1
|
Lim Y, Yu J, Park S, Kim M, Chen S, Bakri NAB, Sabri NIABM, Bae S, Kim HS. Development of biocatalysts immobilized on coal ash-derived Ni-zeolite for facilitating 4-chlorophenol degradation. BIORESOURCE TECHNOLOGY 2020; 307:123201. [PMID: 32220822 DOI: 10.1016/j.biortech.2020.123201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
A new type of biocatalyst was developed to facilitate the biochemical decomposition of 4-chlorophenol (4-CP) in this study. Oxydoreductases that catalyze the initial steps of 4-CP biodegradation were immobilized on a synthetic inorganic enzyme support. Type-X zeolite, a high-surface area support, was synthesized from coal fly ash, on which nickel ions were plated by impregnation (Ni-zeolite), followed by the effective immobilization (77.5% immobilization yield) of recombinant monooxygenase (CphC-I), dioxygenase (CphA-I), and flavin reductase (Fre) isolated from Pseudarthrobacter chlorophenolicus A6 and Escherichia coli K-12, respectively. The retained catalytic activity of the enzymes immobilized on Ni-zeolite was as high as 64% of the value for the corresponding free enzymes. The Michaelis-Menten kinetic parameters vmax and KM of the immobilized enzymes were determined to be 0.20 mM·min-1 and 0.44 mM, respectively. These results are expected to provide useful information with respect to the development of novel enzymatic treatments for phenolic hydrocarbon contaminants.
Collapse
Affiliation(s)
- Yejee Lim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jimin Yu
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungyoon Park
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minsoo Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Siyu Chen
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nurul Aziemah Binti Bakri
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | | | - Sungjun Bae
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han S Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Yang JW, Cho W, Lim Y, Park S, Lee D, Jang HA, Kim HS. Evaluation of aromatic hydrocarbon decomposition catalyzed by the dioxygenase system and substitution of ferredoxin and ferredoxin reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34047-34057. [PMID: 30244447 DOI: 10.1007/s11356-018-3200-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 05/25/2023]
Abstract
In this study, the catalytic activity and kinetic characteristics of the aromatic hydrocarbon dioxygenase system and the possibility of substituting its ferredoxin and ferredoxin reductase components were evaluated. The genes encoding toluene dioxygenase and toluene dihydrodiol dehydrogenase were cloned from Pseudomonas putida F1, and the corresponding enzymes were overexpressed and purified to homogeneity. Oxidative hydroxylation of toluene to cis-toluene dihydrodiol was catalyzed by toluene dioxygenase, and its subsequent dehydrogenation to 3-methylcatechol was catalyzed by toluene dihydrodiol dehydrogenase. The specific activity of the dioxygenase was 2.82 U/mg-protein, which is highly remarkable compared with the values obtained in previous researches conducted with crude extracts or insoluble forms of enzymes. Kinetic parameters, as characterized by the Hill equation, were vmax = 497.2 μM/min, KM = 542.4 μM, and nH = 2.2, suggesting that toluene dioxygenase has at least three cooperative binding sites for toluene. In addition, the use of alternative ferredoxins and reductases was examined. Ferredoxin cloned from CYP153 could transfer electrons to the iron sulfur protein component of toluene dioxygenase. The ferredoxin could be reduced by ferredoxin, rubredoxin, and putidaredoxin reductases of CYP153, alkane-1 monooxygenase, and camphor 5-monooxygenase, respectively. The results provide useful information regarding the effective enzymatic biotreatment of hazardous aromatic hydrocarbon contaminants.
