiacomo
- Institute for Photonics and Nanotechnology , CNR , Via Cineto Romano 42 , 00156 Rome , Italy
| | - Lorena Romero-Santacreu
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154 , University of Burgos , Hospital del Rey s/n , Burgos , 09001 , Castilla y León, Spain
| | - Santiago Cuesta-López
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154 , University of Burgos , Hospital del Rey s/n , Burgos , 09001 , Castilla y León, Spain
| |
Collapse
|
11
|
Facile recycling of Escherichia coli and Saccharomyces cerevisiae cells from suspensions using magnetic modification method and mechanism analysis. Colloids Surf B Biointerfaces 2018; 169:1-9. [DOI: 10.1016/j.colsurfb.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2018] [Accepted: 05/02/2018] [Indexed: 01/31/2023]
|
12
|
Covalent immobilization of organophosphorus hydrolase enzyme on chemically modified cellulose microfibers: Statistical optimization and characterization. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Al-Qodah Z, Al-Shannag M, Al-Bosoul M, Penchev I, Al-Ahmadi H, Al-Qodah K. On the performance of immobilized cell bioreactors utilizing a magnetic field. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review focuses on the performance of immobilized cell bioreactors utilizing a magnetic field. These reactors utilized immobilized cells on magnetic particles or beads as the solid phase. All published research papers dealing with the performance of immobilized cell bioreactors utilizing a magnetic field from the early 1960s to the present time were considered and analyzed. It was noted that many microorganisms such as Saccharomyces cerevisiae were immobilized on different supports in these reactors. These papers used the magnetic field for several purposes, mainly for the stabilization of magnetic particles to prevent their washout from the column while operating with relatively high substrate flow rates to enhance mass transfer processes. It was observed that most publications used an axial magnetic field. In addition, most of the magnetic particles were prepared by entrapment. Some comments are presented at the end of the review which show the gaps in this promising application.
Collapse
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department , Al-Balqa Applied University , Amman , Jordan
| | - Mohammad Al-Shannag
- Chemical Engineering Department, School of Engineering , University of Jordan , Amman , Jordan
| | - Mamdouh Al-Bosoul
- Mechanical Engineering Department , Al-Balqa Applied University , Amman , Jordan
| | - Ivan Penchev
- Chemical Engineering Department , Sofia University of Chemical Technology and Metallurgy , Sofia , Bulgaria
| | - Hamed Al-Ahmadi
- Mechanical Engineering Department , Taibah University , Madina , Saudi Arabia
| | - Khaled Al-Qodah
- Mechanical Engineering Department , Taibah University , Madina , Saudi Arabia
| |
Collapse
|
14
|
|
15
|
Wang L, Liu N, Guo Z, Wu D, Chen W, Chang Z, Yuan Q, Hui M, Wang J. Nitric Acid-Treated Carbon Fibers with Enhanced Hydrophilicity for Candida tropicalis Immobilization in Xylitol Fermentation. MATERIALS 2016; 9:ma9030206. [PMID: 28773330 PMCID: PMC5456695 DOI: 10.3390/ma9030206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
Abstract
Nitric acid (HNO3)-treated carbon fiber (CF) rich in hydrophilic groups was applied as a cell-immobilized carrier for xylitol fermentation. Using scanning electron microscopy, we characterized the morphology of the HNO3-treated CF. Additionally, we evaluated the immobilized efficiency (IE) of Candida tropicalis and xylitol fermentation yield by investigating the surface properties of nitric acid treated CF, specifically, the acidic group content, zero charge point, degree of moisture and contact angle. We found that adhesion is the major mechanism for cell immobilization and that it is greatly affected by the hydrophilic–hydrophilic surface properties. In our experiments, we found 3 hto be the optimal time for treating CF with nitric acid, resulting in an improved IE of Candida tropicalis of 0.98 g∙g−1 and the highest xylitol yield and volumetric productivity (70.13% and 1.22 g∙L−1∙h−1, respectively). The HNO3-treated CF represents a promising method for preparing biocompatible biocarriers for multi-batch fermentation.