Collapse
Affiliation(s)
- Jun Won Yang
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Wooyoun Cho
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yejee Lim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Sungyoon Park
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Dayoung Lee
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyun-A Jang
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Han S Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
3
|
Kwean OS, Cho SY, Yang JW, Cho W, Park S, Lim Y, Shin MC, Kim HS, Park J, Kim HS. 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite. BIORESOURCE TECHNOLOGY 2018; 259:268-275. [PMID: 29571170 DOI: 10.1016/j.biortech.2018.03.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
A biodegradation facilitator which catalyzes the initial steps of 4-chlorophenol (4-CP) oxidation was prepared by immobilizing multiple enzymes (monooxygenase, CphC-I and dioxygenase, CphA-I) onto a natural inorganic support. The enzymes were obtained via overexpression and purification after cloning the corresponding genes (cphC-I and cphA-I) from Arthrobacter chlorophenolicus A6. Then, the recombinant CphC-I was immobilized onto fulvic acid-activated montmorillonite. The immobilization yield was 60%, and the high enzyme activity (82.6%) was retained after immobilization. Kinetic analysis indicated that the Michaelis-Menten model parameters for the immobilized CphC-I were similar to those for the free enzyme. The enzyme stability was markedly enhanced after immobilization. The immobilized enzyme exhibited a high level of activity even after repetitive use (84.7%) and powdering (65.8%). 4-CP was sequentially oxidized by a multiple enzyme complex, comprising the immobilized CphC-I and CphA-I, via the hydroquinone pathway: oxidative transformation of 4-CP to hydroxyquinol followed by ring fission of hydroxyquinol.
Collapse
Affiliation(s)
- Oh Sung Kwean
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Su Yeon Cho
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Jun Won Yang
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Wooyoun Cho
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Sungyoon Park
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Yejee Lim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Min Chul Shin
- Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju Jeollabuk-do 54896, Republic of Korea; The Soil and R&D Center, H-Plus Eco Ltd., 222 Seokchonhosu-ro, Songpa-gu, Seoul 05610, Republic of Korea
| | - Han-Suk Kim
- The Soil and R&D Center, H-Plus Eco Ltd., 222 Seokchonhosu-ro, Songpa-gu, Seoul 05610, Republic of Korea
| | - Joonhong Park
- Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han S Kim
- Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea.
| |
Collapse
|
4
|
Ratanapongleka K, Punbut S. Removal of acetaminophen in water by laccase immobilized in barium alginate. ENVIRONMENTAL TECHNOLOGY 2018; 39:336-345. [PMID: 28278092 DOI: 10.1080/09593330.2017.1301563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The Km value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.
Collapse
Affiliation(s)
- Karnika Ratanapongleka
- a Department of Chemical Engineering, Faculty of Engineering , Ubon Ratchathani University , Ubon Ratchathani , Thailand
| | - Supot Punbut
- a Department of Chemical Engineering, Faculty of Engineering , Ubon Ratchathani University , Ubon Ratchathani , Thailand
| |
Collapse
|
5
|
Cho SY, Kwean OS, Yang JW, Cho W, Kwak S, Park S, Lim Y, Kim HS. Identification of the upstream 4-chlorophenol biodegradation pathway using a recombinant monooxygenase from Arthrobacter chlorophenolicus A6. BIORESOURCE TECHNOLOGY 2017; 245:1800-1807. [PMID: 28522197 DOI: 10.1016/j.biortech.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/06/2023]
Abstract
This study aimed to clarify the initial 4-chlorophenol (4-CP) biodegradation pathway promoted by a two-component flavin-diffusible monooxygenase (TC-FDM) consisting of CphC-I and CphB contained in Arthrobacter chlorophenolicus A6 and the decomposition function of CphC-I. The TC-FDM genes were cloned from A. chlorophenolicus A6, and the corresponding enzymes were overexpressed. Since CphB was expressed in an insoluble form, Fre, a flavin reductase obtained from Escherichia coli, was used. These enzymes were purified using Ni2+-NTA resin. It was confirmed that TC-FDM catalyzes the oxidation of 4-CP and the sequential conversion of 4-CP to benzoquinone (BQN)→hydroquinone (HQN)→HQL. This indicated that CphC-I exhibits substrate specificity for 4-CP, BQN, and HQN. The activity of CphC-I for 4-CP was 63.22U/mg-protein, and the Michaelis-Menten kinetic parameters were vmax=0.21mM/min, KM=0.19mM, and kcat/KM=0.04mM-1min-1. These results would be useful for the development of a novel biochemical treatment technology for 4-CP and phenolic hydrocarbons.