Collapse
Affiliation(s)
- Le Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Zheng Guo
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450001, China.
| | - Dapeng Wu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453001, China.
| | - Weiwei Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Zheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ming Hui
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Jinshui Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Zhan S, Zhu D, Ma S, Yu W, Jia Y, Li Y, Yu H, Shen Z. Highly efficient removal of pathogenic bacteria with magnetic graphene composite. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4290-8. [PMID: 25634911 DOI: 10.1021/am508682s] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Magnetic Fe3O4/graphene composite (abbreviated as G-Fe3O4) was synthesized successfully by solvothermal method to effectively remove both bacteriophage and bacteria in water, which was tested by HRTEM, XRD, BET, XPS, FTIR, CV, magnetic property and zeta-potential measurements. Based on the result of HRTEM, the single-sheet structure of graphene oxide and the monodisperse Fe3O4 nanoparticles on the surface of graphene can be observed obviously. The G-Fe3O4 composite were attractive for removing a wide range of pathogens including not only bacteriophage ms2, but also various bacteria such as S. aureus, E. coli, Salmonella, E. Faecium, E. faecalis, and Shigella. The removal efficiency of E. coli for G-Fe3O4 composite can achieve 93.09%, whereas it is only 54.97% with pure Fe3O4 nanoparticles. Moreover, a detailed verification test of real water samples was conducted and the removal efficiency of bacteria in real water samples with G-Fe3O4 composite can also reach 94.8%.
Collapse
Affiliation(s)
- Sihui Zhan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Pollution Process and Environmental Criteria, Nankai University , Tianjin 300071, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu YB, Qu D, Wen YJ, Ren HJ. Low-temperature biodegradation of aniline by freely suspended and magnetic modified Pseudomonas migulae AN-1. Appl Microbiol Biotechnol 2015; 99:5317-26. [DOI: 10.1007/s00253-015-6399-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
18
|
Detoxification of hexavalent chromate by Amphibacillus sp. KSUCr3 cells immobilised in silica-coated magnetic alginate beads. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0373-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Biosurfactant-enhanced immobilization of hydrocarbon-oxidizing Rhodococcus ruber on sawdust. Appl Microbiol Biotechnol 2013; 97:5315-27. [DOI: 10.1007/s00253-013-4869-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
|
20
|
Park M, Park S, Hyun J. Use of magnetic nanoparticles to manipulate the metabolic environment of bacteria for controlled biopolymer synthesis. ACS APPLIED MATERIALS & INTERFACES 2012; 4:5114-5117. [PMID: 23046153 DOI: 10.1021/am301839c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Magnetic nanoparticles (MNPs) were covalently immobilized on the surface of Acetobacter xylinus and the location of the bacteria was controlled to manipulate bacterial bioactivation. The bacteria were positioned in the middle of an incubation tube by applying an external magnetic field, and the cellulose produced at the different metabolizing locations was characterized by X-ray diffraction, electron microscopy, and differential scanning calorimetry. To the best of our knowledge, this is the first experiment in which MNPs were employed in the control of cell metabolism.
Collapse
Affiliation(s)
- Minsung Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
21
|
Robatjazi SM, Shojaosadati SA, Khalilzadeh R, Farahani EV, Zeinoddini M. Continuous biodegradation of parathion by immobilized Sphingomonas sp. in magnetically fixed-bed bioreactors and evaluation of the enzyme stability of immobilized bacteria. Biotechnol Lett 2012; 35:67-73. [PMID: 22996642 DOI: 10.1007/s10529-012-1047-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/06/2012] [Indexed: 11/28/2022]
Abstract
Magnetically-modified Sphingomonas sp. was prepared using covalent binding of magnetic nanoparticles on to the cell surface. The magnetic modified bacteria were immobilized in the fixed-bed bioreactors (FBR) by internal and external magnetic fields for the biodetoxification of a model organophosphate, parathion: 93 % of substrate (50 mg parathion/l) was hydrolyzed at 0.5 ml/min in internal magnetic field fixed-bed bioreactor. The deactivation rate constants (at 1 ml/min) were 0.97 × 10(-3), 1.24 × 10(-3) and 4.17 × 10(-3) h(-1) for immobilized bacteria in external and internal magnetic field fixed-bed bioreactor and FBR, respectively. The deactivation rate constant for immobilized magnetically modified bacteria in external magnetic field fixed-bed bioreactor (EMFFBR) was 77 % lower than that of immobilized cells by entrapping method on porous basalt beads in FBR at 1 ml/min. Immobilized magnetic modified bacteria exhibited maximum enzyme stability in EMFFBR.
Collapse
Affiliation(s)
- Seyed Mortaza Robatjazi
- Department of Biotechnology, Malek-Ashtar University of Technology, Tehran, Islamic Republic of Iran
| | | | | | | | | |
Collapse
|