Collapse
Affiliation(s)
- Su Yeon Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Oh Sung Kwean
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Won Yang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wooyoun Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonyeong Kwak
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungyoon Park
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yejee Lim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han S Kim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Kang C, Yang JW, Cho W, Kwak S, Park S, Lim Y, Choe JW, Kim HS. Oxidative biodegradation of 4-chlorophenol by using recombinant monooxygenase cloned and overexpressed from Arthrobacter chlorophenolicus A6. BIORESOURCE TECHNOLOGY 2017; 240:123-129. [PMID: 28343861 DOI: 10.1016/j.biortech.2017.03.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 05/06/2023]
Abstract
In this study, cphC-I and cphB, encoding a putative two-component flavin-diffusible monooxygenase (TC-FDM) complex, were cloned from Arthrobacter chlorophenolicus A6. The corresponding enzymes were overexpressed to assess the feasibility of their utilization for the oxidative decomposition of 4-chlorophenol (4-CP). Soluble CphC-I was produced at a high level (∼50%), and subsequently purified. Since CphB was expressed in an insoluble form, a flavin reductase, Fre, cloned from Escherichia coli was used as an alternative reductase. CphC-I utilized cofactor FADH2, which was reduced by Fre for the hydroxylation of 4-CP. This recombinant enzyme complex exhibited a higher specific activity for the oxidation of 4-CP (45.34U/mg-protein) than that exhibited by CphC-I contained in cells (0.18U/mg-protein). The Michaelis-Menten kinetic parameters were determined as: vmax=223.3μM·min-1, KM=249.4μM, and kcat/KM=0.052min-1·μM-1. These results could be useful for the development of a new biochemical remediation technique based on enzymatic agents catalyzing the degradation of phenolic contaminants.
Collapse
Affiliation(s)
- Christina Kang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Won Yang
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wooyoun Cho
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seonyeong Kwak
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungyoon Park
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yejee Lim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jae Wan Choe
- Civil Engineering, Gwangju University, 277 Hyodeok-ro, Nam-gu, Gwanju 61743, Republic of Korea
| | - Han S Kim
- Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
|
8
|
Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnology 2016; 14:5. [PMID: 26772816 PMCID: PMC4715327 DOI: 10.1186/s12951-016-0158-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/10/2016] [Indexed: 11/17/2022] Open
Abstract
Background Chlorophenols are environmental contaminants, which are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing chlorophenols, compared to the traditional physical–chemical processes. Results In this study, we first developed an efficient process for the biodegradation of chlorophenols by magnetically immobilized Rhodococcus rhodochrous cells. R. rhodochrous DSM6263 degrades chlorophenols following the first step of hydroxylation at the ortho-positions of chlorophenolic rings. The cells immobilized by k-carrageenan with 9 g/L Fe3O4 nanoparticles could efficiently degrade 2-chlorophenol, 4-chlorophenol, 2,3-dichlorophenol and their mixture, which were even higher than those by free cells. The magnetically nanoparticle-immobilized cells could be used at least for six cycles. Conclusion Given the much easier separation by an external magnetic field and high degradation efficiency, this study provides a promising technique for improving biocatalysts used in the bioremediation process for chlorophenols in wastewater.
Collapse
|
9
|
A Kinetic and Mechanismic Study of Plasma-Induced Degradation of Monochloropropionic Acids in Water by Means of Anodic Contact Glow Discharge Electrolysis. INT J POLYM SCI 2016. [DOI: 10.1155/2016/9615865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Decomposition of aqueous monochloropropionic acids (MCPAs) was investigated by means of anodic contact glow discharge electrolysis (CGDE). With the decay of MCPAs, the corresponding total organic carbon (TOC) also decreased smoothly. Furthermore, it was found that chlorine atoms in the MCPAs were released as chloride ions. As the main by-products, oxalic acid and formic acid were detected. The acetic acid (CA), monochloroacetic acid (MCA), and propanedioic acid (PDA) were also detected as the primary intermediates for decomposition of the corresponding MCPAs. The decay of both MCPAs and TOC obeyed the first-order kinetics, respectively. The apparent rate constant for the decay of MCPAs increased with the increase inpKavalues of MCPAs, while that for the decay of TOC was substantially unaffected. The reaction pathway involving the successive attack of hydroxyl radical and the carbon chain cleavage were discussed based on the products and kinetics.
Collapse
|
10
|
Feng Q, Hou D, Zhao Y, Xu T, Menkhaus TJ, Fong H. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20958-20967. [PMID: 25396286 DOI: 10.1021/am505722g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be suitable/ideal as efficient supports for high-density and reusable enzyme immobilization.
Collapse
Affiliation(s)
- Quan Feng
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University , Wuhu, Anhui 241000, China
| | | | | | | | | | | |
Collapse
|
11
|
Feng Q, Zhao Y, Wei A, Li C, Wei Q, Fong H. Immobilization of catalase on electrospun PVA/PA6-Cu(II) nanofibrous membrane for the development of efficient and reusable enzyme membrane reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10390-10397. [PMID: 25093534 DOI: 10.1021/es501845u] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a mat/membrane consisting of overlaid PVA/PA6-Cu(II) composite nanofibers was prepared via the electrospinning technique followed by coordination/chelation with Cu(II) ions; an enzyme of catalase (CAT) was then immobilized onto the PVA/PA6-Cu(II) nanofibrous membrane. The amount of immobilized catalase reached a high value of 64 ± 4.6 mg/g, while the kinetic parameters (Vmax and Km) of enzyme were 3774 μmol/mg·min and 41.13 mM, respectively. Furthermore, the thermal stability and storage stability of immobilized catalase were improved significantly. Thereafter, a plug-flow type of immobilized enzyme membrane reactor (IEMR) was assembled from the PVA/PA6-Cu(II)-CAT membrane. With the increase of operational pressure from 0.02 to 0.2 MPa, the flux value of IEMR increased from 0.20 ± 0.02 to 0.76 ± 0.04 L/m(2)·min, whereas the conversion ratio of H2O2 decreased slightly from 92 ± 2.5% to 87 ± 2.1%. After 5 repeating cycles, the production capacity of IEMR was merely decreased from 0.144 ± 0.006 to 0.102 ± 0.004 mol/m(2)·min. These results indicated that the assembled IEMR possessed high productivity and excellent reusability, suggesting that the IEMR based on electrospun PVA/PA6-Cu(II) nanofibrous membrane might have great potential for various applications, particularly those related to environmental protection.
Collapse
Affiliation(s)
- Quan Feng
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University , Wuhu, Anhui 241000, China
| | | | | | | | | | | |
Collapse
|
12
|
Tong Y, Xin Y, Yang H, Zhang L, Wang W. Efficient improvement on stability of sarcosine oxidase via poly-lysine modification on enzyme surface. Int J Biol Macromol 2014; 67:140-6. [DOI: 10.1016/j.ijbiomac.2014.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
|
13
|
Micalella C, Caglio R, Mozzarelli A, Valetti F, Pessione E, Giunta C, Bruno S. Ormosil gels doped with engineered catechol 1,2 dioxygenases for chlorocatechol bioremediation. Biotechnol Appl Biochem 2014; 61:297-303. [PMID: 24571591 DOI: 10.1002/bab.1162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/01/2013] [Indexed: 11/06/2022]
Abstract
Enzymes entrapped in wet, nanoporous silica gel have great potential as bioreactors for bioremediation because of their improved thermal, chemical, and mechanical stability with respect to enzymes in solution. The B isozyme of catechol 1,2 dioxygenase from Acinetobacter radioresistens and its mutants of Leu69 and Ala72, designed for an increased reactivity toward the environmental pollutant chlorocatechols, were encapsulated using alkoxysilanes and alkyl alkoxysilanes as precursors in varying proportions. Encapsulation of the mutants in a hydrophobic tetramethoxysilane/dimethoxydimethylsilane-based matrix yielded a remarkable 10- to 12-fold enhancement in reactivity toward chlorocatechols. These gels also showed a fivefold increase in relative reactivity toward chlorocatechols with respect to the natural substrate catechol, thus compensating for their relatively low activity for these substrates in solution. The encapsulated enzyme, unlike the enzyme in solution, proved resilient in assays carried out in urban wastewater and bacteria-contaminated solutions mimicking environmentally relevant conditions. Overall, the combination of a structure-based rational design of enzyme mutants, and the selection of a suitable encapsulation material, proved to be a powerful approach for the production and optimization of a potential bioremediation device, with increased activity and resistance toward bacterial degradation.
Collapse
|